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Abstract: To optimize growth and management, precision agriculture relies on a deep understanding
of agricultural dynamics, particularly crop water status analysis. Leveraging unmanned aerial
vehicles, we can efficiently acquire high-resolution spatiotemporal samples by utilizing remote
sensors. However, non-linear relationships among data features, localized within specific subgroups,
frequently emerge in agricultural data. Interpreting these complex patterns requires sophisticated
analysis due to the presence of noise, high variability, and non-stationarity behavior in the collected
samples. Here, we introduce Local Biplot, a methodological framework tailored for discerning
meaningful data patterns in non-stationary contexts for precision agriculture. Local Biplot relies
on the well-known uniform manifold approximation and projection method, such as UMAP, and
local affine transformations to codify non-stationary and non-linear data patterns while maintaining
interpretability. This lets us find important clusters for transformation and projection within a single
global axis pair. Hence, our framework encompasses variable and observational contributions within
individual clusters. At the same time, we provide a relevance analysis strategy to help explain why
those clusters exist, facilitating the understanding of data dynamics while favoring interpretability.
We demonstrated our method’s capabilities through experiments on both synthetic and real-world
datasets, covering scenarios involving grass and rice crops. Moreover, we use random forest and
linear regression models to predict water status variables from our Local Biplot-based feature ranking
and clusters. Our findings revealed enhanced clustering and prediction capability while emphasizing
the importance of input features in precision agriculture. As a result, Local Biplot is a useful tool to
visualize, analyze, and compare the intricate underlying patterns and internal structures of complex
agricultural datasets.

Keywords: Biplot; UMAP; remote sensing; relevance analysis; precision agriculture

1. Introduction

The accurate assessment of crop water status, which refers to the level of hydration
within a plant, is critical in precision agriculture (PA) for water-intensive crops. Fur-
thermore, climate change necessitates optimizing water usage to meet increased drought
threats [1,2]. By monitoring crop water status indicators, such as soil moisture and plant
stress, and understanding crop responses, we can tailor irrigation practices [3,4]. When it
comes to PA, understanding how temporal or conditional variations in different factors
can significantly impact crop growth, productivity, and overall agricultural management is
essential [5]. Still, dynamic changes in soil moisture due to spatial and temporal variability,
life cycle patterns, plant water uptake, environmental aspects, and irrigation practices can
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exhibit non-stationary behaviors, meaning they do not follow a fixed distribution or consis-
tent patterns over space and time. For example, in rice crops, temperature fluctuations, soil
moisture levels, and day length can dynamically influence flowering time and other plant
properties [6]. Thus, addressing non-linear and non-stationary patterns in agricultural data
analysis is essential for accurately assessing water status, improving decision-making, and
effective agricultural management [7,8].

Conventional methods like soil moisture sensors, leaf-level measurements, laboratory
analysis, and manual field surveys are often time-consuming and labor-intensive. Recent
developments in unmanned aerial vehicle (UAV)-based remote sensing (RS) techniques
make data collection for crop characterization and monitoring more efficient, as they are
non-invasive, non-destructive, accurate, and cost-effective [9]. By combining the different
wavelengths of light that plants reflect and absorb, vegetation indices (VIs) provide valuable
insights, such as canopy biomass and chlorophyll content [10]. Nonetheless, effectively
extracting useful information from the large volumes of samples generated by integrating
field data with high-resolution remote and proximal sensors can be cumbersome [11].
Additionally, noise, data source conflicts, and spatiotemporal UAV disparities caused by
weather changes and sub-optimal sampling further complicate the training of accurate and
reliable models [12,13].

As agricultural research evolves, different techniques have emerged to conveniently
explore and organize data to extract valuable knowledge [14]. These approaches include
descriptive and exploratory analysis [15,16], clustering [17], multivariate analysis for explor-
ing inter-variable relationships [18], time series analysis for studying temporal patterns [19],
and predictive modeling [20,21]. Visual representations, such as biplots [22,23], are typi-
cally the preferred method for achieving a 2D plot that is immediate, direct, and simple to
comprehend for both input feature and sample relationships in a low-dimensional space.
The latter assists in the identification of critical variables, resulting in the completion of
duties such as cluster visualization, correlation highlighting, and feature selection. While
traditional biplots remain fundamental, advanced statistical tools have emerged to address
some of their limitations, focusing on genotype-by-environment interactions to highlight
superior crop varieties. Thus, their suitability depends on the specific research question
and data characteristics [16,24]. Additionally, traditional statistical methods face significant
challenges when dealing with the complexities inherent in high-dimensional agricultural
datasets [25]. One of the primary constraints is their inability to accurately represent the
true dynamics of agricultural processes due to their difficulty with non-linear relation-
ships. Then, the variables frequently interact in complex and non-linear ways, resulting in
oversimplified models [26].

Here, we introduce the Local Biplot methodological framework, which uses 2D data
visualization and input feature ranking within localized clusters to identify meaningful
patterns, with a specific focus on water status analysis in multi-temporal agricultural data.
Our Local Biplot employs a uniform manifold approximation and projection (UMAP)-based
algorithm to embed the input data within a 2D feature space dealing with nonlinear and
non-stationary agricultural data dynamics [27]. Then, the well-known K-means algorithm is
used to cluster the samples from the UMAP 2D space. Further, to provide a complete picture
of the local relationships between the variables and samples, a local affine transformation is
then applied to map the input feature variability-based rankings to the 2D low-dimensional
space. Hence, this framework encompasses variable/observation contributions within
individual clusters in the same figure, facilitating the understanding of data dynamics
to overcome pressing agricultural challenges such as climate variability, unsustainable
agricultural practices, and inefficient use of water resources. Local Biplot is tested on both
synthetic and real-world datasets. In particular, forage grasses and rice crops are tested
to highlight relevant agricultural patterns related to water status studies in PA. Moreover,
to investigate the influence of non-stationary data dynamics and inter-cluster relationships
in the assessment of water content-related variables, we conducted experiments using
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random forest (RF) and linear regression (LR) models to estimate crop water status variables,
such as the breeding score for grass and canopy water content (CWC) for rice.

The agenda for this paper is as follows: Section 2 describes the materials and methods.
Section 3 present the experiments and results and Section 4 discuss the results obtained.
Finally, Section 5 outlines the conclusions and future work.

2. Materials and Methods
2.1. Biplot Fundamentals

Let X ∈ RN×P be an input matrix with centered and standardized P-dimensional
features and N samples represented by row vectors xn ∈ RP. Thus, X can be decomposed
as X = USV⊤, where U ∈ RN×M and V ∈ RP×M are orthonormal matrices, and S ∈ RM×M

is diagonal with non-negative elements. This singular value decomposition (SVD) allows
for a low-dimensional representation X̃ = UMSMV⊤

M, optimizing:

X̃∗ = arg min
X̃

∥X − X̃∥2
F. (1)

Of note, the eigenvectors for the M highest singular values in S are held by UM and
VM. In biplot analysis, UMS0.5

M and S0.5
M V⊤

M, with M = 2, are constructed to visualize
relationships between samples and features, respectively. These matrices project data onto
a 2D space, highlighting input data clusters and feature linear dependencies.

2.2. Uniform Manifold Approximation and Projection (UMAP)

Given the high-dimensional matrix X and the Euclidean distance function d(·, ·) ∈ R+,
UMAP aims to find a low-dimensional embedding Z ∈ RN×M that preserves both global
and local neighborhoods from X, promoting the main non-linear data relationships. Then,
a K-nearest neighbor (KNN)-based graph is built based on a local metric, yielding:

θn = min
n′∈K

d(xn, xn′), (2)

where θn ∈ R+ holds the minimum distance within the n-th neighborhood with K neighbors
xn′ centered on xn. A localized entropy value σn ∈ R+ is computed by solving:

K

∑
n′=1

exp
(
−d(xn, xn′)− θn

σn

)
= log(K). (3)

Afterward, UMAP constructs a fuzzy simplicial complex, representing the high-
dimensional graph G = (X, W), where edges are defined by local connectivity through the
weights in W ∈ [0, 1]N×N :

wnn′ = exp
(
−max

(
0,

d(xn, xn′)− θn

σn

))
. (4)

Likewise, a low-dimensional weight matrix W̃ ∈ [0, 1]N×N is computed as:

w̃nn′ =
(

1 + αd(zn, zn′)2
)−ι

, (5)

where zn, zn′ ∈ Z and α, ι ∈ R+ adjust the preservation of local and global structures
(typically set to 1). Therefore, we can formulate the UMAP’s optimization problem, based
on the cross-entropy loss, as follows:

Z∗ = arg min
zn∈Z

∑
n∈N
n ̸=n′

wnn′ log
(

wnn′

w̃nn′(Z)

)
+ (1 − wnn′) log

(
1 − wnn′

1 − w̃nn′(Z)

)
, (6)
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where the notation w̃nn′(Z) highlights the dependency between Z and their graph weights
in W̃. It is worth mentioning that the optimization problem in Equation (6) balances
attraction (first term) and repulsion (second term) forces based on the discrepancies between
probabilities, e.g., graph weights. Moreover, it can be solved through gradient-descent-
based approaches. Algorithm 1 outlines the main UMAP stages.

Algorithm 1 Uniform Manifold Approximation and Projection (UMAP)

1: Input: High-dimensional matrix X ∈ RN×P.
2: Built the KNN-based graph G = (X, W). See Equations (2)–(4).
3: Compute the low-dimensional graph weights W̃ as in Equation (5).
4: Optimize the embedding space Z by solving Equation (6) through gradient descent.
5: return Low-dimensional feature space Z ∈ RN×M, M ≤ P.

2.3. UMAP-Based Local Biplot

We propose an explicit mapping between linear and non-linear 2D spaces to extend
the concept of the classical SVD-based biplot to the analysis of localities and explore the
internal non-linear data relationships. In particular, we introduce a twofold UMAP-based
Local Biplot. First, we compute a non-linear embedding based on UMAP and further
sample clustering. Second, a local SVD computation on each data cluster and an affine
transformation for 2D visualization on the UMAP feature space are calculated.

Thereby, given an input matrix X, a 2D low-dimensional space Z is computed based on
the UMAP algorithm (see Section 2.2). Then, instead of directly clustering the points in the
original features, our approach focuses on clustering the latent feature space. This involves
partitioning the data into R̃ disjoint sets {Z̃r ∈ RNr×2}R̃

r=1, where each cluster is represented
by the centroid µr ∈ R2 and ∑R̃

r=1 Nr = N, R̃ ≤ N. Consequently, the well-known K-means
clustering algorithm is applied by solving [28]:

Z̃∗
r = arg min

µr ,Zr

N

∑
n=1

R̃

∑
r=1

∥zn − µr∥2
2; s.t. Z̃r ∩ Z̃r′ = ∅, ∀r, r′ ∈ R̃, r ̸= r′. (7)

Next, for a given cluster Z̃r and its corresponding high-dimensional samples in
Xr ∈ RNr×P, a 2D SVD-based decomposition is carried out as: Xr = ŨrS̃rṼ⊤

r , where
Ũr ∈ RNr×2 and Ṽr ∈ RP×2 gather the left and right orthonormal basis regarding the two
highest singular values in the diagonal matrix S̃r ∈ R2×2. Then, the linear projection for
the r-th cluster is computed as: Z̆r = XrBr, where: Br = ṼrS̃0.5

r ∈ RP×2.
In turn, to make a unified visualization, we implement cluster-based affine trans-

formations to line up and accurately show both the non-linear data relationships from
the UMAP embedding in Z and the localized input feature-based basis in Br. Namely,
the matched basis matrix B̃r ∈ RP×2 is written as: B̃r = γrBr + νr, where γr, νr ∈ R encode
a composition of rotation, dilation, shears, and translation-based linear functions as [29]:

γ∗
r , ν∗r = arg min

γr ,νr
∥B̃r(γr, νr)− Br∥F, ∀r ∈ R. (8)

where B̃r(γr, νr) describes the dependency of B̃r regarding the affine transformation pa-
rameters. A Nelder-Mead simplex algorithm can be applied to solve Equation (8).

Lastly, a localized feature ranking vector λr ∈ RP can be computed as:

λr = Br1, (9)

being 1 an all-ones vector of proper size. Figure 1 summarizes our Local Biplot sketch.
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Figure 1. Local Biplot sketch. Dotted line: cluster-based operation.

2.4. Tested Datasets

The tested datasets and critical experimental settings are detailed below.

2.4.1. Multivariate Gaussians

We generated a synthetic input feature matrix by randomly sampling three clouds,
each containing 500 points (N = 1500) and five features (P = 5). Each cloud holds samples
from a multivariate Gaussian, and each feature is within the range [0, 1].

2.4.2. Forage Grasses

The publicly available real-world dataset collected by Ghent University and the Re-
search Institute for Agriculture, Fisheries, and Food (ILVO)-Belgium, provided in [30], is
used to evaluate our approach. This database comprises 35 distinct VIs from five color
spaces: RGB, CIE 1976 L*a*b*(CIELab), CIE 1976 L*u*v*(CIELuv), hue-saturation-value
(HSV), and hue-saturation-lightness (HSL), for three categories of forage grass: festuca
arundinacea (Fa), diploid Lolium perenne (Lp2n), and tetraploid Lolium perenne (Lp4n).
The latter aims to identify drought-tolerant genotypes, as seen in Table 1. From the thermal
data, ∆T and the crop water stress index (CWSI) were calculated. Additionally, a breeder
score is provided for three distinct dates designated as T2, T4, and T5. The score ranges
from one to nine, based on both biomass quantity and the verdant hue of the plant. The
surface temperature in ◦C was calculated per plant for each flight day [30]. Afterward,
P = 37 features and N = 3174 samples are obtained.

Table 1. Color space and vegetation indices employed for the Forage Grasses dataset.

Colour Space VI Name Equation

RGB

R Red
G Green
B Blue

RCC Red Chromatic Coordinate Index [31] R
R+G+B

GCC Green Chromatic Coordinate Index [31] G
R+G+B

BCC Blue Chromatic Coordinate Index [31] B
R+G+B

ExG Excess Green Index [31] 2G − B − R
ExG2 Excess Green Index v2 [31] 2G−B−R

R+G+B
ExR Excess Red Index [32] 1.4R−G

R+G+B
ExGR Excess Green minus Excess Red Index [33] 1.4R−G

R+G+B
GRVI Green Red Vegetation Index [33,34] G−R

G+R
GBVI Green Blue Vegetation Index [35,36] G−B

G+B
BRVI Blue Red Vegetation Index [30] B−R

B+R
G/R Green-Red Ratio [37] G

R
G-R Green-Red Difference [31] G − R
B-G Blue-Green Difference [31] B − G

VDVI Visible-band Difference Vegetation Index [38] 2G−R−B
2G+R+B

VARI Visible Atmospherically Resistant Index [33] G−R
G+R−B

MGRVI Modified Green Red Vegetation Index [39] G2−R2

G2+R2

CIVE Colour Index Of Vegetation [40] 0.441R − 0.881G + 0.385B + 18.787
VEG Vegetative Index [41] G

R0.667+B0.334

WI Woebbecke Index [31] G−B
R−G
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Table 1. Cont.

Colour Space VI Name Equation

HSV/HSL

H Hue
S Saturation
V Value
I Intensity

CIELab

L* Lightness
a* Green-Red component
b* Blue-Yellow component
ab a∗b∗

NDLab Normalized Difference CIELab Index [42] 1−a∗−b∗
1−a∗+b∗ + 1

CIELuv

u* Green-Red component
v* Blue-Yellow component
uv u∗b∗

NDLuv Normalized Difference CIELuv Index [42] 1−u∗−v∗
1−u∗+v∗ + 1

2.4.3. RiceClimaRemote

The Tolima region of Colombia hosted the RiceClimaRemote research project. It was
a collaboration between ILVO, the Universidad de Ibagué, and Agrosavia. The project
focused on developing and implementing irrigation strategies for rice cultivation. Its goal
was to identify methods that were best suited to the region’s climate change conditions
while still maintaining crop productivity. To achieve this, the project utilized technological
tools and data analysis to monitor spatiotemporal variability at the sub-plot level. Field
trials were conducted on a one-hectare plot cultivated with the Fedearroz 67 rice variety
(Oryza sativa L.) at the Nataima Research Centre of Agrosavia. The research center is in the
Espinal municipality of the Tolima region, Colombia (see Figure 2). Trials were conducted
in two cycles, during the second semester of 2021 and the first semester of 2022. Three
different irrigation techniques were established: multiple inlet rice irrigation (MIRI) [43],
alternate wetting and drying (AWD) [44], and conventional flooded irrigation (CONTROL).
The experimental area was divided into three strip plots, which enabled the analysis of
each treatment.

Figure 2. RiceClimaRemote dataset site’s location. (a) Colombia; (b) Tolima department; (c) Espinal
and experimental field with RGB raster.
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The multi-temporal image acquisition stage was conducted during sunny and cloud-
less weather conditions to monitor the crop status. During both the vegetative and repro-
ductive stages, flights were executed biweekly, whereas during the ripening stage, flights
took place weekly. RGB images were collected and aligned with multispectral images.
Table 2 presents the multispectral and RGB indices obtained. In addition, to monitor the
water status of the rice crop, various physiological parameters were measured. Gas ex-
change, including stomatal conductance (Gs), net photosynthesis rate (Pn), intercellular
CO2 concentration (Ci), and transpiration rate (E), were measured. Additionally, plant sam-
ples from a defined area were collected, and the leaf area index was indirectly determined
by measuring the fresh and dry weight of a known leaf area. Furthermore, the equivalent
water thickness (EWT) was calculated. Canopy water content (CWC) was then calculated
using EWT and the leaf area index (LAI). Additionally, the photochemical reflectance index
(PRI) was determined using a proximal sensor. In summary, an input feature matrix with
P = 22 features and N = 768 samples are collected.

Table 2. RiceClimaRemote VIs. The wavelengths of B, G, R, RE, and NIR are 475, 560, 668, 717,
and 842 nm, respectively.

VI Name Equation

NDVI Normalized Difference Vegetation Index [45] NIR−R
NIR+R

GNDVI Green Normalized Difference Vegetation Index [46] NIR−G
NIR+G

NDRE Normalized Difference Red Edge [47] NIR−RE
NIR+RE

SAVI Soil Adjusted Vegetation Index [48] 1.5(NIR−R)
NIR+R+0.5

OSAVI Optimized Soil Adjusted Vegetation Index [49] 1.16(NIR−R)
NIR+R+0.16

SR Simple Ratio [50] NIR
R

GVI Green Normalized Difference [33] NIR
G

ExG Excess Green [32] 2G − R − B
GA Green Area [51] 60 < HUE < 180

GGA Greener Area [51] 80 < HUE < 180

3. Experiments and Results
3.1. Training Details, Assessment, and Method Comparison

The baseline SVD-based biplot and our Local Biplot are tested to identify and visualize
relevant variables and samples from input features in X. Moreover, we compute the Pearson
correlation ϱpp′ ∈ [−1, 1] between features as follows:

ϱpp′ =
⟨ξ p − ξ̄p1, ξ p′ − ξ̄p′1⟩2

∥ξ p − ξ̄p1∥2∥ξ p′ − ξ̄p′1∥2
, (10)

where ξ p ∈ RN holds the p-th column in X, ξ̄p = 1
N ∑N

n=1 ξpn, and p, p′ ∈ P. A Local
Biplot-based feature correlation ϱ̃pp′ ∈ [−1, 1] is computed for a given matched basis matrix
by replacing ξ p as the p-th row b̃ ∈ R2 of B̃ in Equation (10). The feature relevance is
also computed as in Equation (9). The latter aims to compare the input features linear
relationships vs. our Local Biplot-based enhancement to code non-linear dependencies.
The number of groups R̃ is fixed as three, four, and five for the Multivariate Guassians,
Forage Grasses, and RiceClimaRemote datasets, respectively.

Further, the LR and RF algorithms are used to predict the breeding score (Forage
Grasses) and CWC (RiceClimaRemote). The goal is to train two regression models using the
complete dataset and our Local Biplot framework to study non-linear and non-stationary
behaviors in PA tasks. Next, to quantitatively assess the predictive performance on unseen
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samples, the coefficient of determination (R̆2) is reported on the testing set within a five-fold
cross-validation scheme. The R̆2 is defined as [52]:

R̆2(y, ŷ) = 1 −
∥y − ŷ∥2

2
∥y − ȳ1∥2

2
, (11)

where y, ŷ ∈ RN gather the ground-truth and predicted outputs, respectively, and
ȳ = 1

N ∑N
n=1 yn. A grid-search approach optimizes the hyperparameters of the LR and RF

algorithms to sidestep overfitting. For the RF model, we tested different values for the
number of trees {5, 10, 50, 200} and the maximum number of levels in each decision tree
{5, 10, 50, 200}. In the case of LR, only the intercept parameter was tuned. All experiments
were conducted in Python 3.10.12, with the Scikit learn 1.4.2 API, in a Google Colaboratory
environment. Our Python codes are publicly available at [53] (accessed on 21 March 2024).
Regarding the Forage Grasses database, we use the publicly available data from [30] (ac-
cessed on 19 December 2023). The RiceClimaRemote dataset is not available to the public
due to privacy considerations.

3.2. Multivariate Gaussians Results

We initially conducted a controlled experiment to evaluate the feasibility of our Local
Biplot on synthetic data. Figure 3 displays a traditional SVD-based biplot next to our
proposal. We represent features as arrows and depict observations as data points. Both
projections are normalized between 0 and 1 for ease of interpretation and visual comparison.
Furthermore, in Figure 4 (first row), a panel of input features with absolute Pearson
correlation matrices showcases values for both the complete database and each cluster.
The second row depicts the same analysis employing Local Biplot.

PC1

PC
2

f1
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f3
f4

f5

PC1

f1
f2

f3

f4

f5

f1

f2

f3

f4

f5

f1

f2
f3

f4f5

Figure 3. Multivariate Gaussians dataset visual inspection results. (Left): SVD-based biplot.
(Right): Local Biplot (ours). Gray arrows depict each feature in the dataset (f1–f5), which shed
light on their correlations. Examining the scatter points and their colors allows us to visually under-
stand sample distributions. PC stands for principal component (basis).
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Figure 4. Multivariate Gaussians: Pearson correlation results. First row: a panel of absolute feature
correlation matrices showcases values for both the complete database and each cluster using the SVD-
based biplot. The second row displays cluster-specific absolute correlations from our Local Biplot.
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3.3. Forage Grasses Dataset Results

Figure 5 shows the visual inspection results on the Forage Grasses dataset. To illustrate,
the basis (depicted as arrows) is presented. The 2D projections using the breeding score as
color to provide further insights are also given. The principal components in the projections
have been scaled to a range between 0 and 1 for easier interpretation and visual comparison.
Then, we found the absolute Pearson correlation between each of the 37 indices and the
breeding score. This is shown in Figures 6 and 7 for the SVD-based biplot baseline and
our Local Biplot. Each panel displays correlations for individuals, for all species (ALL V),
and for the three species (FA, Lp2n, and Lp4n) across all dates, taking into account both the
original input features and clustered samples. Table 3 presents the R̆2 value for breeding
score estimation using RF and LR models. These models were trained using the color
space and RGB-based VIs from the grass dataset for all data, as well as for each cluster
obtained with our Local Biplot. Figure 8 displays the input feature relevance analysis for
the SVD-based biplot, our Local Biplot approach, and the regressor weights (LR and RF).
Cluster-based relevance is also provided. For clarity, feature relevance is depicted between
0 and 1 based on a minmaxscaler [52].
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Figure 5. Forage Grasses biplots. Left: SVD-based biplot. Middle: Local Biplot. Right: Local
Biplot and cluster-based probability boundaries. The colors in the left and middle plots represent
the clustering label. The right plot’s color emphasizes the target variable (breeding score), while the
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Table 3. Forage Grasses breeding score prediction results. Regression performance (average ± stan-
dard deviation) regarding the R̆2 is computed for all data and for each cluster as provided by our
Local Biplot framework (see Figure 5). Cluster size is also depicted. Each cluster header is color-coded
and ordered from highest to lowest R̆2.

Regressor All Data Cluster 1 Cluster 2 Cluster 3 Cluster 4

LR 0.76 ± 0.02 0.65 ± 0.04 0.48 ± 0.06 0.44 ± 0.03 0.21± 0.03
RF 0.75 ± 0.02 0.65 ± 0.07 0.56 ± 0.07 0.42 ± 0.06 0.20 ± 0.06

Sample size 3174 966 461 651 1096
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We also establish correlations for each cluster separately and throughout the dataset.
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Figure 8. Forage Grasses feature relevance analysis. SVD-based biplot and Local Biplot (ours)
normalized feature relevance are presented. We also show the LR and RF regressor weights. The bar
color in the second column stands for the Local Biplot clusters labels (see Figure 5).

3.4. RiceClimaRemote Dataset Results

Figure 9 shows the visual inspection results on the RiceClimaRemote dataset. The basis
(arrows) are over each projection. Shown also are 2D projections using CWC color. We
present the absolute Pearson correlation between each of the 21 variables and the CWC
(see Figures 10 and 11). Each panel displays correlations for individuals, for all irrigation
treatments (ALL T), and for the three irrigation treatments (MIRI, AWD, CONTROL) across
all dates, taking into account both the original input features and clustered samples. Next,
Table 4 presents the R̆2 values for breeding score estimation. These models were trained
using physiological parameters, Multiespectral, and RGB-based VIs for all data and for
each cluster. Figure 12 displays the normalized input feature relevance analysis.

Table 4. RiceClimaRemote CWC prediction results. Regression performance (average ± standard
deviation) regarding the R̆2 is computed for all data and for each cluster (see Figure 9). Cluster size is
also depicted. Each cluster header is color-coded and ordered from highest to lowest R̆2.

Regressor All Data Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

LR 0.55 ± 0.03 0.65 ± 0.16 0.63 ± 0.04 0.45 ± 0.15 0.16 ± 0.18 −1.23 ± 1.14
RF 0.68 ± 0.05 0.67 ± 0.18 0.59 ± 0.06 0.45 ± 0.14 0.28 ± 0.16 −0.97 ± 0.56

Sample size 768 148 195 182 195 48
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Figure 10. RiceClimaRemote Pearson correlation results: SVD-based biplot. For each irrigation
treatment, we show the absolute correlation (cluster- and entire-data-based) between the selected
feature and the CWC (target), both individually and collectively.
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Figure 11. RiceClimaRemote Pearson correlation results: Local Biplot (ours). For each irrigation
treatment, we show the absolute correlation (cluster- and entire-data-based) between the selected
feature and the CWC (target), both individually and collectively.
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Figure 12. RiceClimaRemote feature relevance analysis. SVD-based biplot and Local Biplot (ours)
normalized feature relevance are presented. We also present the LR and RF regressor weights. The bar
color in the second column stands for the Local Biplot clusters labels (see Figure 9).
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4. Discussion

We introduced Local Biplot, a methodological framework designed to visually identify
meaningful data patterns within localized contexts over multi-temporal crop data, particu-
larly focusing on water status analysis. Our approach effectively captures data complexity
and non-stationarity, enabling the identification and transformation of significant clusters
within a common biplot framework for feature-sample contributions.

The results demonstrate that Local Biplot outperforms the traditional SVD-based
biplot in identifying and preserving local structures. For instance, in the synthetic dataset,
it is clear that the SVD-based embedding depicted in Figure 3 effectively separates the
synthetic observations along both principal components. Variables contributing to PC2
have a significant influence on distinguishing the clusters. However, although the classical
biplot effectively distinguishes the generated structures, it shows shortcomings in providing
explicit insights into the influence of each feature on the respective point clouds. Our local-
based biplot method, on the other hand, focuses on capturing local structures and nonlinear
relationships in the data. It effectively shows the difference between the structures in
the artificially created group samples. The data present a large variation on both axes,
and the representation of each variable suggests that the discriminant information may
vary between local-based analyses. For instance, while f4 and f5 remain correlated, this
correlation breaks in cluster 2. Notably, the classical approach lacks explicit insights
into the influence of each feature on the respective point clouds. Pattern variations are
evident, as is the correlation change in the Local Biplot embedding. These discrepancies
in correlation patterns correspond to different sample subsets produced by multivariate
Gaussian distributions. We attribute this success to the combined use of UMAP, clustering,
and local SVD decomposition, which preserves both local and global structures, thereby
enhancing the ability to capture non-stationary patterns and nonlinearities in the input
space. In turn, the Pearson correlation values for the Multivariate Gaussian dataset reveal
pattern changes over the entire dataset and within clusters, as shown in Figure 4. The initial
clustered data had modest dependencies, but Local Biplot-based correlations enhance
them. In cluster 3, the correlation between variables f2 and f4 declined dramatically, while
in cluster 1, it increased. Thus, our technique correctly recognized liner and non-linear
sample relationships.

For the analysis of the Forage Grasses dataset, Local Biplot’s finer resolution helped
a lot in showing how differences between clusters were consistent (see Figure 5). This
highlighted the role of visual-based indices in revealing these patterns and suggested
potential sources of multicollinearity among indices from various color spaces. For example,
the visual-based indices exhibit strong correlation and align with both the left cluster and
the score. Thus, the visual appearance seems to play a crucial role in defining and separating
the left cluster and the PC2 axis. The PC2 axis, instead, seems to be highly correlated with
CIVE, CWSI, dT, a* and G-R. The right cluster displayed higher values on PC1 but exhibited
considerable variation across varieties on PC2, suggesting a diverse range of characteristics
within this group. Similarly, the left cluster showed variation in PC1. Notably, a relationship
exists between both PCs: higher values on PC1 (associated with greener plants) correspond
to higher values on PC2 for both clusters.

Further insights were obtained by calculating the absolute Pearson correlation between
37 indices and breeder score (see Figure 6). The high correlation value between the score
and the visual-based indices in every cluster emphasizes the RGB color space’s crucial
significance in revealing data variability. The consistent patterns of variation depicted by
the aligned arrows hint at potential sources of multicollinearity. The lengths of arrows
in the biplot analysis indicate that cluster 1 (dark blue) prioritizes variables like VARI,
MGRVI, and ExR, while cluster 2 (cyan) focuses on G-R, u*, and uv. Clusters 3 (yellow)
and 4 (brown), on the other hand, place higher importance on G/R, GRVI, MGRVI, VARI,
and ExR (demonstrating similar values). Furthermore, CWSI holds less significance in
cluster 1, and BRVI is less important in cluster 2. Similarly, WI shows lesser significance for
clusters 3 and 4.
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Additionally, Local Biplot-based correlations in Figure 7 report significant insights
into the relationship between VIs, cluster groups, and breeder scores. Each correlation
panel, spanning all species (ALL V) and specific species (FA, Lp2n, Lp4n), provided a
comprehensive view of feature dependencies considering both the original input data and
clustered data. Interestingly, the analysis revealed lower correlations between breeder
scores and certain VIs such as R, G, B, RCC, ExR, CIVE, a*, ab, u*, and uv across all
clusters compared to the complete dataset. Nonetheless, some visual-based indices like
GCC, ExG2, ExGR, GRVI, and G/R showed no clear cluster effect on the linear regressions
with breeder scores, resulting in similar correlations across all species except for Lp4n
in cluster 2. Moreover, H, NDLAB, and NDLuv exhibited consistent patterns with high
correlations in clusters 2, 3, and 4. Notably, Lp2n in cluster 1 and Lp4n in cluster 3
demonstrated greater variation in correlations, mirroring the trends seen across all varieties
in cluster 4. These findings are consistent with the relevance bars shown in Figure 8.
Furthermore, the reported behaviors highlight the complex interplay between VIs, breeder
scores, and genetic or environmental factors, underscoring the importance of detailed and
contextual analysis for a comprehensive understanding of drought tolerance in the studied
grass species.

Regarding the breeding score prediction, both the LR and RF models generally show
similar R̆2 values across clusters and the entire dataset (see Table 3). Thus, both models
perform comparably in terms of explaining the variability in the target variable based on the
input features. Moreover, we observe that high R̆2 values are reported for the entire dataset
compared to individual clusters. However, cluster 3 has the highest R̆2, indicating better
predictive performance. Similarly, clusters 2 and 4 exhibit similar predictions, indicating
comparable model performance in capturing variability in the target variable within these
clusters. In contrast, cluster 1 consistently presents the lowest performance, suggesting
potential challenges in model performance. It is worth noting that despite cluster 1 having
a larger cluster size, the model struggles with the imbalance in the target values, as seen
in Figure 5. It is worth noting that our regression models on all the data outperform the
approach presented in ref. [30], where R̆2 values were reported between the breeder score
and individual VI’s. Figure 8 shows the normalized feature relevance results. As shown,
for the complete dataset, the SVD-based biplot provides higher relevance values for all
variables than LR and RF relevance values. Note that the RF requires fewer features to
achieve similar performance as the LR.

In turn, the examination of the RiceClimaRemote dataset revealed significant com-
plexity and variability (see Figure 9). The SVD-based biplot analysis reveals that although
PC1 and PC2 capture much of the data’s variability, the sample points are more dispersed
compared to the local-based biplot. GGA, R, B, G, and the highly correlated multispectral
indices SR, NDVI, GNDVI, NDRE, and GVI primarily compose PC1. Similarly, PC2 is
mainly associated with the NIR band, OSAVI, SAVI, Red Edge, and PRI. This structure
suggests a complex data arrangement, with variables exhibiting a significant degree of
variability, possibly indicating multiple subgroups or non-stationary patterns within the
main group. In contrast, in the local-based biplot, the preservation of local structures leads
to the formation of tighter clusters, highlighting subgroups. The resulting 2D non-linear
projection (scaled to a range between 0 and 1) captures much of the large-scale global
structure. Still, it also preserves the important local structure of the dataset, resulting in five
tightly clustered groups. Furthermore, it is notable that multispectral indices such as SR,
NDVI, GNDVI, NDRE, and GVI remain highly correlated across all clusters. Additionally,
the embedding space underscores the temporal influence on the relationships between
features, with distinct contours aligning with different rice growth stages. This temporal di-
mension is crucial for understanding seasonal variations and other time-dependent factors
impacting the rice fields.

Correlation analyses (Figures 10 and 11) show significant positive correlations between
CWC and physiological measurements like Pn and Gs, while Ci’s correlation with CWC
varies across clusters. Cluster-specific variations indicate that local data structures signifi-
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cantly influence these relationships, which are not uniformly captured in global analyses.
The consistency of correlations among multispectral indices across all clusters suggests
robust relationships that persist despite local variations. To understand the interactions
among the features within the clusters obtained using our Local Biplot, Figure 11 displays
the relationships CWC. This analysis revealed variations in the correlations, with some
increasing and others decreasing. In fact, the R̆2 measures for CWC estimation presented
in Table 4 reveal that cluster 1 (brown) exhibits the highest predictive accuracy for both LR
(R̆2 = 0.65) and RF (R̆2 = 0.67) regressors, emphasizing the importance of local structures
in improving model performance. Interestingly, cluster size does not directly correlate with
R̆2 values, highlighting the complexity of the data and the influence of sample diversity
on model performance. For example, cluster 5’s (dark blue) small size hinders the identifi-
cation of robust data patterns, leading to poor performance and contributing to problems
of reproducibility.

Finally, the relevance analysis (Figure 12) indicates that fewer variables are needed
for accurate CWC predictions in LR and RF models compared to SVD. The selection of
significant spectral bands varies across models, with RF identifying a broader range of
important features, contributing to higher prediction accuracy. The variability in feature
importance across clusters further demonstrates the heterogeneous nature of the data
and the necessity of tailored analysis approaches for different subgroups. These changes
can be attributed to the clustering of the UMAP projection within the Local Biplot, which
effectively captures the local structure and non-linear relationships. Our framework isolates
subsets of points that share similar characteristics.

5. Conclusions

We introduced a methodological framework termed Local Biplot to discern meaning-
ful data patterns within localized contexts, specifically focusing on water status analysis in
crops. LocalBiplot captures non-linear and non-stationarity data relationships, allowing us
to identify significant clusters for transformation and projection within a shared biplot. We
applied a local affine transformation to map the input feature variability-based rankings
to the 2D low-dimensional space, providing a complete picture of the local relationships
between variables and samples. So, this framework includes the contributions of features
and observations within each cluster in the same figure. This makes it easier to understand
how data change over time and helps with evaluating variables related to crop water
status. We tested our approach using both synthetic and real-world databases, including
structured data from grass and rice crops. Our results show that Local Biplot outperforms
the traditional SVD-based biplot in finding and preserving local structures. For example,
in the synthetic dataset, our method accurately identified the distinct covariance structures
of the three artificially generated cloud points. We attribute this success to the combined
use of UMAP, clustering, and local SVD decomposition, which preserve both local and
global structures, enhancing the ability to capture non-stationary patterns and nonlinear-
ities in the input space. Furthermore, the method’s application to Forage Grasses and
RiceClimaRemote datasets has highlighted the utility of visual-based indices and the signif-
icant impact of temporal and treatment variations on the data. Our findings emphasize
the importance of considering local structures and nonlinear relationships in data-driven
precision agriculture.

As future work, extending the LocalBiplot into a deep learning approach is promising
research, as demonstrated by the model introduced in ref. [54] to further improve pre-
dictive modeling accuracy and robustness. Our next step is to broaden the research to
other crops and geographical regions to evaluate the generalizability of the findings [55].
Different crops may exhibit unique data patterns and responses to environmental factors,
necessitating tailored approaches for precision agriculture [14]. Additionally, collaborating
with agricultural practitioners and stakeholders will help validate the effectiveness of the
proposed approaches in other practical settings.
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