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Abstract: In order to deepen the knowledge of the seasonal variation in total cloud cover (TCC) in
Xinjiang, China (XJ), a typical arid region, and to broaden the understanding of the seasonal variation
in cloud type (CLT) in the region, we used TCC and CLT datasets from the latest generation of the
geostationary satellite Fengyun 4A (FY-4A) from 2018 to 2022 to investigate the seasonal variation
characteristics of TCC and CLT in XJ. Meanwhile, to verify the accuracy of TCC from FY-4A, ground
observation (GROB) TCC datasets from 105 national meteorological stations (NMSs) in XJ and TCC
datasets from ERA5 during the same period were used. In addition, the correlation between TCC from
FY-4A and meteorological factors from ERA5 was also analyzed in this study. The TCC from FY-4A,
GROB, and ERA5 can all well reflect the significant seasonal variation in TCC in XJ, with the highest
(lowest) mean TCC and a distribution pattern of high in the southwest (northwest) and low in the
northeast (southeast) in spring (fall) in XJ. Although the mean TCC from FY-4A in all four seasons was
lower than that from GROB, the two were comparable in spring (44.09% and 47.32%) and summer
(42.88% and 43.17%), while there was a significant difference between the two in fall (27.86% and 40.19%)
and winter (30.58% and 46.93%) for 105 NMSs in XJ. The TCC from FY-4A was lower (higher) than
that from GROB in spring and summer at most NMSs in northern (southern) XJ, while the TCC from
FY-4A was lower than that from GROB for the vast majority of NMSs in fall and winter, especially
in northern XJ. The seasonal variation in the spatial distribution of different CLTs (clear, water-type,
supercooled-type, mixed-type, ice-type, cirrus-type, and overlap-type) from FY-4A exhibited diverse
variation characteristics. Water-type (supercooled-water-type) had a high-frequency center of over 30%
in the Tarim Basin (Kunlun Mountains) during summer. Mixed-type (ice-type and cirrus-type) had the
highest frequency in winter (spring), while overlap-type had the highest frequency in summer. The
correlation between TCC and water vapor conditions (total column vertically integrated water vapor,
specific humidity at 250 hPa, 500 hPa, and 700 hPa) was positive in XJ.

Keywords: seasonal variation; total cloud cover; cloud type; FY-4A; Xinjiang

1. Introduction

Cloudiness is one of the important climate factors that affect radiation transfer and
water cycle and has a significant impact on climate change [1–5]. In addition, cloudiness
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plays an important role in the evolution of weather systems and the development of
climate systems [6–8]. These effects of cloudiness are not only greatly influenced by their
horizontal distribution, i.e., total cloud cover (TCC), but also greatly constrained by their
formation, height, and optical thickness, such as cloud type (CLT) [9–14]. TCC and CLT
are influenced by many factors, including geographical location [15–18], terrain [19,20],
and season [21–23]. Differences in geographical location can lead to differences in cloud
characteristics; for example, there were significant differences in TCC between the Tibetan
Plateau and eastern China on various time scales [18], and the differences in TCC caused
by geographical location differences were also significant in different regions of the United
States [16,17]. Meanwhile, the influence of terrain on cloud characteristics is also evident,
such as Dommo et al. [19] using the K-means clustering method to cluster western central
Africa terrain into four categories: coast and low-lying ocean-facing valleys, windward
flanks, plateaus, and Congo basin margins, and pointed out that the main differences
between these four types are related to the frequency of low cloud cover. Due to the severe
influence of terrain, the annual average TCC over the Tibetan Plateau decreased from the
southeast to the northwest [20]. In addition, seasonal variation also has a significant impact
on cloud characteristics. Ahmadi et al. [22] discussed in detail the seasonal variation in
liquid and ice clouds in Iran and pointed out that liquid clouds in summer and ice clouds
in spring had a higher correlation with precipitation in Iran. The seasonal variation in TCC
in southern Italy showed the highest incidence in winter, while the seasonal variation in
TCC in low- and high-altitude areas in northern Italy showed more complex characteristics
with significant differences [23].

China has a vast territory, complex terrain, and significant differences in climate char-
acteristics. Unlike the eastern and southern regions of China, Xinjiang, China (XJ) is not
directly affected by the monsoon system and is a typical arid region [24,25]. XJ is located in
the northwest of China and also in the hinterland of the Eurasian continent, with significant
differences in both macro- and microphysical characteristics of precipitation compared to other
regions of China [26–33]. Clouds and precipitation have a critical impact on the economic and
social development, ecological environment protection, meteorological disaster prevention
and reduction, water resource utilization, and water security of XJ. However, research on
clouds is clearly insufficient compared to precipitation in XJ. Zeng et al. [34] used the Ka-band
cloud radar located in the Tianshan Mountains of XJ to study the diurnal variation in clouds
from March to May 2020, and found that the diurnal variation in cloud base height and cloud
top height is closely related to the terrain of the Tianshan Mountains of XJ. Based on the same
cloud radar as Zeng [34], Zhang et al. [35] compared in detail the macro- and microphysical
characteristics of snowfall and non-snowfall clouds in the Tianshan Mountains of XJ. However,
XJ accounts for about one-sixth of China’s land area and has complex terrain. The above
research is only focused on a fixed location in XJ, and little is known about the characteristics
of clouds in the vast majority of other regions of XJ.

The characteristics of clouds can be obtained through ground observations, satel-
lite observations, and reanalysis datasets. Compared to cloud radar, ground meteo-
rological stations are more common and convenient in observing the characteristics of
clouds [14,16,17,36,37]. There are 105 national meteorological stations (NMSs) in XJ that
can observe the characteristics of clouds. Compared to ground observations, satellite
observations have the advantages of wide coverage and high spatiotemporal resolution,
making them widely used in observing clouds worldwide [6,10–13,19–22]. In addition to
ground and satellite observations, reanalysis datasets including ERA5, ERA-Interim, NCEP,
MERRA, the Japanese 55-year Reanalysis Project, and CRA40 from the China Meteoro-
logical Administration can also provide convenience for studying the characteristics of
clouds [11,13,17,18]. Satellite observation has significant advantages over the other two
types of data in XJ, which is a vast and complex terrain area.

Fengyun-4A (FY-4A) is the newest generation of the geostationary orbit meteorological
satellite in China, and its TCC and CLT data can be obtained from March 2018. The Advanced
Geosynchronous Radiation Imager (AGRI) on board FY-4A has many advantages compared
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to its predecessor, the Fengyun-2 series, such as much higher spectral, radiation, and spatial
resolution, and shortened revisit time [38–40]. The capabilities of FY-4A/AGRI [41] are com-
parable to the most advanced imaging instruments in the newest generation of geostationary
orbit meteorological satellites, such as GOES-R/Advanced Baseline Imager (ABI) [42] and
Himawari-8/Advanced Himawari Imager (AHI) [43]. Lai et al. [44] compared cloud mask
and cloud phase from Moderate Resolution Imaging Spectroradiometer (MODIS), Himawari-
8/AHI, and FY-4A/AGRI, and found that these instruments are reasonably consistent. Based
on the comparative results of MODIS and FY-4A/AGRI on the Tibetan Plateau, Xu et al. [40]
pointed out that for cloud mask retrievals, the fractional agreement between the two under
cloudy and clear conditions was 0.93 and 0.73, respectively. In recent years, an increasing
number of studies also indicate that FY-4A has reliable quality and important application
value in cloud detection [45–51]. However, the relevant research in XJ is insufficient.

To reveal the seasonal variation in TCC and CLT from FY-4A and to verify the accuracy
of TCC from FY-4A in XJ, a typical arid region, we conducted this study using TCC and
CLT datasets from FY-4A during 2018–2022 combined with TCC datasets from 105 NMSs in
XJ and ERA5 during the same period. In addition, to explore the relationship between TCC
and meteorological factors, the correlation between TCC from FY-4A and meteorological
factors from ERA5 was also analyzed in this study. The remainder of this study is organized
as follows. The data and methodology are provided in Section 2. Section 3 presents seasonal
variation in TCC and CLT, as well as correlations between TCC and meteorological factors
in XJ. A discussion about seasonal variation in TCC and CLT in XJ is given in Section 4.
Conclusions are presented in Section 5.

2. Data and Methodology
2.1. Study Area

Xinjiang, China (XJ) is located in the northwest of China and belongs to a typical arid
climate region, and the region is far from the ocean and has relatively sparse precipita-
tion [25,52,53]. From north to south, XJ has a topographic distribution pattern of alternating
mountains and basins, that is, the Junggar Basin and Tarim Basin are distributed between
the Altai Mountains, Tianshan Mountains, and Kunlun Mountains, as shown Figure 1.
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2.2. Dataset

The data used in this study include (1) total cloud cover (TCC) from FY-4A, ground
observations (GROB) based on 105 national meteorological stations (NMSs) in XJ, and
ERA5, respectively; (2) cloud type (CLT) from FY-4A; and (3) total column water vapor
(TCWV) and specific humidity (SH) at 250 hPa, 500 hPa, and 700 hPa from ERA5. The
above data are from March 2018 to February 2023. For TCC and CLT from FY-4A, their
temporal and spatial resolutions are 1 h and 0.04◦ × 0.04◦, respectively, which can be
obtained from http://data.nsmc.org.cn (accessed on 10 January 2024). For TCC from GROB
based on 105 NMSs, they come from the daily average dataset of Xinjiang Meteorological
Information Center. For TCWV and specific humidity from ERA5, they come from the
monthly average dataset with 0.25◦ × 0.25◦ resolution of the European Centre for Medium
Range Weather Forecasts, which can be accessed through https://www.ecmwf.int/en/
forecasts/datasets/reanalysis-datasets/era5 (accessed on 12 January 2024).

2.3. Methodology

Firstly, all data used in this study were processed into monthly mean time series.
Secondly, the monthly TCC from FY-4A and ERA5 was interpolated to 105 NMSs in XJ using
a bilinear interpolation method for comparison with TCC from GROB, and the monthly
grid TCC from FY-4A was interpolated using bilinear interpolation to a spatial resolution
of 0.25◦ × 0.25◦ to explore the correlation with the meteorological factors of ERA5. Thirdly,
the seasonal (spring: March–May; summer: June–August; fall: September–November; and
winter: December–February) TCC and CLT were obtained from the monthly TCC and CLT
series from March 2018 to February 2023. Finally, Pearson correlation coefficients and their
significance p (p < 0.05 in this study) between monthly mean TCC and meteorological factor
time series were computed.

3. Results
3.1. Seasonal Variation in Total Cloud Cover

The seasonal variation in the spatial distribution of total cloud cover (TCC) frequency
from FY-4A, ground observations (GROB) based on 105 national meteorological stations
(NMSs) in Xinjiang, China (XJ), and ERA5 during March 2018 to February 2023 is shown
in Figure 2. The frequency of TCC from FY-4A was high in the southwest and low in the
northeast in spring in XJ. The west of the Tarim Basin was a high-frequency area, with
most areas having a frequency of more than 50%, while most areas in the north and east
of XJ had a frequency of less than 40% (Figure 2a). The distribution of TCC from FY-4A
in summer was similar to that in spring. Compared to spring, the frequency of TCC from
FY-4A in summer decreased (increased) in western (eastern) XJ, changing within 10%
(Figure 2d). The frequency of TCC from FY-4A in fall was significantly lower than that
in summer in almost all areas. Specifically, most areas in the south and east of XJ (the
north and west of the Junggar Basin) were reduced by more (less) than 30% (10%), and
finally showed a distribution pattern of high in the northwest and low in the southeast
(Figure 2g). The frequency of TCC from FY-4A decreased (increased) in the north (south) of
the Junggar Basin in winter compared with that in fall, and increased in the Tarim Basin,
with most areas changing within 10% (Figure 2j). It can be seen that TCC detected by FY-4A
showed significant seasonal variations in XJ, and different regions of XJ exhibited unique
characteristics of variation.

http://data.nsmc.org.cn
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5
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Figure 2. The seasonal variation in the spatial distribution of TCC frequency from FY-4A (left), ground
observations (GROB) based on 105 NMSs in XJ (middle), and ERA5 (right). The spatial distribution of
TCC frequency from FY-4A in (a) spring, (d) summer, (g) fall, and (j) winter, the spatial distribution
of TCC frequency from GROB in (b) spring, (e) summer, (h) fall, and (k) winter, and the spatial
distribution of TCC frequency from ERA5 in (c) spring, (f) summer, (i) fall, and (l) winter.

Similar to FY-4A, the frequency of TCC from GROB was high in the southwest and low
in the northeast in spring in XJ. Specifically, the west of the Tarim Basin and adjacent areas
of Tianshan Mountains had the highest frequency, with some NMSs having a frequency of
more than 60%, while most NMSs in eastern XJ had a frequency of less than 50% (Figure 2b).
The frequency of TCC from GROB decreased by more than 10% in some NMSs in the west
of the Tarim Basin and the west of Tianshan Mountains in summer compared with that in
spring, while there was little change in most other regions of XJ (Figure 2e). The frequency
of TCC from GROB changed significantly in fall compared with that in summer, increasing
in the Junggar Basin and decreasing in other regions of XJ, and finally showed a distribution
pattern of high in the north and low in the south (Figure 2h). The distribution pattern of
TCC from GROB in winter was similar to that in fall, but the frequency of TCC for most
NMSs in winter was higher than that in fall, especially in the south of the Junggar Basin
(Figure 2k). Similar to FY-4A and GROB, the frequency of TCC from ERA5 was high in the
southwest and low in the northeast in spring in XJ. The Tianshan Mountains, the Kunlun
Mountains, and their adjacent areas and the western Tarim Basin were high-frequency
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areas, with a TCC frequency of more than 50%, while the TCC frequency in other areas
was 40–50% (Figure 2c). In summer, the Tianshan Mountains, the Kunlun Mountains, and
their adjacent areas were high-frequency areas where the frequency of TCC from ERA5
reached over 50%, while the frequency of TCC from ERA5 in the western Tarim Basin
decreased most significantly from spring to summer (Figure 2f). From summer to fall, the
frequency of TCC from ERA5 decreased in almost all areas, resulting in a distribution of
higher TCC frequency in the northwest and lower TCC frequency in the southeast in fall
(Figure 2i). From fall to winter, the frequency of TCC from ERA5 increased in almost all
areas, especially in the southern Junggar Basin, which increased by more than 30%, forming
a high-frequency center of more than 70% in winter (Figure 2l). Overall, the three types
of TCC data all showed significant seasonal variations in TCC frequency and exhibited
regional differences in XJ.

The violin plot of the seasonal variation in TCC frequencies from FY-4A, GROB, and
ERA5 at 105 NMSs in XJ is shown in Figure 3. In spring, the TCC frequency from FY-4A
was concentrated between 35% and 50%, with an average (median) of 44.09% (42.45%), and
half of NMSs had a TCC frequency of 38–49%. The TCC frequency from GROB (ERA5)
was concentrated between 40% (47%) and 54% (55%), with an average of 47.32% (50.49%),
and half of NMSs had a TCC frequency of 38–49% (Figure 3a). Among the three types
of data, ERA5 had the most concentrated distribution of TCC frequency in spring. The
distribution of TCC frequency from FY-4A in summer was similar to that in spring, but
slightly decreased overall, with an average of 42.88%. The distribution of TCC frequency
from GROB in summer was generally about 4% smaller than that in spring, with an average
(median) of 43.17% (43.16%) smaller than that in spring. The TCC frequency from ERA5
in summer was concentrated between 40% and 49%, with an average (median) of 45.81%
(44.86%), smaller than that in spring (Figure 3b). The distribution of the TCC frequency
from FY-4A in fall was significantly reduced compared to summer, with a significantly
smaller distribution range concentrated between 24% and 35%. In fall, the mean (median)
was significantly reduced to 27.86% (28.12%) compared to summer. The distribution range
of the TCC frequency from GROB in fall was wider than that in summer, concentrated at
29–36% and 41–50%, with an average (median) of 40.19% (40.75%). The TCC frequency
from ERA5 in fall decreased overall compared to summer, concentrated at 31–41%, with
an average (median) of 36.72% (35.43%) (Figure 3c). The TCC frequency from FY-4A in
winter increased overall compared to fall and had a wider distribution range, concentrated
at 27–38%, with an average (median) of 30.58% (30.76%). The TCC frequency from GROB
(ERA5) in winter increased overall compared to fall and had a wider distribution range,
concentrated at 30–60% (45–53%), with an average of 46.93% (46.25%) (Figure 3d). Overall,
the TCC frequency from FY-4A had a narrower distribution range in fall compared to
other seasons, accompanied by a smaller average TCC frequency. The distribution range
of TCC frequency from GROB and ERA5 was significantly wider in winter than in other
seasons, and the average TCC frequency in spring (fall) was the highest (lowest) compared
to other seasons.

The seasonal variation in the spatial distribution of the difference in TCC frequency
among FY-4A, GROB, and ERA5 is shown in Figure 4. The difference in TCC frequency
between FY-4A and GROB (the former minus the latter, the same below) was greater (less)
than 0 in most NMSs in southern (northern) XJ in spring, and the difference between
the two was concentrated between −30% (0) and 0 (20%) in the northern Junggar Basin
(western Tarim Basin) (Figure 4a). The difference in TCC frequency between FY-4A and
GROB in summer was similar to that in spring (Figure 4d). The difference in TCC frequency
between FY-4A and GROB was obviously different between fall and summer. Specifically,
the deviation of most NMSs in the Junggar Basin (Tarim Basin) was between −30% (−20)
and −10% (10%) in fall (Figure 4g). The difference in TCC frequency between FY-4A and
GROB was most obvious in the Junggar Basin in winter, reaching −40% (Figure 4j).
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cent shadow).

The difference in TCC frequency between FY-4A and ERA5 was less than 0 in most
NMSs of XJ in spring, excluding southwestern XJ (Figure 4b). The difference in TCC
frequency between FY-4A and ERA5 in northern XJ during summer was similar to that
in spring, while the difference between the two in southern XJ during summer was more
pronounced than that in spring (Figure 4e). The TCC frequency of FY-4A at almost all
NMSs in XJ in fall was lower than that of ERA5 (Figure 4h). The TCC frequency of FY-4A
at all NMSs in XJ in winter was lower than that of ERA5, especially in the southern Junggar
Basin, with a difference of more than 30% (Figure 4k). Except for the Tianshan Mountains
and its surrounding areas, the difference in TCC frequency of ERA5 and OBS in most NMSs
in spring, summer, and winter in XJ was within ±10%, while the areas with significant
differences in autumn were located in the western Tianshan Mountains and northern XJ
(Figure 4c,f,i,l).
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The scatterplot of the seasonal variation in TCC frequencies (%) from FY-4A, GROB,
and ERA5 at 105 NMSs in XJ is shown in Figure 5. Among all seasons, overall, the TCC
frequencies from FY-4A in summer were closest to those from GROB (Figure 5d), followed
by spring (Figure 5a), while the TCC frequencies from GROB in fall (Figure 5g) and winter
(Figure 5j) were higher than those from FY-4A in most NMSs. For the TCC frequencies
from FY-4A and ERA5, some NMSs were closer in summer (Figure 5e), while almost all
NMSs had a lower TCC frequency from FY-4A than that from ERA5 in fall (Figure 5h) and
winter (Figure 5k). Unlike the scatter distributions of TCC frequencies from FY-4A and
GROB, as well as those from FY-4A and ERA5, TCC frequencies from ERA5 and GROB
exhibited similarities in fall (Figure 5i) and winter (Figure 5l) (closer to the black dashed line
of 1:1 relation). Meanwhile, more than half of 105 NMSs showed that the TCC frequencies
from ERA5 were higher than those from GROB in spring (Figure 5c), similar to summer
(Figure 5f), while the opposite was true in fall (Figure 5i). Overall, for all seasons, the TCC
frequencies from ERA5 and GROB were the closest, while TCC frequencies from FY-4A
were only closer to those from ERA5 and GROB in summer.
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The violin plot of the seasonal variation in the difference in TCC frequency among
FY-4A, GROB, and ERA5 at 105 NMSs in XJ is shown in Figure 6. In spring, the difference
in TCC frequency between FY-4A and GROB (the former minus the latter, the same below)
was mainly concentrated between −13% and 7%, with an average deviation of −3.23%.
Approximately 86% of NMSs in XJ had a difference of −13–3% between FY-4A and ERA5,
with an average difference of −6.40% in spring. The difference between ERA5 and OBS
was mainly concentrated in −5–10%, with a deviation of −2–8% for half of NMSs, and
an average deviation of 3.17% in spring (Figure 6a). In summer, the difference in TCC
frequency between FY-4A and GROB was mainly concentrated in the range of −10–9%,
and the number of NMSs with a deviation above 0 was almost equivalent to the number of
NMSs with a deviation below 0, with an average deviation of −0.03%. The difference in
TCC frequency between FY-4A and ERA5 was mainly concentrated between −12% and
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−2% in summer, with an average deviation of −2.93%, and the range of deviation was
significantly larger than that in spring. The difference in TCC frequency between ERA5 and
OBS in summer was mainly concentrated at −5–10%, similar to spring, with a deviation of
−2–8% for half of NMSs and an average deviation of 2.64% (Figure 6b). In fall, the difference
in TCC frequency between FY-4A and OBS was mainly concentrated between −23% and
0%. The number of NMSs with a deviation less than 0 accounted for 89% of the total number
of NMSs, which was significantly higher than that in spring and summer. The average
deviation was −12.33% in fall, and the deviation amplitude was significantly larger than
that in spring and summer. The difference in TCC frequency between FY-4A and ERA5 was
mainly concentrated between −15% and −2% in fall, accounting for about 89% of NMSs.
The average deviation was −8.86%, and the deviation range was significantly smaller than
that in summer. The difference in TCC frequency between ERA5 and OBS was mainly
concentrated between −12% and 5% in fall, with a deviation of −9–2% for half of NMSs.
Unlike spring and summer, in fall, more than half of NMSs had a deviation of less than 0
(Figure 6c). In winter, the difference in TCC frequency between FY-4A and OBS was mainly
concentrated between −30% and 0%, with NMSs with deviation amplitude exceeding 10%
accounting for 65% of the total NMSs. The average deviation was −16.35%, and the range
and amplitude of deviation were the largest in the four seasons. The difference in TCC
frequency between FY-4A and ERA5 was mainly concentrated between −25% and −5%
in winter, accounting for about 82% of NMSs. The average deviation was −15.67%, and
the amplitude of the deviation was the largest in the four seasons. The difference in TCC
frequency between ERA5 and GROB was mainly concentrated between −10% and 8% in
winter, with an average and median deviation of about 0 (Figure 6d).
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3.2. Seasonal Variation in Cloud Type

The cloud type (CLT) from FY-4A categorizes clouds into seven categories: clear, water-
type, supercooled-type, mixed-type, ice-type, cirrus-type, and overlap-type. Figure 7 shows
the seasonal variation in the spatial distribution of clear frequency in XJ. In spring, the
clear frequency was high in the southwest and low in the northeast. Less than 30% of the
low-frequency areas were mainly located in the west of the Tarim Basin, while more than
40% of the high-frequency areas were mainly located in the east and north of XJ (Figure 7a).
The spatial distribution of clear frequency in summer was similar to that in spring, but there
was an increase in the western Kunlun Mountains and a decrease in eastern XJ (Figure 7b).
Compared with spring and summer, the spatial distribution of clear frequency increased
significantly in fall, with more than 60% in eastern XJ and more than 40% in the eastern
Tarim Basin (Figure 7c). Compared with fall, the clear frequency increased in the western
Tarim Basin in winter, and the eastern XJ was still a high-frequency center (Figure 7d). In
addition, according to the clear frequency and the corresponding positions of rivers and
lakes, the distribution of rivers and lakes may be a factor that affects the clear frequency
less in the Tarim Basin, but more in the eastern XJ.
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Figure 8 shows the seasonal variation in the spatial distribution of water-type fre-
quency in XJ. In spring, the high-frequency region with a frequency of more than 30%
was mainly located in the west of the Tarim Basin, while the low-frequency region with
a frequency of less than 15% was located in the Kunlun Mountains, Tianshan Mountains,
and Altai Mountains (Figure 8a). The frequency of water-type in summer was significantly
higher than that in spring. More than 40% of the high-frequency area was still located in the
west of the Tarim Basin, while less than 25% of the low-frequency area was still located in
the main mountains of XJ (Figure 8b). The frequency of water-type in fall was significantly



Remote Sens. 2024, 16, 2803 12 of 23

lower than that in summer. More than 25% of the high-frequency area was still located in
the west of the Tarim Basin, while less than 10% of the low-frequency area was located in
the main mountains and eastern XJ (Figure 8c). The frequency of water-type in winter was
the lowest among the four seasons, and in most areas of XJ, it was below 5% (Figure 8d).
From Figure 8, it can also be seen that rivers and lakes have a positive impact on the spatial
distribution of water-type frequency in XJ, especially in the southwest of XJ.
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Figure 8. Same as Figure 7 but for water-type.

Figure 9 shows the seasonal variation in the spatial distribution of supercooled-type
frequency in XJ. The frequency of supercooled-type in spring showed a distribution pattern
of high in the west and low in the east in XJ. Specifically, the high-frequency center was
located in the high-altitude areas of the Kunlun Mountains and Tianshan Mountains,
reaching over 20%, while the low-frequency center was located in eastern XJ, less than
10% (Figure 9a). Compared to spring, the frequency of supercooled-type in summer
increased significantly in the Kunlun Mountains, with most of the Kunlun Mountains
increasing to over 30% and some areas reaching over 40%, while the Tianshan Mountains
were a sub high-frequency center of over 25% (Figure 9b). Compared with summer, the
frequency of supercooled-type in fall decreased (increased) in the Kunlun Mountains
(Tarim Basin and Junggar Basin), and the Kunlun Mountains and Tianshan Mountains were
high-frequency regions of more than 25% (Figure 9c). Compared to fall, the frequency of
supercooled-type decreased (increased) in mountainous (basins) areas in winter (Figure 9d).
Overall, supercooled-type exhibited significant seasonal distribution characteristics, with
high-altitude mountainous areas being the high-frequency zone.
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Figure 9. Same as Figure 7 but for supercooled-type.

Figure 10 shows the seasonal variation in the spatial distribution of mixed-type fre-
quency in XJ. The high-frequency region of mixed-type in spring was located in moun-
tainous areas and increased with the increase in altitude. The Kunlun Mountains were a
high-frequency center of more than 20%, and the Tianshan Mountains and Altai Moun-
tains were a sub high-frequency region of more than 10% (Figure 10a). Compared with
spring, the frequency of mixed-type increased in the eastern Tarim Basin and eastern XJ
and decreased in the Kunlun Mountains during summer (Figure 10b). Compared with
summer, the frequency of mixed-type in fall decreased in the Tarim Basin and increased
in the Junggar Basin (Figure 10c). Winter was the season with the highest frequency of
mixed-type. The mountain area and the Junggar Basin were high-frequency areas of more
than 30%, and other areas were basically below 25% (Figure 10d). The frequency dis-
tribution of mixed-type was closely related to terrain, with high mountain areas as the
high-frequency center.

Figure 11 shows the seasonal variation in the spatial distribution of ice-type frequency
in XJ. In spring, the frequency of ice-type was high in the southwest and low in the
northeast. The western Kunlun Mountains was a high-frequency center of more than 25%,
while the eastern Junggar Basin was a low-frequency area of less than 10% (Figure 11a). The
frequency distribution of ice-type in summer was significantly different from that in spring,
with a distribution pattern of high in the north and low in the south in summer (Figure 11b).
The frequency distribution of ice-type showed a characteristic of high in the northwest and
low in the southeast in fall, with over 5% (less than 2.5%) in the northwest (southeast) of XJ
(Figure 11c). The frequency distribution of ice-type showed a characteristic of high in the
southwest and low in the northeast in winter, with the western Kunlun Mountains (eastern
XJ) being a high-frequency (low-frequency) region of over 15% (less than 5%) (Figure 11d).
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Figure 12 shows the seasonal variation in the spatial distribution of cirrus-type fre-
quency in XJ. In spring, the frequency of cirrus-type was the highest in the Tarim Basin,
reaching more than 10%, while the Kunlun Mountains and the eastern Junggar Basin were
low-frequency regions below 7.5% (Figure 12a). Compared to spring, the frequency of
cirrus-type significantly decreased throughout XJ in summer (Figure 12b). In fall, the most
cirrus-type appeared in the Tarim Basin, which was a high-frequency area of more than
5%, while the least cirrus-type appeared in the Kunlun Mountains, Altai Mountains, and
eastern Xinjiang, which was a low-frequency area of less than 2.5% (Figure 12c). In winter,
the frequency of cirrus-type in XJ was high in the southwest and low in the northeast.
The Tarim Basin had a high-frequency area of more than 5%, while eastern Xinjiang had a
low-frequency area of less than 2.5% (Figure 12d).
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Figure 13 shows the seasonal variation in the spatial distribution of overlap-type
frequency in XJ. In spring, the Tianshan Mountains and the southern Junggar Basin were
high-frequency regions with an overlap-type frequency above 5%, while the Kunlun Moun-
tains were a low-frequency region with an overlap-type frequency below 1% (Figure 13a).
In summer, the southern Tarim Basin was a high-frequency region with an overlap-type
frequency over 6%, while the western Kunlun Mountains were a low-frequency region
with an overlap-type frequency of less than 1% (Figure 13b). In fall, for the frequency of
overlap-type, except for the central Junggar Basin, the rest of XJ was lower than that in
summer. The central Junggar Basin was a high-frequency center of more than 4%, while
the rest of XJ was a low-frequency region of less than 2% (Figure 13c). The distribution
pattern of overlap-type frequency was similar in winter and fall, but the frequency further
decreased in winter, with the frequency dropping below 2% throughout XJ (Figure 13d).

Figure 14 shows the seasonal variation in the spatial distribution of CLT with the
highest frequency among the seven types of CLT. It is worth noting that at any location
in XJ during all seasons, neither cirrus-type nor overlap-type were the most frequent
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CLT, while the other five types of CLT had the highest frequency in at least one specific
location in XJ during a certain season. In spring, the frequency of water-type in the central
and western Tarim Basin was the highest among the seven types of CLT, the frequency
of supercooled-type, ice-type, and mixed-type was the highest in some parts of Kunlun
Mountains, and the frequency of clear was the highest in other regions of XJ (Figure 14a).
The area with the highest frequency of supercooled-type in summer in XJ significantly
increased compared to spring, with some areas of the Kunlun Mountains and Tianshan
Mountains dominated by supercooled-type, and the area dominated by water-type further
expanded compared to spring (Figure 14b). In fall, except for some areas in the western
Tarim Basin that were dominated by water-type, and some areas in the Kunlun Mountains
and Tianshan Mountains that were dominated by supercooled-type, the rest of XJ had the
highest frequency of clear (Figure 14c). In winter, some areas in the southern Junggar Basin
and the Kunlun Mountains were dominated by mixed-type. The frequency of supercooled-
type was the highest in some areas of southern Xinjiang, and the frequency of clear was the
highest in other areas of Xinjiang (Figure 14d).

Remote Sens. 2024, 16, x FOR PEER REVIEW 18 of 25 
 

 

 
Figure 13. Same as Figure 7 but for overlap-type. 

Figure 14 shows the seasonal variation in the spatial distribution of CLT with the 
highest frequency among the seven types of CLT. It is worth noting that at any location in 
XJ during all seasons, neither cirrus-type nor overlap-type were the most frequent CLT, 
while the other five types of CLT had the highest frequency in at least one specific location 
in XJ during a certain season. In spring, the frequency of water-type in the central and 
western Tarim Basin was the highest among the seven types of CLT, the frequency of su-
percooled-type, ice-type, and mixed-type was the highest in some parts of Kunlun Moun-
tains, and the frequency of clear was the highest in other regions of XJ (Figure 14a). The 
area with the highest frequency of supercooled-type in summer in XJ significantly in-
creased compared to spring, with some areas of the Kunlun Mountains and Tianshan 
Mountains dominated by supercooled-type, and the area dominated by water-type fur-
ther expanded compared to spring (Figure 14b). In fall, except for some areas in the west-
ern Tarim Basin that were dominated by water-type, and some areas in the Kunlun Moun-
tains and Tianshan Mountains that were dominated by supercooled-type, the rest of XJ 
had the highest frequency of clear (Figure 14c). In winter, some areas in the southern Jung-
gar Basin and the Kunlun Mountains were dominated by mixed-type. The frequency of 
supercooled-type was the highest in some areas of southern Xinjiang, and the frequency 
of clear was the highest in other areas of Xinjiang (Figure 14d). 

Figure 13. Same as Figure 7 but for overlap-type.

3.3. Correlations between Total Cloud Cover and Water Vapor

Water vapor is a necessary condition for cloud formation, and water vapor varies
with geographical location and season. Therefore, the relationship between TCC and water
vapor was also analyzed. Figure 15 shows the seasonal variation in the spatial distribution
of the correlation between TCC based on FY-4A and total column vertically integrated water
vapor (TCWV) based on ERA5 from March 2018 to February 2023 and based on monthly
average data in XJ. In spring, except for some areas in eastern XJ, the Kunlun Mountains,
and Altai Mountains, most areas in XJ showed a positive correlation, and the positive
correlation was significant (passed the significance test with 95% confidence (p < 0.05)) in
the northwest of XJ (Figure 15a). Contrary to spring, eastern XJ had a significant positive
correlation in summer (Figure 15b). Compared to summer, the positive correlation area
further expanded in fall, while the significant positive correlation area was still concentrated
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in eastern XJ (Figure 15c). In winter, except for some areas of the Kunlun Mountains, most
areas of XJ showed a positive correlation, with significant positive correlation areas mainly
located in the northern and southeastern XJ (Figure 15d). As shown in Figure 15, the
correlation between TCC and TCWV in XJ varied with seasons and geographical locations,
but overall, it was mainly positive.
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in XJ. Regions that pass the significance test with 95% confidence (p < 0.05) are displayed as black
dots, the same below.

Figure 16 shows the seasonal variation in the spatial distribution of the correlation
between TCC based on FY-4A and specific humidity (SH) at 250 hPa, 500 hPa, and 700 hPa
based on ERA5 from March 2018 to February 2023 and based on monthly average data
in XJ. In spring, except for some areas in eastern XJ, the Kunlun Mountains, and Altai
Mountains, most areas in XJ showed a positive correlation, and the positive correlation
was significant in western XJ at 250 hPa (Figure 16a), north XJ at 500 hPa (Figure 16b),
and northwest XJ at 700 hPa (Figure 16c). Contrary to spring, some areas in northern XJ
showed a negative correlation in summer at 250 hPa (Figure 16d) and 500 hPa (Figure 16e).
Meanwhile, compared to the correlation at 250 hPa and 500 hPa, most areas in XJ showed a
positive correlation at 700 hPa, and there was a significant positive correlation in eastern XJ
and southern XJ (Figure 16f). In fall, except for some areas in northern XJ at 250 hPa, most
parts of XJ showed a positive correlation at three altitudes, and the positive correlation was
significant in southeastern XJ at 250 hPa (Figure 16g), and eastern XJ at 500 hPa (Figure 16h)
and 700 hPa (Figure 16i). In winter, except for southern XJ at 250 hPa and some areas of
the Kunlun Mountains at 500 hPa, most areas of XJ showed a positive correlation at three
altitudes, with significant positive correlation areas mainly located in the northern XJ at
250 hPa (Figure 16j), northern XJ, and southeastern XJ at 500 hPa (Figure 16k) and 700 hPa
(Figure 16l). Overall, the positive correlation between TCC and SH at 500 hPa and 700 hPa
was stronger than that between TCC and SH at 250 hPa in XJ, especially in winter.
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2018 to February 2023 and based on monthly average data in XJ. Gray shadows represent terrain
above 3 km.

4. Discussion

Clouds have significant impacts on radiation, water cycle, weather, and climate [1–8],
and exhibit uneven spatiotemporal distribution due to factors such as seasons, terrain,
geographic location, monsoon, and water vapor conditions [15–23]. TCC and CLT, as
important cloud characteristic parameters, exhibit significant differences worldwide. Pre-
vious studies have shown significant differences in both the macro- and microphysical
characteristics of precipitation closely related to clouds in XJ compared to other regions
of China [26–33]. More importantly, we have obtained the preliminary macro- and mi-
crophysical characteristics of clouds in the western Tianshan Mountains of XJ based on
ground-based millimeter-wave cloud radar observation data [34,35]. However, little is
known about the characteristics of clouds in the entire Xinjiang region. This study attempts
to use China’s latest generation geostationary satellite FY-4A to reveal the seasonal vari-
ation characteristics of TCC and CLT in XJ, a typical arid area not directly controlled by
the monsoon and an upstream area of China’s weather that accounts for about one-sixth
of China’s land area [24,25]. Meanwhile, TCC datasets from 105 NMSs in XJ and ERA5
were used for comparison with TCC from FY-4A. Our results provide the seasonal varia-
tion characteristics of TCC and CLT in XJ; however, it is worth noting that TCC datasets
from three different sources exhibit certain differences. One of the important reasons for
these differences is that satellites observe clouds from top to bottom, which may give
results different from NMSs observing clouds from the ground up or reanalysis grid val-
ues [16,17,54,55]. Meanwhile, the characteristics of sensors, retrieval methods of clouds,
as well as spatiotemporal sampling and averaging, all have a significant impact on the
observation results and products of satellites [55]. In addition, cloud cover definition and
viewing geometry are different between surface observations and satellite products [16].
All these factors may lead to differences in TCC at specific locations and times, even if
various observation systems correctly detect clouds [55].

To further illustrate the cloud detection capability of FY-4A in Xinjiang, we focus
on several key areas in Figure 17, which shows the seasonal variation in the spatial
distribution of cloud frequency in XJ. Although the areas of Sayram Lake (blue rectangle)
and Ulungur Lake (black rectangle) are relatively small compared to XJ, FY-4A has
well detected that Sayram Lake and Ulungur Lake are cloudier than their surrounding
areas, indicating that FY-4A has excellent cloud detection capabilities and there is a close
connection between clouds and water in XJ. Similarly, the Tarim River Basin (blue ellipse)
is adjacent to mountainous areas and has multiple rivers, making it a high-frequency
region for clouds in XJ. On the contrary, eastern Xinjiang (red ellipse) lacks rivers and
lakes, thus forming a low-frequency region of clouds in XJ. Meanwhile, Figure 17 also
shows significant seasonal variation in the spatial distribution of cloud frequency in XJ.
In the future, we will use more satellite products to finely detect the clouds in XJ. The
daily variation in clouds and the relationship between clouds and the terrain of XJ are
the focus of our attention.
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5. Conclusions

Total cloud cover (TCC) datasets from the latest generation of geostationary satellite
Fengyun 4A (FY-4A) from 2018 to 2022 were used to investigate the seasonal variation in the
spatial distribution of TCC in Xinjiang, China (XJ), combined with the ground observation
(GROB) TCC datasets from 105 national meteorological stations (NMSs) in XJ and TCC
datasets from ERA5. The analysis revealed that the TCC datasets from FY-4A, GROB, and
ERA5 can all well reflect the significant seasonal variation in TCC in XJ, characterized by
the highest (lowest) mean TCC in spring (fall), with a distribution pattern of high in the
southwest (northwest) and low in the northeast (southeast) in XJ. For 105 NMSs in XJ, the
mean TCC of FY-4A in all four seasons was lower than that of GROB, and the two were
comparable in spring (44.09% vs. 47.32%) and summer (42.88% vs. 43.17%), while there
was a significant difference between the two in fall (27.86% vs. 40.19%) as well as winter
(30.58% vs. 46.93%). The TCC of FY-4A was lower (higher) than that of GROB in spring and
summer at most NMSs in northern (southern) XJ, while the TCC of FY-4A was lower than
that of GROB for the vast majority of NMSs in fall and winter, especially in northern XJ.

Furthermore, the seasonal variation in the spatial distribution of cloud type (CLT)
in XJ based on FY-4A, the correlation between TCC based on FY-4A, and meteorological
factors based on ERA5 were also analyzed in this study. The seasonal variation in the
spatial distribution of different CLT including clear, water-type, supercooled-type, mixed-
type, ice-type, cirrus-type, and overlap-type exhibited diverse variation characteristics.
Water-type had a high-frequency center of over 30% in the Tarim Basin in summer, while
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supercooled-water-type had a high-frequency center of over 30% in the Kunlun Mountains
in summer. Mixed-type had the highest frequency in winter, and ice-type and cirrus-type
had the highest frequency in spring, while overlap-type had the highest frequency in
summer. The correlation between TCC and total column vertically integrated water vapor
in XJ varied with seasons and geographical locations, characterized by a positive correlation
in most areas of XJ. Overall, the positive correlation between TCC and specific humidity
(SH) at 500 hPa and 700 hPa was stronger than that between TCC and SH at 250 hPa in XJ,
especially in winter.

The above results deepened the knowledge of the seasonal variation in TCC over XJ,
a typical arid region, broadened the understanding of the seasonal variation in CLT over
XJ, and preliminarily revealed the correlation between TCC and water vapor conditions.
Despite the promising findings reported in this study, further research is needed to elucidate
the diurnal variations in TCC and CLT over XJ and to apply more vertical observation
equipment and satellite products for studying clouds.
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