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Abstract: Deep learning-based template matching in remote sensing has received increasing research
attention. Existing anchor box-based and anchor-free methods often suffer from low template local-
ization accuracy in the presence of multimodal, nonrigid deformation and occlusion. To address this
problem, we transform the template matching task into a center-point localization task for the first time
and propose an end-to-end template matching method based on a novel fully convolutional Siamese
network. Furthermore, we propose an adaptive shrinkage cross-correlation scheme, which improves
the precision of template localization and alleviates the impact of background clutter without adding
any parameters. We also design a scheme that leverages keypoint information to assist in locating the
template center, thereby enhancing the precision of template localization. We construct a multimodal
template matching dataset to verify the performance of the method in dealing with differences in view,
scale, rotation and occlusion in practical application scenarios. Extensive experiments on a public
dataset, OTB, the proposed dataset, as well as a remote sensing dataset, SEN1-2, demonstrate that our
method achieves state-of-the-art performance.

Keywords: template matching; Siamese network; center-point localization; keypoint estimation

1. Introduction

Template matching is the process of finding given image templates in source images of
the same scene, which were taken by the same or different sensors at the same or different
times, from the same or different viewpoints [1]. It has received increasing attention due to its
numerous applications in remote sensing [2–4], object detection [5–7], object tracking [8–10]
and medical image processing [11].

Similarity metrics are designed to evaluate the degree of matching between the tem-
plate image and each search region, identifying the location parameters with the maximum
similarity. Traditional methods rely on pixel-level information in the corresponding re-
gions for similarity matching, such as the sum of squared differences (SSD), zero-mean
normalized cross-correlation (ZNCC), sum of absolute differences (SAD), normalized cross-
correlation (NCC) and mutual information (MI). However, these methods face challenges in
accurately localizing objects in practical scenarios, such as multimodal scenarios and those
with low imaging resolutions, significant variations in object scale and shape and occlusion.
To address the above challenges, numerous improved template matching methods have
emerged. Local feature-based methods [12–14] exhibit strong invariance to rotation and
scaling variations but perform poorly when dealing with viewpoint changes and occlu-
sion. Global feature-based methods [15–17] are suitable for texture feature extraction but
still fail in the presence of scale and lighting variations. Additionally, researchers have
proposed new similarity measures [18–21] to enhance the robustness of these methods.
Although these methods improve the robustness of template matching, challenges such as
scale variations and background clutter still significantly impact the accuracy and robustness
of template matching.
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With the development of deep learning technology, deep learning-based template
matching methods [1,22–24] have achieved state-of-the-art results on various template
matching datasets. Existing deep learning-based methods can be categorized into two
groups: anchor-based methods and anchor-free methods. The anchor-based methods
generate dense anchor boxes, use a classification network to find candidate regions of
the template and, finally, accurately locate the template through a regression network.
The anchor-free methods locate the template based on a similarity measure between the
template and source image features.

In some practical tasks, the prediction accuracy of the object center is more crucial. As
Figure 1b shows, anchor-based methods locate the object by predicting bounding boxes;
however, bounding boxes with the same confidence have different prediction accuracy for
the object center. These methods indirectly predict the object center point through anchor
boxes, resulting in low accuracy. Additionally, anchor-based methods have three drawbacks,
including the need for many anchor boxes and the imbalance of positive and negative
samples and hand-crafted anchor boxes, which increase the processing complexity and
reduce the robustness and accuracy of the model. As Figure 1c shows, anchor-free methods
based on the center point directly predict the object center; however, these methods do not
effectively utilize the prior information in the anchor box, leading to inaccurate localization.

(a) (b)

(c) (d)

Figure 1. Template matching accuracy is strongly affected by anchor-based or anchor-free mechanisms.
The anchor-based methods infer the matching result indirectly through bounding boxes, and the
anchor-free method cannot effectively make use of the prior information in the anchor frame, resulting
in low accuracy. Our method exploits both anchor-based and anchor-free methods, resulting in
high accuracy. (a) Raw image. (b) Anchor-based. (c) Center point-based anchor-free. (d) Ours.
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In this study, our motivation is to propose a robust template matching framework for
multimodal images to achieve high template localization accuracy without introducing
an additional computational overhead. The proposed method uses a Siamese network
as the overall architecture and transforms the template matching task into a center-point
localization task. The entire network consists of feature extraction, a cross-correlation
operation and center-point localization.

We use ResNet-50 [25] as the backbone network for the Siamese feature extraction
network. Inspired by the idea of the encoder–decoder structure [26], we add deconvolution
layers after the pretraining model, reducing the computational complexity while ensuring
improved localization accuracy. Additionally, we introduce feature concatenation modules
to enhance the robustness in scenarios with significant scale variations.

Through the visual analysis of the depth-by-depth cross-correlation outputs, we
observe that the same object exhibits high response values in the same channel while
suppressing the responses in other channels. Therefore, we design a novel cross-correlation
scheme based on an adaptive shrinkage attention module. This scheme both enhances
the attention on high-response channels and dynamically eliminates a proportion of the
object-similar features from the feature map, improving the object localization accuracy.

We also use a center point to represent the localization result. To fully use the abundant
prior information in the anchor box, we add a corner-point localization branch and an offset
prediction branch to assist in locating the object center, enhancing the localization accuracy.

The main contributions of this work are as follows.

• We propose a robust multimodal template matching method that transforms the
template matching task into a center-point localization task, alleviating the problem of
low accuracy.

• We present a novel encoder–decoder Siamese feature extraction network, which enhances
the robustness to large-scale variations and reduces the computational complexity.

• We design an adaptive shrinkage cross-correlation method to dynamically remove
a proportion of the similar features from the object, effectively improving the localiza-
tion accuracy without adding additional parameters.

• We build a new multimodal template matching dataset covering scenarios where the
template matching task suffers from variations in rotation, viewing angle, occlusion
and heterogeneity in practical applications.

The remainder of this article is organized as follows. Section 2 describes the related
work on template matching and the proposed method in detail. Section 3 discusses our
experimental results. Section 5 concludes this article.

2. Materials and Methods
2.1. Template Matching Methods

Template matching methods can be broadly divided into two main categories. The first
is the traditional template matching methods, including the feature-based method [12–17],
the model-based parameter transformation method [27–29] and the similarity measurement
design method [18–21]. For example, SIFT [12] detects local feature points and generating
descriptors for matching, and ORB [14] combines FAST keypoint detection with rotation-
sensitive BRIEF descriptors to enhance the rotation invariance of features by assigning
directions to each key point and utilizing these directions. Although they exhibit better
scale invariance and rotation invariance, they are more sensitive to light changes. HOG [15]
captures the global image features by calculating the distribution of gradient directions in
the local unit. Although it is not sensitive to light changes, it is unable to deal with occlusion.
To model specific parameter transformations between template and search images, fast
affine template matching (FATM) [28] employs affine transformations on finite fields and
utilizes second-order differential operators for feature extraction. Although the design
effectively improves the robustness, it is often unable to deal with complex scenes contain-
ing background clutter. In addition, some methods enhance the robustness by designing
new similarity measures. Best-buddies similarity (BBS) [18] introduces a symmetrized
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similarity measure that computes the similarity between point pairs as mutual nearest
neighbors. Quality-aware template matching (QATM) [21] utilizes a convolutional neural
network (CNN) to train the template matching network and employs a quality perception
loss function to enhance the matching accuracy. While these methods effectively address
occlusion and background clutter challenges, they struggle to accurately localize objects in
scenarios involving significant scale differences.

The second category improves the performance based on deep learning technology.
The refined single-shot multibox detector (RSSD) [22] combines the advantages of data-
driven deep learning methods and manual template matching methods. Additionally, it
improves the detection accuracy by incorporating spatial template matching strategies.
An unsupervised object instance detection method [23] can detect a specific object instance
by learning a generic template representation. A template matching method [24] for the reg-
istration of synthetic aperture radar (SAR) and optical images utilizes a Siamese architecture
as a feature extractor and employs image preprocessing techniques to enhance the matching
accuracy. Another template matching method [1] transforms the template matching task
into a classification regression task, introducing channel attention mechanisms and distance
intersection-over-union (DIoU) loss functions to improve the performance. Template match-
ing methods based on deep learning exhibit high accuracy and strong robustness to changes
in scale, rotation and lighting. However, most methods indirectly predict the object center
point through anchor boxes, and the few methods that directly predict the center point do
not consider the prior information within the anchor boxes, leading to lower accuracy in
center-point prediction. In this paper, we apply keypoint-based object detectors to template
matching tasks. We use the center point to represent the position of the object and completely
disregard the estimation of other attributes, transforming the template matching task into
a center-point localization task.

2.2. Fully Convolutional Siamese Networks

The fully convolutional Siamese network extracts features and calculates the similarity
through convolutional operations. This approach is similar to the working mechanism
of template matching tasks. As a no-anchor method, SiamFC [8] calculates the similarity
between different positions by performing correlation convolution on the features of two
different branches. Although this method significantly improves the efficiency, it struggles
to effectively handle scale variations, leading to lower localization accuracy. Inspired by
region proposal networks (RPNs) in object detection, SiamRPN [30] integrates RPNs in
SiamFC, greatly enhancing the efficiency and accuracy of the tracker. SiamRPN++ [31]
addresses the performance degradation problem when using deep neural networks as fea-
ture extraction networks in fully convolutional Siamese networks. Although anchor-based
networks can effectively handle interference and scale variations, they require the definition
of numerous hyperparameters and the selection of positive and negative samples, resulting
in weak generalizability. The fully convolutional one-stage object detector (FCOS) [32]
introduces anchor-free object detection to address this problem. SiamFC++ [33], Siam-
CAR [34], SiamBAN [35] and Ocean [36] also apply this idea to object tracking, removing
predefined anchors in the network and significantly enhancing the tracker robustness.

In summary, compared to no-anchor networks, anchor-free fully convolutional Siamese
networks exhibit greater localization precision and a better ability to handle scale differ-
ences, while also demonstrating better generalization abilities and lower computational
complexity than anchor-based networks. Therefore, we adopt an anchor-free method for tem-
plate matching localization and design a deep neural network based on an encoder–decoder
structure as the feature extraction network to improve the localization accuracy and effec-
tively handle scale variations.
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2.3. Attention Modules

Attention modules focus the model on the most important regions of the feature
map, improving the performance and robustness. Attention modules can be divided into
two types: channel and spatial. Channel attention modules assign weights to feature
maps on each channel. For instance, the SE [37] attention module reweights the channel
characteristics by performing squeezing first and then excitation. In contrast, the spatial
attention module assigns weights to feature maps based on the importance of spatial
location information. However, the channel and spatial attention modules ignore the
information interaction between the space and channel. The convolutional block attention
module (CBAM) [38] uses channel and spatial attention modules in series to obtain a two-
dimensional spatial attention coefficient matrix. In contrast, the bottleneck attention module
(BAM) [39] combines the two modules in parallel. These combinations are inconsistent
with the attention mechanisms of the human brain because they either process all features
in one channel or in the same spatial location, making it impossible to calculate 3D weights
efficiently. In addition, considerable data computing power is needed due to the structural
parameters in their networks.

In this paper, we propose the adaptive shrinkage attention module, a new attention
module based on SimAM [40]. It utilizes an energy function to compute 3D attention weights
for feature maps and dynamically eliminates a proportion of the similar features from the
object in the relevant feature map. Importantly, this enhancement is achieved without
introducing any additional parameters.

2.4. Proposed Method

As Figure 2 shows, the proposed method comprises three main components: the
Siamese network backbone, adaptive shrinkage cross-correlation and center-point localiza-
tion. The Siamese network backbone is responsible for extracting feature maps from the
template image and searching for image inputs. The adaptive shrinkage cross-correlation
performs a convolution operation on the two feature maps and assigns weights to generate
a correlation feature map. The center-point localization component consists of a keypoint
location module and an offset prediction module and outputs the final position of the
object. Specifically, the keypoint location module optimizes the object center location based
on the corner-point location. The offset prediction module predicts the local offsets of the
corresponding center point.

Figure 2. Overview of the proposed template matching framework, which includes a Siamese
network backbone followed by adaptive shrinkage cross-correlation and center-point localization.
In the center-point localization, four keypoints in the anchor box modify the center point and output
the final position after correcting the offset prediction module. The details of the refinement are
shown in Figure 1d.
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2.4.1. Siamese Network Backbone

SiamRPN++ [31] successfully addressed the performance degradation problem as-
sociated with using deep convolutional neural networks (DCNNs) as feature extraction
networks in fully convolutional Siamese networks. However, this has led to a surge in
the number of computations in the model and limits the effective use of pretrained mod-
els. To overcome this challenge, our network adopts the ResNet-50 pretrained model
as the backbone network. Although ResNet-50, with continuous convolutional striding,
can extract high-level semantic features, the network stride of the final feature map is
32, which adversely affects the localization precision. Research [41] has demonstrated
that as the network depth of the Siamese tracker increases, the network stride should be
set to 4 or 8 instead of increasing proportionally. To solve this problem, inspired by the
encoding–decoding structure [26], we maintain the architecture of the ResNet-50 pretrained
model and add deconvolution layers after the pretrained model. This architecture im-
proves the localization accuracy of the network and significantly reduces the computational
resources needed.

As Figure 3 shows, the Siamese network backbone consists of two identical branches.
One branch takes the template image T as input and outputs the template feature map
φ(T). The other branch takes the search image S as input and generates the search feature
map φ(S). The two branches share parameters within the same network to ensure con-
sistent feature extraction. We add feature concatenation modules at the same scale after
each deconvolution layer to compensate for the information loss caused by deconvolu-
tion, enabling the network to extract features of different scales. Specifically, we employ
a 3× 3 convolutional layer in the last three-stage outputs and concatenate the convolution
and deconvolution results. Table 1 shows the details of our backbone architecture.

Figure 3. The architecture of the Siamese network backbone. Inspired by the encoding–decoding
structure, we maintain the same architecture of the ResNet-50 pretrained model, followed by the
deconvolutional layers and the feature concatenation modules.
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Table 1. The details of our backbone architecture.

Block Backbone Search Branch
Output Size

Template Branch
Output Size

conv1
max pool
conv2_x
conv3_x
conv4_x
conv5_x

ResNet50
pretrained model 8 × 8 4 × 4

decode5 3 × 3, 128 8 × 8 4 × 4

decode4

3× 3
3× 3
3× 3

, s = 2, deconv

 16 × 16 8 × 8

decode3

3× 3
3× 3
3× 3

, s = 2, deconv

 32 × 32 16 × 16

xcorr cross-correlation 17 × 17

deconv1 3 × 3, 128, s = 2 33 × 33

deconv2 3 × 3, 128, s = 2 65 × 65

deconv3 3 × 3, 128, s = 2 129 × 129

conv_1
conv_2
conv_3

3 × 3, 1
3 × 3, 1
3 × 3, 1

129 × 129

2.4.2. Adaptive Shrinkage Cross-Correlation

The cross-correlation operation is a crucial step in associating the output information
from the two branches and computing the similarity. To accomplish this, we employ φ (T)
as a kernel to perform convolution with φ (S)

R = φ(T)× φ(S), (1)

where R denotes the correlation feature map and ∗ denotes the cross-correlation operation.
SiamRPN++ [31] introduced depthwise cross-correlation, which reduces the computa-

tional cost of the network and facilitates the deployment and application of the model. It
usually consists of a depth-by-depth convolution module and a 1× 1 convolution layer.
Since the number of channels in the correlation feature map aligns with the input fea-
ture maps in our network, we retain only the depth-by-depth convolution module in the
depthwise cross-correlation.

We observe a phenomenon in the visual analysis of the depth-by-depth convolution
module output: objects belonging to the same category exhibit strong activation patterns
on specific channels, while the activations of the other channels are suppressed. The spatial
inhibition effect has also been observed in neuroscience. The response map directly impacts
the precision of subsequent center-point localization prediction and the pixels with spatial
suppression effects are more important; thus, we enhance the localization precision by
focusing on these pixels.

According to the above analysis and inspired by [40], we propose the adaptive shrink-
age attention module, a cross-correlation scheme that combines depth-by-depth convolu-
tion with an adaptive shrinkage attention module. As Figure 4 shows, our module jointly
considers channel information and location information, generating uniform 3D attention
weights without additional parameters. By measuring the linear separability of different
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neurons within the same channel, the module treats pixels in the feature map as neurons
and defines the following minimum energy function:

e∗p =
4(σ̂2 + λ)

(p− û)2 + 2σ̂2 + 2λ
, (2)

where û = 1
N−1

N−1
∑

i=1
xi, σ̂2 = 1

N−1

N−1
∑

i=1
(xi − û)2. p represents each pixel of the correlation

feature map and xi represents the values of the other pixels. In addition, λ is a hyperpa-
rameter for the regularization term, which we set as λ = 0.0001. Equation (2) indicates
that lower energy corresponds to stronger spatial suppression effects and greater impor-
tance. According to the definition of the attention mechanism, we limit the range of the
weight values; the pixel weight corresponding to the minimum energy function can be
formulated as

X̃ = sigmoid(
1
E
)× X, (3)

where E denotes the minimum energy weight. X̃ represents the output feature map.
Furthermore, to mitigate the influence of background clutter and regions with similar
feature objects, the module applies a soft threshold operation to the generated attention
weights. Through training, the adaptive shrinkage attention module highlights the regions
that contribute the most to the final prediction and effectively inhibits the activation of
other channels, improving the localization precision.

Figure 4. Structure of the adaptive shrinkage attention module.

2.4.3. Center-Point Localization

Figure 2 shows that the center-point localization network comprises a keypoint lo-
cation module and an offset prediction module. Both modules receive features from the
output of the adaptive shrinkage cross-correlation. The keypoint location module con-
sists of a center-point location branch and a corner-point location branch. These branches
generate a center-point heatmap pcenter

w×h×1 and a corner-point heatmap pcorner
w×h×4, respectively,

predicting the positions of the center point and corner points. Moreover, the offset pre-
diction module outputs a center-offset heatmap po f f set

w×h×2 to predict the offset of the refined
object center point. We adopt a structure of three deconvolution layers followed by one
convolutional layer on the detection head of each branch to ensure the prediction precision.
The specific network parameters are provided in Table 1. Batch normalization and rectified
linear unit (ReLU) activation functions are applied after each deconvolution layer.

We can map each location on the input search image onto the predicted heatmap.
The corresponding coordinates are denoted as

chm =

(⌊
xre f −

⌊wre f

2

⌋⌋
+
⌊w

2

⌋
,
⌊

yre f −
⌊hre f

2

⌋⌋
+

⌊
h
2

⌋)T

, (4)
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where xre f and yre f represent the locations on the input search image. w, h, wre f and hre f
represent the width and height of the output heatmap and the input search image, respec-
tively. In the center-point heatmap, the value at each location represents the probability that
the corresponding input location is predicted to be the object. In the corner-point heatmap,
the 4D vector at each location represents the probability that the corresponding input loca-
tion is predicted to be the four corner points of the object. In the center-offset map, the 2D
vector at each location represents the deviation error in the x and y directions caused by the
stride. As Section 3.1.2 shows, the network outputs the final location result after adjusting
the output of the center-point localization branch based on the other two branches.

2.4.4. Ground Truth and Loss

Since the center point, corner points and offset of the object are all represented based
on points, the location on the heatmap corresponding to the object is considered a positive
sample. In contrast, all other positions are considered negative samples. We calibrate the
heatmap using a 2D Gaussian distribution to address the imbalance between positive and
negative samples and control the proportion of negative samples in the loss function, and
we calibrate the heatmap using a 2D Gaussian distribution:

p∗hm = exp

(
− (x− xhm)

2 + (y− yhm)
2

2σ2
p

)
. (5)

Here, σ is a hyperparameter related to the object size, and p∗hm represents the ground-
truth heatmap label for each branch. Let phm be the predicted heatmap score. The keypoint
location module employs a modified focal loss as the loss function, given by

L = − ∑
x,y

px,y∈phm
p∗x,y∈p∗hm

 (1− px,y)α log
(

px,y
)

p∗x,y = 1(
1− p∗x,y

)β(
px,y

)α log
(
1− px,y

)
otherwise

, (6)

where α and β are adjustable hyperparameters. In our experiments, we set α = 2 and β = 4.
Let Lcen and Lcor denote the losses of the center-point location branch and the corner-point
location branch, respectively.

The localization may lose some precision when mapping from a lower-resolution
heatmap to the input search image due to operations such as dimensionality lifting. To com-
pensate for the discretization error caused by the network stride, we introduce the offset
prediction module. The center offset on the heatmap can be calculated as

o∗p = (xc − ⌊xc⌋, yc − ⌊yc⌋), (7)

where o∗p is the center offset and ⌊·⌋ represents the floor operation. We use the smooth L1
Loss at the center offset:

Lo f f =
1
N

N

∑
N=1

SmoothL1Loss(o∗p, op), (8)

where o∗p and op represent the offsets of the ground truth and the network prediction, re-
spectively. Only the offset prediction for the location of the object center point is considered;
all other locations are ignored. Thus, the overall loss is optimized as

L = λ1Lcen + λ2Lcor + λ3Lo f f , (9)

where λ1, λ2 and λ3 are the hyperparameters that regulate the balance of each task. In our
experiments, we set λ1 = 1, λ2 = 1 and λ3 = 1 and carry out ablation experiments with
different weights, as described in Section 3.3.6.

Finally, we summarize the proposed method in Algorithm 1.
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Algorithm 1 Center-Point Localization

Input: initial template image T; search image S;
Output: template matching localization results and scores {pfinal, Pfinal};

1: {φ(T)}5
l=3←T # extract features by Siamese network backbone;

2: {φ(S)}5
l=3←S # extract features by Siamese network backbone;

3: R←{φ(S)}5
l=3*{φ(T)}5

l=3 # depthwise adaptive shrinkage cross-correlation;
4: {pcen, Pcen}←CenterLocate{R} # center-point location branch;
5: {t, l, b, r}←CornerLocate{R} # corner-point location branch;
6: {pcor, Pcor}←PostProcessing{t, l, b, r} # corner-point location branch;
7: op←O f f set{R} # offset prediction module;
8: {popt, Pfinal}←Re f ine{pcen, pcor} # refine the center point using Equation (9);
9: pfinal←Adjust{popt, op} # adjust the center point using Equation (5);

10: return {pfinal, Pfinal}

3. Results
3.1. Implementation Details
3.1.1. Training

We initialize the backbone of the Siamese network with the pretrained ResNet-50
model on ImageNet and freeze the parameters in the first four layers. We sample pairs
of template images and search images from the GOT-10K, ImageNet VID, ImageNet DET
and COCO datasets to create the training dataset. The size of the template images is set
to 127 × 127 pixels, and the size of the search images is set to 255 × 255 pixels. We add
random offsets when sampling the search images to prevent the network from biasing
the response toward the image center during training. We optimize the training using
stochastic gradient descent (SGD) on four GPUs simultaneously, with a minibatch size of
32 pairs. The model is trained for a total of 20 epochs. In the first 5 epochs, the learning
rate increases from 0.001 to 0.005 at equal intervals, while, in the subsequent 15 epochs,
the learning rate decays exponentially from 0.005 to 0.0005. We freeze the parameters of the
backbone network during the first 10 epochs, and, in the remaining 10 epochs, we train
the entire network end-to-end. The weight decay and momentum are set to 0.0001 and
0.9, respectively.

3.1.2. Testing

During the test phase, the model takes image pairs of any size as input. The output
consists of the center-point heatmap, corner-point heatmap and center offset with their
corresponding confidence scores. We use the location with the highest confidence score
on the center-point heatmap as the initial position of the predicted center point. Then, we
refine the initial position by identifying the location with the highest confidence scores
among the four channels of the corner-point heatmap, as described in Equation (10), where
ω is a hyperparameter related to the importance of the center point. In our experiments,
we set ω = 0.9. We adopt the bilinear feature interpolation method, as shown in Figure 1d,
to accurately obtain the confidence scores of the center point obtained from the four corner
points. Finally, we determine the final position and score of the center point in the search
image with the adjustment of the center offset.

popt = (1−ω)pcor + ωpcen. (10)

3.1.3. Evaluation Datasets

We evaluate our method on the standard OTB template matching dataset [42]. This
dataset consists of 105 template image pairs collected from 35 annotated color videos,
which encompass various challenges encountered in practical applications, such as scale
variations, illumination changes, occlusion, complex deformations and in-plane/out-of-
plane rotations. Each image pair consists of a template image with annotations (frame f )
and a search image (frame f + 20) randomly selected from the videos.
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We create a dataset named Hard350 and evaluate our method to assess the perfor-
mance of the template matching method in a practical application scenario. We use a DJI
unmanned ariel vehicle (UAV) to collect infrared and visible light videos for common
application objects such as buildings, bridges and vehicles, covering different weather
conditions, including sunny, cloudy, light rain and haze. During the data collection process,
we actively control the UAV to capture the same object from different angles and scales
to simulate various challenges of template matching. Specifically, we select 10 pairs of
infrared and visible light videos for 10 different objects in all videos. From each video
sequence, we select 10 pairs of images that exhibit variations in rotation, viewing angle, oc-
clusion and heterogeneity. For each image pair, we apply three random offsets to the center
location when selecting the search image, resulting in a total of 300 samples. Additionally,
considering the limited inherent scale differences between the images, we randomly select
5 images from each video sequence and create image pairs by scaling one image up to
1.5 times its size. We also apply random offsets to the center location of the search image in
each pair, resulting in a total of 50 test samples. The combined data from these two sets
form the final test dataset, which consists of 350 samples.

3.1.4. Evaluation Metrics

Since our method completely disregards the prediction of the object bounding box and
predicts only the object center point, we use the mean center error (MCE) and success rate
(SR) to evaluate the performance of the template matching method on OTB and Hard350.

We use the center error (CE) as the evaluation metric for a single sample. The MCE
is defined as the mean CE of all image pairs. SR5 and SR10 are defined as the ratios of
successfully recognized samples to the total number of test samples, where recognition
is considered successful if the CE is less than 5 and 10, respectively. CE is given by the
following formula:

CE =
√
(xp − xg)

2 + (yp − yg)
2, (11)

where (xp, yp) and (xg, yg) represent the predicted center position and the ground-truth
center position of the template in the search image, respectively.

3.2. Comparison to State of the Art

We compare our method with state-of-the-art template matching methods on the
standard template matching dataset OTB and the proposed dataset Hard350.

3.2.1. Quantitative Evaluation

OTB. We evaluate the proposed method on the OTB dataset. Table 2 shows the MCE
and SR of our method compared to SSD, SAD, NCC, BBS, DDIS, QATM and a robust
Siamese network-based template matching method (RSTM [1]). Our method outperforms
the other methods on this dataset. The advantages of our method stem from the proposed
simple yet effective design of the detection head network. Specifically, compared to the
second-best-performing method, our method reduces the MCE value by 8.928 pixels and
improves the SR5 and SR10 scores by 29.5 and 29.5 points, respectively, demonstrating
better robustness and accuracy. These results indicate that our center-point localization
subnetwork can effectively integrate prior bounding box information and center point
information to provide more accurate and efficient information for template matching
object localization.

Hard350. We evaluate our method on the Hard350 dataset to further validate the
efficacy of our method in practical applications. In this experiment, we compare our
method with a range of state-of-the-art template matching methods, including SSD, SAD,
NCC, BBS, DDIS, QATM and RSTM. Table 2 shows the MCE and SR of the compared
methods. The proposed method ranks first in terms of both the MCE and the SR. Compared
to the second-ranked method, our method reduces the MCE value by 1.196 pixels and
improves the SR5 and SR10 scores by 1.1 points and 6.9 points, respectively. Notably, this
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dataset encompasses different practical application scenarios. Therefore, the results of
the experiment demonstrate that our template matching method can achieve excellent
performance in practical application scenarios.

Table 2. Results of quantitative evaluation on the OTB and Hard350 datasets.

Method
OTB Hard350

MCE SR5 SR10 MCE SR5 SR10

SSD 71.987 0.362 0.419 33.19 0.429 0.589
NCC 82.579 0.324 0.371 39.364 0.4 0.526
SAD 73.825 0.067 0.124 31.062 0.431 0.557
BBS 38.49 0.49 0.62 16.62 0.35 0.62

DDIS 26.53 0.51 0.69 13.89 0.3 0.54
QATM 29.967 0.543 0.724 12.42 0.163 0.523
RSTM 14.191 0.495 0.629 11.116 0.489 0.751
Ours 5.263 0.79 0.924 9.92 0.5 0.82

3.2.2. Qualitative Evaluation

In this experiment, we select four challenging sequences from the OTB dataset (i.e.,
bolt, motor-rolling, matrix and tiger1), four challenging sequences from the Hard350 dataset
(i.e., house, factory, attic, bridge) and four pairs of challenging remote sensing images on the
web, which include rotation, occlusion, heterogeneous images, viewing angle differences,
similar objects and lighting variations.

Figure 5 shows the qualitative evaluation results of our method, the ground truth
and the other seven methods. The ground truth is the center point position coordinates
of the template object on the search image, obtained from the annotation file in the OTB
public dataset and the SEN1-2 dataset and annotated by professional tools in the Hard350
dataset. In the bolt sequence, due to interference from similar athletes, all methods except
QATM, RSTM and our method fail to accurately locate the object. In the motor-rolling
sequence, only RSTM and our method accurately locate the object due to its rotational
deformation. In the attic sequence, some methods (NCC, SAD, SSD and BBS) fail to locate
the object because the template and search images come from visible light and infrared
videos, respectively. In the bridge sequence, a small portion of the bridge is occluded
by other objects, resulting in decreased localization precision for other methods. In the
house and factory sequences, despite some methods being able to locate the object, only
our method maintains higher accuracy due to changes in viewing angle. For the matrix
and tiger1 sequences, the other five methods fail to recognize the object due to lighting
variations, and only QATM, RSTM and our method can accurately locate the center point
of the object. It is evident that our method achieves better performance in complex scenes.

In addition, we select some multimodal remote sensing image pairs (consisting of
SAR images and optical images) from the SEN1-2 dataset [43], and the results are shown in
Figure 6. The figure shows that our method maintains good performance when dealing
with multimodal images and small target images.
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Figure 5. Some challenging examples chosen from the OTB and Hard350 datasets and other chal-
lenging remote sensing images on the web, i.e., bolt, motor-rolling, matrix, tiger1, house, factory,
attic, bridge.

Figure 6. Some multimodal remote sensing image pairs (consisting of SAR images and optical images)
from the SEN1-2 dataset.

3.3. Ablation Study

In this section, we first study the impact of the proposed feature concatenation mod-
ules, adaptive shrinkage cross-correlation module and center-point localization module on
the performance of our method. Next, we investigate the contributions of the fine-tuning
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scheme, multilevel feature concatenation modules, adaptive shrinkage attention module
and detection head branch to the overall matching and localization performance. Finally,
we perform a sensitivity analysis on the weight parameters of the keypoint location module
in our final predicted position (Equation (10)). All ablation experiments are conducted on
the OTB dataset. However, similar results can be obtained on the Hard350 dataset.

3.3.1. Ablation Study on Network Framework

We use the backbone network without feature concatenation modules, depthwise
cross-correlation without an adaptive shrinkage attention module and the detection head
with only the center-point detection branch as the baseline to evaluate the impact of the
proposed three modules on the performance of the overall network. As Table 3 shows,
when each of the three modules is individually added to the baseline, the localization
precision of the model does not reflect good performance. However, when the respective
additional modules are incorporated, the performance improves. When the baseline is
combined with all three modules, the model achieves the best performance, with an MCE
of only 5.263 pixels and an SR10 of 92.4 points, which indicates that all three modules
contribute to our method.

Table 3. Ablation study of the network framework on OTB. ‘Fusion’, ‘PFA’ and ‘Head’ represent
feature concatenation modules after the ResNet-50 pretrained model, adaptive shrinkage cross-
correlation and the overall head branch, respectively.

Fusion PFA Head MCE SR5 SR10
√

7.172 0.743 0.895√
11.597 0.4 0.667√
13.086 0.371 0.648√ √
6.083 0.762 0.914√ √
9.176 0.733 0.848√ √

11.925 0.429 0.648√ √ √
5.263 0.79 0.924

3.3.2. Ablation Study on the Fine-Tuning Scheme

In this experiment, we freeze the weights of the first two layers of the pretrained
ResNet-50 model, as we consider them to capture general features related to template
matching methods to explore the impact of fine-tuning layers in pretrained models on fea-
ture extraction for the object. As Table 4 shows, when fine-tuning the layers, including layer
3, the network performance significantly decreases, indicating that the features extracted
by the network become specific to the training dataset, reducing the generalization ability
and robustness of the model. However, when fine-tuning layers 4 and 5, the performance
of the network remains similar, and the best performance is achieved when only layer 5 is
fine-tuned. This validates the rationale of our fine-tuning scheme for pretrained models,
as it not only improves the generalization ability and convergence of the model but also
prevents overfitting.

Table 4. Ablation study of the fine-tuning scheme on OTB. L3, L4 and L5 represent conv3, conv4
and conv5 of the ResNet-50 pretrained model, respectively.

L3 L4 L5 MCE SR5 SR10
√ √ √

61.269 0.057 0.076√
45.27 0.171 0.257√ √

39.898 0.219 0.371√ √
8.119 0.743 0.857√ √
7.997 0.724 0.857√
7.053 0.743 0.886√
5.263 0.79 0.924
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3.3.3. Ablation Study on Feature Concatenation Modules

The output of the Siamese network backbone combines feature maps generated by
multiple convolutional layers. We study the performance of both a single-layer feature
output and multilevel feature concatenation module output. As Table 5 shows, when the
output only contains features from a single layer, conv4 performs the best. In contrast,
the performance decreases for shallower layers. When the output fuses two layers of
features, all fusion approaches improve the performance compared to the single-layer
feature output, with conv4 and conv5 fusion being most effective. When three layers
of features are fused, our method achieves the best performance, with a decrease of
0.668 pixels in the MCE compared to the single-layer feature output.

Table 5. Ablation study of the proposed method on OTB. D3, D4 and D5 represent decoder3, decoder4
and decoder5, respectively. ‘PFA’ represents adaptive shrinkage cross-correlation. ‘Center’, ‘Corner’
and ‘Offset’ represent the center-point location branch, the corner-point location branch and the offset
prediction module, respectively.

D3 D4 D5 PFA Center Corner Offset MCE
√ √

9.287√ √
7.317√ √
13.77√ √ √
7.506√ √ √
7.175√ √ √
7.023√ √ √ √
6.649√ √ √ √ √
6.083√ √ √ √ √ √
5.496√ √ √ √ √ √
5.745√ √ √ √ √ √ √
5.263

3.3.4. Ablation Study on the Adaptive Shrinkage Attention Module

We compare the proposed adaptive shrinkage attention module with the depthwise
cross-correlation method to investigate its role in the adaptive shrinkage cross-correlation
module. As Table 5 shows, after using adaptive shrinkage cross-correlation, the MCE
decreases by 1.089 pixels. This is because the adaptive shrinkage attention module allows
the subsequent center-point localization module to focus more on the channels and regions
with higher responses in the relevant feature maps.

3.3.5. Ablation Study on the Detection Head Branch

We conduct ablation experiments by combining the center-point localization branch
with each of these two branches separately to study the contributions of the corner-point
localization branch and the center-point offset prediction branch. As Table 5 shows, when
only the corner-point localization branch or the center-point offset prediction branch is
added, the performance of the method improves; however, the former achieves a larger
decrease in the MCE by 0.587 pixels compared to the latter. When both branches are
added to the center-point localization network, the model achieves the best performance,
with MCE values of 5.263 pixels on the OTB dataset. This validates the effectiveness of
the corner-point localization branch in correcting the location results of the center-point
localization branch. It also demonstrates that the center-point offset prediction branch can
effectively mitigate the influence of the network stride on the localization results, improving
the localization precision and SR of the model.

3.3.6. Parameter Sensitivity Analysis

We test different weights (in Equation (9)) on OTB to study the impact of different
weights in the multitask loss function on the model performance. As Table 6 shows,
the MCE does not change significantly with the change in weight; the model achieves the
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best performance when λ1, λ2 and λ3 are set to 1. This indicates that the proposed method
is not sensitive to small changes in the multitask weight values. It also suggests that we
can simply allocate uniform multitask weights as the loss function to train the model.

In addition, we test various values (in Equation (10)) to explore the effect of the
center-point location branch under different weighting values. As Table 7 shows, as ω
changes from 0 to 0.9, the MCE of our method gradually decreases. When ω is set to 0.9,
the model performs the best, with MCE, SR5 and SR10 values of 5.236 pixels, 79 points
and 92.4 points, respectively. However, as ω continues to increase, the performance of our
method decreases. When ω is set to 0 or 1, which means that the final localization results
will only rely on the outputs of either the corner localization branch or the center-point
localization branch, our method does not perform well. This indicates the importance
of both the center-point location branch and the corner-point location branch in accurate
prediction. It also validates that our fusion scheme for the prediction of the center point
improves the precision of template matching localization.

Table 6. Results under different weighting values of the multitask loss function on OTB and Hard350.

λ1 λ2 λ3
MCE

OTB Hard350

0.5 1.0 1.0 7.27 15.099
1.0 0.5 1.0 7.962 11.589
1.0 1.0 0.5 7.997 12.171
1.0 0.5 0.5 6.45 9.521
0.5 1.0 0.5 6.808 10.964
0.5 0.5 1.0 6.35 12.028
1.0 1.0 1.0 5.263 9.92

Table 7. Results under different weighting values of the center-point location branch in the test phase
on OTB.

ω 0 0.2 0.4 0.6 0.8 0.9 1

MCE 10.233 8.733 7.292 6.161 5.397 5.263 5.404
SR5 0.352 0.448 0.524 0.638 0.733 0.79 0.781

SR10 0.648 0.714 0.781 0.829 0.914 0.924 0.924

4. Discussion
4.1. The Advantages of Our Method

Our method enhances the precision of the template localization of the object center
point. The quantitative experiments on the public dataset OTB and the ablation studies
demonstrate that our method can fully leverage the keypoints of the object to refine the
center-point position and further accurately locate the object by predicting the offset,
thereby improving the precision of template matching. Additionally, the results of the
quantitative experiments on the proposed Hard350 dataset indicate that our method can
maintain high localization accuracy in practical application scenarios.

Our method exhibits greater robustness in handling image variations. The qualitative
experiments on the OTB, Hard350 and SEN1-2 datasets show that the proposed method can
accurately locate objects in challenging situations, such as those with viewpoint differences,
scale variations, occlusion, rotation variations and image heterogeneity. The ablation
studies on the encoder–decoder structure in the feature extraction network and the adaptive
shrinkage attention module indicate that the two designs effectively extract multi-scale
features from the input images and reduce the impact of similar features on the matching
results, thereby enhancing the robustness to image variations.

Furthermore, our method is more lightweight. In the design of the feature extrac-
tion network, we adjust the network stride to 8 to achieve higher localization accuracy.
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However, in the feature extraction network design of SiamRPN++, adjusting the network
stride to 8 results in a model computation rate of 4.5× 1010 FLOPs, while ours is only
5.4× 109 FLOPs. As shown in Table 8, we also compare the running times of other methods
on the OTB dataset. Since our method requires the prediction and integration of infor-
mation from multiple keypoints, it is not the fastest in terms of running time. However,
compared to most methods, our method maintains a relatively fast running speed while
ensuring the highest accuracy.

Table 8. Running speeds of different template matching methods on the OTB dataset.

Method SSD NCC SAD BBS DDIS QATM RSTM Ours

Speed (s/pairs) 1.452 0.004 2.171 24.080 2.717 1.094 0.017 0.037

4.2. Limitations and Potential Improvements

Although our method achieves impressive performance compared to the state-of-the-
art template matching methods, we observe in the experiments that it does not perform well
under severe occlusion, which still poses challenges for template matching. Our method
can handle scenes with a small amount of occlusion, but it fails to accurately locate the
object in scenes with severe occlusion as we do not introduce a module in the network to
address occlusion.

At present, our method is trained based on public datasets for object tracking and
object recognition tasks. Consequently, the method exhibits superior template matching
performance in visible light image scenarios compared to the performance in infrared and
SAR image scenarios. Therefore, a large number of image data from infrared and SAR
images in application scenarios can be used to train the model to improve the performance
in multiple application scenarios.

In addition, we have moderately reduced the parameter count and computational
load of the model, while ensuring the localization accuracy of our method. However, more
effective and direct methods can still be employed to improve the computational efficiency
in terms of the lightweight design, including model compression, pruning, knowledge
distillation and other techniques.

5. Conclusions

In this paper, we propose an end-to-end template matching method based on a fully
convolutional Siamese network, transforming the template matching task into a center-
point localization task and completely disregarding all attributes except for the center point
during object localization. We propose a novel feature extraction network, which reduces
the computational complexity while ensuring high localization accuracy. Upon observing
that objects of the same category exhibit strong activation patterns in specific channels,
we design an adaptive shrinkage attention module and combine the module with depth-
by-depth cross-correlation operations to improve the localization precision. Additionally,
we employ a keypoint localization branch to assist the center-point localization branch in
predicting the object, so as to fully utilize the prior information in the object keypoints. We
also create a dataset to confirm the performance of the method in a practical application
scenario. Extensive experiments on the public OTB and SEN1-2 and the proposed practical
application dataset demonstrate that our method achieves state-of-the-art performance
and can effectively operate in scenarios with viewpoint differences, partial occlusion
and cluttered backgrounds.
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