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Abstract: Domain generalization (DG) aims to learn knowledge from multiple related domains
to achieve a robust generalization performance in unseen target domains, which is an effective
approach to mitigate domain shift in remote sensing image classification. Although the sharpness-
aware minimization (SAM) method enhances DG capability and improves remote sensing image
classification performance by promoting the convergence of the loss minimum to a flatter loss
surface, the perturbation loss (maximum loss within the neighborhood of a local minimum) of
SAM fails to accurately measure the true sharpness of the loss landscape. Furthermore, its variants
often overlook gradient conflicts, thereby limiting further improvement in DG performance. In this
paper, we introduce implicit sharpness-aware minimization (ISAM), a novel method that addresses
the deficiencies of SAM and mitigates gradient conflicts. Specifically, we demonstrate that the
discrepancy in training loss during gradient ascent or descent serves as an equivalent measure of
the dominant eigenvalue of the Hessian matrix. This discrepancy provides a reliable measure for
sharpness. ISAM effectively reduces sharpness and mitigates potential conflicts between gradients
by implicitly minimizing the discrepancy between training losses while ensuring a sufficiently low
minimum through minimizing perturbation loss. Extensive experiments and analyses demonstrate
that ISAM significantly enhances the model’s generalization ability on remote sensing and DG
datasets, outperforming existing state-of-the-art methods.

Keywords: domain generalization; sharpness-aware minimization; neural networks; loss landscape;
remote sensing

1. Introduction

With the advancement of deep neural networks, deep learning techniques have
achieved remarkable success in the field of the computer vision [1–4]. However, this
success usually relies on the assumption that the training and test data have the same dis-
tribution. This enables an exceptional performance on training data (source domain), but
the performance often degrades significantly when evaluated on test data (target domain),
with distributions differing from the training data [5]. In remote sensing image acquisition,
variations in geographic location, climate conditions, and sensors may exist. These fac-
tors give rise to domain shift phenomena for remote sensing images obtained at different
times or locations, leading to changes in their distribution. Under such conditions, it is
frequently necessary to retrain the model on data with different distributions to maintain
its performance [6].

In order to ensure the model exhibits a robust performance across diverse data dis-
tributions, domain adaptation (DA) has been introduced as a solution for addressing
out-of-distribution generalization [7,8]. DA necessitates access to well-labeled source
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domain data and unlabeled target domain data during training, leveraging these unla-
beled target domain data to reduce the gap between the source and target domains [9,10].
However, acquiring target domain data can be both costly and challenging in real-word
scenarios [11]. For instance, remote sensing data collection not only demands expensive
specialized equipment, but also requires skilled personnel for operation. Moreover, due
to the wide range of environmental factors involved, it becomes arduous to encompass
all potential situations. These challenges hinder the effective generalization of the model
through DA in the absence of target domain data [12].

Domain generalization (DG) effectively addresses the limitations of relying on target
domain data in DA [13]. DG does not necessitate any target domain data during training,
providing a robust solution for scenarios where target domain data are either inaccessible
or completely absent. DG enables the model to generalize to unseen domains by train-
ing the model across multiple accessible source domains [14]. Existing DG techniques
comprise data manipulation [15,16], domain invariant representation learning [17,18],
meta-learning [19–21], and gradient operations [22,23]. For example, Zhou et al. [24] prob-
abilistically mix feature statistics to achieve data manipulation, and Hu et al. [5] extract
domain invariant representations through an inter-domain alignment and inter-domain
expansion. However, a study known as Domainbed [25] has revealed that most existing
DG methods have an inferior performance compared to the empirical risk minimization
(ERM) method under identical evaluation conditions. These failures have prompted the
exploration of new methods.

A recent study, named SAM [26], proposed a method to ensure the loss minimum is
located on a flat loss surface, which significantly enhances the model’s DG performance.
SAM introduces adversarial perturbations, ε, to the model parameters, θ, defining the
loss at the point θ + ε as the maximum loss within the neighborhood of θ. By optimizing
the perturbation loss, L(θ + ε), instead of the original loss, L(θ), this method aims to
find a flat loss surface. However, it is important to note that both sharp and flat loss
surfaces can achieve lower L(θ + ε). The optimization objective employed by SAM does
not accurately reflect the sharpness of the loss landscape, leading to minima that do not
always converge to flat loss surfaces. Furthermore, most existing methods [27,28] primarily
focus on optimizing the efficiency of SAM, neglecting this issue.

To address the issue present in SAM, Zhuang et al. [29] employed h(θ) = L(θ + ε)−L(θ)
as an equivalent measure of sharpness and improved SAM by simultaneously optimizing
L(θ + ε) and h(θ). SAGM [30] further introduces an approach to simultaneously optimize L(θ),
L(θ + ε), and h(θ) in order to find a flatter loss surface. However, these methods, which explic-
itly optimize combinations of L(θ), L(θ + ε), and h(θ), result in the parameter update direction
becoming a linear combination of the gradients∇L(θ) of the original loss and∇L(θ + ε) of the
perturbation loss. It is important to note that conflicts may arise between different gradients,
and the gradients obtained at different parameter points may exacerbate conflicts. Consequently,
the linear combination of∇L(θ) and∇L(θ + ε) acquired at different locations may leads to a
deviation between the actual parameter update direction and the expected update direction,
resulting in a suboptimal optimization outcome.

In this paper, we aim to address the issue of SAM and mitigate the adverse effects
caused by gradient conflicts, thereby enhancing DG capability. We have demonstrated
that the discrepancy in training loss values before and after executing gradient ascent or
descent can serve as an equivalent measure of the dominant eigenvalue of the Hessian
matrix. This discrepancy can be substituted for h(θ) as an equivalent measure of the
sharpness of the loss landscape. As the logits vector output by the model leads to changes
in the loss, the discrepancy between the logits vectors obtained in two trainings implies a
discrepancy in the losses before and after training, thereby presenting information about
the sharpness. Based on these findings, this paper introduces a new implicit measure of
sharpness and a novel method named implicit sharpness-aware minimization (ISAM).
ISAM avoids obtaining gradients at different locations, mitigating the adverse effects of
gradient conflicts. Additionally, the implicit measure of sharpness prevents the issue in
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SAM, where L(θ + ε) fails to accurately reflect the sharpness, thus avoiding convergence
to sharp regions.

In summary, our contributions are as follows:
Firstly, we examined the limitations of SAM and its variants in finding flat loss surfaces.

Additionally, this paper explores how the discrepancy in training loss before and after
executing a gradient ascent or descent can serve as an equivalent measure of the dominant
eigenvalue of the Hessian matrix.

Secondly, we introduced a novel implicit measure of sharpness and an ISAM method,
which mitigates the adverse effects caused by gradient conflicts between ∇L(θ) and
∇L(θ+ ε) while improving on the inadequacy of SAM. This improvement significantly
enhances the model’s DG capabilities in unseen domains.

Finally, we conducted a series of experiments on several remote sensing datasets and
DG datasets. The experimental results demonstrate that ISAM can effectively improve the
generalization performance of the remote sensing image classification model, and the DG
performance significantly outperforms current state-of-the-art DG methods.

2. Related Word
2.1. Domain Adaptation

DA enhances the generalization performance of the model across domains by nar-
rowing the domain gap between the source and target domains [31]. Unsupervised DA,
an effective approach within DA, improves the model’s generalization capabilities during
training by utilizing labeled source domain data and unlabeled target domain data [32,33].
Another pioneering approach, source-free DA, allows model tuning using solely unlabeled
target domain data [34–36]. These techniques enhance the generalization performance by
enabling the model to adapt to diverse scenarios across various environments. However,
the acquisition of target domain data is not always feasible in real-life situations, thus
limiting the scope of DA applications [37]. In contrast to DA, the goal of DG is to train
a model to generalize to unseen domains in the complete absence of target domain data,
relying only on source domain data. This positions DG closer to real-world conditions and
makes it a more effective solution for practical scenarios.

2.2. Domain Generalization

Existing DG methods can be broadly categorized into data manipulation, representation
learning, meta-learning, and gradient manipulation. Data manipulation enables the training
space of the model to broaden to cover more unknown domains by increasing the number and
diversity of source domain samples. Blanchard et al. [16] adjusted the distribution of training
data to better approximate the distribution of data in unseen domains. Zhou et al. [38] created
new domains by mixing training sample styles. Representation learning seeks to identify stable
and invariant features across different domains and transfer these learned features to other
domains to enhance DG performance. Kim et al. [39] employed contrastive regularization to
encourage the model to learn representations. Nam et al. [40] removed style coding from a
category prediction task to mitigate the effects of style differences. Meta-learning develops
a generalized model by learning from previous experiences or tasks. Li et al. [21] used a
meta-learning approach to simulate virtual target domains during training. Li et al. [20]
improved the quality of feature representations through meta-learning strategies and guided
the optimization of the feature extractor based on the learning output of the feature critic.
Gradient manipulation utilizes gradient information to compel the neural network to learn a
generalized representation. Shi et al. [22] optimized the training process by aligning gradients
across different domains. However, the failure of most existing DG methods in Domainbed has
motivated further explorations for new methods.

2.3. Sharpness-Aware Minimization

Recent research analyzing 40 different complexity measures has revealed a high correlation
between sharpness-based metrics and model generalization capabilities [41]. This discovery
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promotes an in-depth study of sharpness in model loss landscape. Foret et al. [26] introduced an
efficient and generalized training method named SAM, which encourages the convergence of the
minimum to a flat loss surface during training. Zhang et al. [42] introduced the concept of first-
order flatness and identified a flat surface by examining the magnitude of gradients. Zhuang
et al. [29] proposed GSAM, aimed at addressing the issue where SAM does not consistently
converge the minimum to a flat loss surface. Wang et al. [30] introduced SAGM, utilizing a
gradient matching technique, and successfully achieved a leading performance in DG tasks.
Unfortunately, methods optimized for sharpness tend to improve SAM by explicitly weighing
the relationship between original loss and perturbation loss. This overlooks potential conflicts
between the gradients of the original loss and the perturbation loss, resulting in parameter
updates in directions that diverge from the expected trajectory. In this paper, we propose a
novel ISAM method to facilitate the convergence of the minimum to a flat loss surface while
mitigating potential conflicts between gradients.

3. Methodology
3.1. Preliminaries

In this paper, we define the model with weight parameters, θ, denoted as f (·; θ).
Assume there are K different source domains, DS =

{
Di

S

∣∣i = 1, 2, · · · , K
}

, where each

source domain, Di
S, contains Ni sample-label pairs,

{
(xi

j, yi
j)
}Ni

j=1
. The source domains

exhibit different joint distributions: Pi
xy ̸= Pj

xy for 1 ≤ i ̸= j ≤ K. The goal of DG is to train
the model solely with source domains, enabling it to demonstrate a good generalization

performance on any unseen target domain, DT =
{

xi
j

}Nt

j=1
, where Nt represents the number

of samples in the target domain. The training loss, using empirical risk minimization (ERM)
across all source domains, DS, is defined as follows:

L(θ; D) =
1
K

K

∑
i=1

1
Ni

Ni

∑
j=1
↕
(

f
(

xi
j; θ

)
, yi

j

)
(1)

where ↕(·; ·) represents the loss function employed to measure the gap between the model’s
predictions and the actual labels, and we assume that L(θ; D) is twice differentiable.

The conventional ERM method often results in minimum converging to a sharp
region of the loss landscape when optimizing weight parameters. As shown in Figure 1,
although these sharp regions exhibit significantly low loss on source domain data, they
are highly sensitive to slight parameter variations. This sensitivity can hinder the model’s
generalization ability on unseen domain data. In contrast, SAM encourages the minimum
to be located on a flat surface of the loss landscape through a two-step iterative process.
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The first iteration finds the point θ + ε where the loss is maximized within the Eu-
clidean space centered at θ with a radius ρ, where ρ ≥ 0, by using an adversarial approach:

max
∥ε∥≤ρ

L(θ + ε; D) (2)

where ε represents the perturbation to θ, and ∥·∥ represents the L2 norm. In the second iteration,
the gradient∇L(θ + ε; D) is computed through backpropagation at θ + ε, which is then utilized
to update θ. Thus, the optimization objective of SAM can be formulated as follows:

min
θ

max
∥ε∥≤ρ

L(θ + ε; D) (3)

The goal is to seek a flat loss surface by maximizing L(θ + ε; D) followed by minimiz-
ing it. The approximate value of perturbation ε, denoted as ε̂, can be approximated through
a first-order Taylor expansion:

ε̂ = argmax
∥ε∥≤ρ

L(θ + ε; D) ≈ argmax
∥ε∥≤ρ

L(θ; D) + εT∇L(θ; D)

= ρ∇L(θ; D)/∥∇L(θ; D)∥
(4)

Ultimately, the perturbation loss of SAM can be formulated as:

Lp(θ; D) = L(θ + ε̂; D) (5)

3.2. SAM’s Optimization and Gradient Conflict

Although SAM has demonstrated effectiveness in experiments, both sharp and flat minima
regions can yield low perturbation loss values, indicating that perturbation loss is not always
consistent with sharpness. As illustrated in Figure 1, despite the flatter loss surface at θ2
compared to θ1, Lp(θ2; D) = Lp(θ1; D). This inconsistency may lead SAM to erroneously select
θ1 during the parameter selection process. Furthermore, although the perturbation loss at θ3 is
lower than that at θ2, the gap between L(θ3; D) and Lp(θ3; D) is significantly greater than that
between L(θ2; D) and Lp(θ2; D), prompting SAM to favor the sharper θ3 over θ2. It can be seen
that SAM focuses too much on the perturbation loss in the training procedure, which results in
a minimum that does not necessarily converge to a flat surface.

Fortunately, in the definition of SAM, the perturbation loss is defined as the maximum
loss within a specified range, while original loss is considered a local minimum within that
area. Therefore, the gap between the perturbation loss and the original loss can effectively
serve as a measure of sharpness, as explained below:

h(θ; D) = Lp(θ; D)−L(θ; D) (6)

The function h(θ; D) more accurately describes the gap between θ and θ + ε̂, where a
smaller gap indicates a flatter loss surface. By minimizing h(θ; D), it is possible to prevent
the minimum from settling into a sharp loss region. Intuitively, optimizing both Lp(θ; D)
and h(θ; D), or L(θ; D) and h(θ; D) simultaneously, becomes feasible. Minimizing Lp(θ; D)
ensures that the minimum point is sufficiently low, while minimizing h(θ; D) ensures that
sharpness is also sufficiently small. As a result, it is possible to ensure convergence to a flat
surface. The optimization objective is as follows:

min
θ

(
Lp(θ; D), h(θ; D)

)
(7)

The loss function can be formulated as αLp(θ; D) + βh(θ; D). Its gradient is as follows:

∇
(
αLp(θ; D) + βh(θ; D)

)
= α∇Lp(θ; D) + β

(
∇Lp(θ; D)−∇L(θ; D)

)
= (α + β)∇Lp(θ; D)− β∇L(θ; D)

(8)

where α and β are positive scalars utilized to adjust the weight of the two objectives within
the overall optimization.



Remote Sens. 2024, 16, 2877 6 of 19

Similarly, minimizing L(θ; D) ensures the attainment of a low loss, and minimizing h(θ; D)
guarantees that the minimum converges to a flat surface. The optimization objective is as follows:

min
θ
(L(θ; D), h(θ; D)) (9)

Its gradient can be represented as follows:

∇(αL(θ; D) + βh(θ; D))
= α∇L(θ; D) + β∇Lp(θ; D)−∇L(θ; D)

= (α− β)∇L(θ; D) + β∇Lp(θ; D)
(10)

Since h(θ; D) is closely related toL(θ; D) andLp(θ; D), the method of explicitly combining
L(θ; D), Lp(θ; D), and h(θ; D) eventually results in the gradient updating direction to be
a linear combination of ∇L(θ; D) and ∇Lp(θ; D). Figure 2 illustrates the gradient update
directions for L(θ; D), Lp(θ; D), and h(θ; D). As depicted in Figure 3, updating the gradient
in a manner such as in Equations (8) and (10) would result in the direction of the update
being significantly different from the directions of−∇L(θ; D) and−∇Lp(θ; D). This results
in updating parameters that focus on decreasing the value of one optimization goal in one
direction while increasing the value of the other optimization goal. Ultimately, the conflict
between∇L(θ; D) and∇Lp(θ; D) manifests as follows: (1) the process of minimizing L(θ; D)
and h(θ; D) results in reducing h(θ; D) by increasing L(θ; D); (2) the process of minimizing
Lp(θ; D) and h(θ; D) results in increasing L(θ; D) to reduce the overall loss.
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Figure 3. Potential directions for gradient updates: The pink region represents the possible directions of
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θ

(
Lp(θ; D), h(θ; D)

)
. The green region indicates the

possible directions of gradient updates when the optimization target is min
θ
(L(θ; D), h(θ; D)).
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3.3. Implicit Sharpness-Aware Minimization

As previously discussed, by explicitly optimizing the original loss L(θ; D), the per-
turbation loss Lp(θ; D), and h(θ; D), these actions ultimately translate into operations on
∇L(θ; D) and ∇Lp(θ; D). This optimization method had to face the adverse effects of
conflicts between gradients. We must explore new methods to mitigate this drawback.

Assuming the loss function, L, can be approximated by a second-order Taylor expan-
sion near a local minimum, θ, we proceed with the following analysis. In the gradient
descent process, if the same mini batch of samples, B, is used in iterations, we observe that
the change in loss can be expressed as:

L(θ − δ; D) = L(θ; D)− δT∇L(θ; D) + δT∇2L(θ; D)δ/2 + O
(

η3
)

(11)

|R(θ; D)| = |L(θ; D)−L(θ − δ; D)| =
∣∣∣δT∇L(θ; D)− δT∇2L(θ; D)δ/2−O

(
η3

)∣∣∣ (12)

where δ = η∇L(θ; D) represents the step size, η is the learning rate, and |·| denotes taking the
absolute value. Around a local minimum, θ,∇2L(θ; D) denotes the Hessian matrix at θ. σmax is
defined as the dominant eigenvalue of the Hessian matrix. Consequently, we can derive:

|R(θ; D)| = |L(θ; D)−L(θ − δ; D)| ≈
∣∣∣δT∇2L(θ; D)δ/2

∣∣∣ (13)∣∣∣σmax

(
∇2L(θ; D)

)∣∣∣ ≈ ∣∣∣2R(θ; D)/∥δ∥2
∣∣∣ (14)

Kaur et al. [43] have demonstrated that σmax can effectively measure the curvature at a
minimum, allowing us to use R(θ; D) to replace h(θ; D) as an equivalent measure of sharpness.

Because changes in the logits vector can significantly influence the outcomes of the loss
function calculations, we utilized the discrepancy between logits vectors to implicitly measure
R(θ; D), thereby achieving an implicit measure of sharpness. For a mini batch B = (x1, x2, · · · , xM)
containing M samples, the logits vector ZB = (z1, z2, · · · , zM) generated by the model f (θ; D)
and subsequently processed by the softmax function can be obtained as follows:

p(xi) =
exp(zi)

∑M
j=1 exp

(
zj
) (15)

Predicted probabilities pθ−δ(xi) and pθ(xi) are obtained from forward propagation at param-
eters θ− δ and θ, respectively. By implicitly optimizing R(θ; D), we aim to optimize sharpness.
Consequently, the following method can serve as an implicit measure of sharpness:

1
M

M

∑
i=1

KL(pθ−δ(xi)∥pθ(xi)) (16)

Simultaneously obtaining both pθ−δ(xi) and pθ(xi) necessitates an additional forward
propagation step beyond SAM, leading to increased computation or memory consumption.
We have discovered that, when performing a gradient ascent around a local minimum, θ,
the discrepancy between losses can also serve as an equivalent measure of sharpness:

|L(θ; D)−L(θ − δ; D)| = |L(θ + δ; D)−L(θ; D)| ≈
∣∣∣δT∇2L(θ; D)δ/2

∣∣∣ (17)

Therefore, the discrepancy between pθ−δ(xi) and pθ(xi), or pθ+δ(xi) and pθ(xi), can
serve as an implicit measure of sharpness. Before calculating ∇Lp(θ; D), SAM has already
obtained the logits vector at the parameters θ + ε̂. Moreover, the direction of δ = η∇L(θ; D)
aligns with that of ε̂ = ρ∇L(θ; D)/∥∇L(θ; D)∥, and both can be considered as increments
for performing a gradient ascent at θ. To avoid additional computational overhead or
memory consumption, we can equivalently substitute pθ+ε̂(xi) obtained at the point θ + ε̂
for pθ+δ(xi). Consequently, the implicit measure of sharpness term is defined as follows:

1
M

M

∑
i=1

KL(pθ+ε̂(xi)∥pθ(xi)) (18)
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In Figure 4, we demonstrate the impact of the implicit measure of sharpness term on
sharpness. It can be observed that lower sharpness can be obtained with the use of the
implicit measure of sharpness. Our final optimization objective is:

LISAM(θ; D) = Lp(θ; D) + λ
1
M

M

∑
i=1

KL(pθ+ε̂(xi)∥pθ(xi)) (19)

where λ is a hyperparameter used to balance the perturbation loss and the implicit measure
of sharpness term.
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In order to address the shortcomings of SAM, previous work employed h(θ; D) as a
measure of sharpness. A flat loss surface was sought by minimizing h(θ; D), and the con-
vergence of the minimum to a lower loss surface was ensured by minimizing either L(θ; D)
or Lp(θ; D). Ultimately, the parameters were updated using ∇L(θ; D) and ∇Lp(θ; D) ob-
tained at θ and θ + ε̂. Since the two gradients are obtained at different parameter locations,
these methods for finding a flat loss surface ignore and exacerbate the likelihood of conflicts
between gradients. This leads to a suboptimal outcome by increasing L(θ; D) or Lp(θ; D)
to minimize the overall loss.

In contrast to previous work, ISAM employs 1
M

M
∑

i=1
KL(pθ+ε̂(xi)∥pθ(xi)) as an implicit

measure of sharpness to address the issue that Lp(θ; D) cannot accurately reflect sharpness
in SAM. This implicit measure enhances the model’s predictive consistency within the
parameter space before and after perturbation, ensuring that the model’s output remains
relatively stable, even with slight changes in parameters. By minimizing this implicit
sharpness measure, the minimum converges to a flat surface. Concurrently, ISAM en-
sures that the minimum converges to a surface with lower loss by minimizing Lp(θ; D).
Since both optimization objectives of ISAM compute the gradient at θ + ε̂, this greatly
avoids exacerbating gradient conflicts. ISAM also mitigates the problem of previous work,
where gradient conflicts between ∇L(θ; D) and ∇Lp(θ; D) resulted in increasing L(θ; D)
or Lp(θ; D) to reduce the overall loss. Algorithm 1 describes the complete ISAM algorithm.
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Algorithm 1: The Algorithm of ISAM

Input: Model f , source domains Ds, initial weight θ0, learning rate η, training steps T, sample
mini-batch B ∈ Ds, hyperparameter λ.
Output: Model trained with ISAM:

1: for i← 1 to T do
2: Compute the logits vector for the current parameters: pθt = f (B; θt);
3: Calculate the original loss gradient: ∇L(θt; D);
4: Calculate ε̂ according to Equation (4);
5: Compute the logits vector for perturbed parameters: Pθt+ε̂ = f (B; θt + ε̂);
6: LISAM = Lp(θt; D) + λ 1

M

M
∑

i=1
KL

(
pθt+ε̂(xi)∥pθt (xi)

)
;

7: Compute the gradient approximation of the ISAM objective: g = ∇LISAM(θt; D)|θt+ε̂

8: Update weights: θt+1 = θt − ηg;
9: end for

4. Experiments
4.1. Experiment Setups and Implementation Details
4.1.1. Dataset

We conducted image classification tasks on four remote sensing datasets to evaluate the
influence of our proposed method on the generalization performance of the models. The UC
Merced Land-Use dataset [46] contains a total of 2100 images with dimensions of (3, 256, 256),
spanning 21 categories. The SIRI-WHU dataset [45] contains a total of 2400 images with di-
mensions of (3, 200, 200), spanning 12 categories. The RSSCN7 dataset [47] contains a total of
2800 images with dimensions of (3, 400, 400), spanning 7 categories. The RSC11 dataset [48]
contains a total of 1232 images with dimensions of (3, 400, 400), spanning 11 categories. Concur-
rently, due to the lack of a dedicated DG dataset within the remote sensing field, we conducted
image classification tasks on 3 public datasets of DG to evaluate our proposed method and
competing methods. The PACS dataset [49] contains a total of 9991 images with dimensions
of (3, 224, 224), spanning 7 categories and 4 domains: Art, Cartoon, Photo, and Sketch. The
VLCS dataset [50] includes a total of 10,729 images with dimensions of (3, 224, 224), covering
5 categories and 4 domains: Caltech101, LabelMe, SUN09, and VOC2007. The Office-Home
dataset [51] consists of 15,588 images with dimensions of (3, 224, 224), across 65 categories and 4
domains: Art, Clipart, Product, and Real.

4.1.2. Evaluation Protocol

For remote sensing datasets, we used 80% of the dataset as the training set and 20% as
the validation set. Four metrics were used to evaluate the performance: accuracy, precision,
recall, and F1-score. For DG datasets, we followed the model selection strategy of training
domain validation sets in DG, as per previous work [52]. The strategy splits the source
domain into two parts, 80% and 20%, where 80% is used as the training set for training the
model and 20% is used as the validation set for model selection. Ultimately, this strategy
selects the model that performs best on the validation set of the source domain.

4.1.3. Implementation Details

For the remote sensing datasets, the pretrained ResNet18 and ResNet50 [44] models
on the ImageNet [53] dataset were used as the backbones. All methods use the SGD
optimizer as the base optimizer, with the learning rate set to 0.01, the batch size set to 32,
and each training after 200 epochs. For the DG datasets, the pretrained ResNet18 model
on the ImageNet dataset was used as the backbone. Hyperparameters were randomly
searched from predefined distributions in the Domainbed benchmark: learning rates
were chosen from 10Uni f orm(−5,−2), batch sizes from 2Uni f orm(3.5,5), weight decay from
10Uni f orm(−6,−2), and dropout rate from {0, 0.1, 0.5}. Each training of the model went
through 5000 iterations, with validation every 300 iterations.
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4.1.4. Baseline

On the remote sensing datasets, we compared the proposed ISAM with empirical
risk minimization (ERM) [54], sharpness-aware minimization (SAM) [26], and sharpness-
aware gradient matching (SAGM) [30]. On the DG datasets, we compared the pro-
posed method, ISAM, with conventional DG methods. The compared DG methods in-
clude: Mixup [55], MTL [16], Maximum Mean Discrepancy (MMD) [56], Class-conditional
DANN (CDANN) [57], Adaptive Risk Minimization (ARM) [19], empirical risk minimiza-
tion (ERM) [54], Group Distributionally Robust Optimization (GroupDRO) [58], Condi-
tional Contrastive Adversarial Domain Bottleneck (CondCAD) [15], Deep CORrelation
ALignment (CORAL) [59], Fish [22], Meta-Learning Domain Generalization (MLDG) [21],
Fishr [23], Style-Agnostic Network (SagNet) [40], Self-Supervised Contrastive Regulariza-
tion (SelfReg) [39], Variance Risk Extrapolation (VREx) [18], Spectral Decoupling (SD) [60],
and Contrastive Adversarial Domain Bottleneck (CAD) [15].

4.2. Comparison Results
4.2.1. Comparison on Remote Sensing Datasets

We compared SAM, SAGM, and ISAM for their improvement of model generalization
performance, and the results are shown in Table 1. In the SIRI-WHU and UC Merced
Land-Use datasets, our approach achieved the best results on all four metrics. ISAM
also demonstrated excellent performance on the RSC11 dataset. On ResNet18, ISAM’s
accuracy improved by 2.3%, 0.7%, 2%, and 1.2% compared to ERM across the four datasets.
Similarly, on ResNet50, ISAM’s accuracy improved by 1.7%, 0.9%, 2%, and 0.7% compared
to ERM. ISAM exhibited a superior generalization performance improvement compared
to SAM and SAGM. In Figure 5, we demonstrate the average accuracy, precision, recall,
and F1-score of different methods on the four remote sensing datasets using ResNet18.
Experimental results across these datasets indicate that ISAM can effectively enhance the
generalization performance of the model in the remote sensing field.

Table 1. Comparison of ERM, SAM, SAGM, and ISAM on remote sensing datasets. The best and
second-best results are indicated in bold and underlined, respectively.

ResNet18 ResNet50

Dataset Method Accuracy Precision Recall F1-
score Accuracy Precision Recall F1-

Score

SIRI-WHU

ERM 95.4 95.4 95.3 95.3 96.6 96.7 96.5 96.6
SAM 96.7 96.8 96.7 96.7 97.2 97.3 97.4 97.3

SAGM 96.9 96.9 96.9 96.9 97.9 98.0 97.8 97.9
ISAM (ours) 97.7 97.6 97.7 97.7 98.3 98.2 98.2 98.2

RSSCN7

ERM 96.4 96.4 96.4 96.4 96.8 96.9 96.9 96.8
SAM 96.8 96.7 96.8 96.7 97.1 97.2 97.2 97.2

SAGM 97.0 96.8 97.3 97.0 97.3 97.4 97.3 97.3
ISAM (ours) 97.1 97.1 97.2 97.2 97.7 97.7 97.8 97.7

RSC11

ERM 96.0 96.4 96.2 96.1 97.2 97.5 97.4 97.4
SAM 97.2 97.3 97.0 97.1 98.8 98.8 98.6 98.7

SAGM 98.0 98.4 97.6 98.0 98.8 98.7 98.8 98.7
ISAM (ours) 98.0 97.8 97.8 97.8 99.2 99.0 99.3 99.1

UC Merced
Land-Use

ERM 97.4 97.6 97.6 97.5 98.6 98.5 98.6 98.5
SAM 97.4 97.4 97.7 97.5 98.8 98.7 98.7 98.6

SAGM 97.9 98.0 97.8 97.8 99.0 99.0 99.0 99.0
ISAM (ours) 98.6 98.4 98.4 98.4 99.3 99.2 99.2 99.2
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Figure 5. Average accuracy, precision, recall, and F1-score comparison of ISAM with ERM, SAM, and
SAGM on four remote sensing datasets.

4.2.2. Comparison on DG Datasets

Table 2 reports the results on the PACS dataset. Our method achieved the best results
in the Photo domain and in terms of average accuracy, also outperforming the ERM baseline
across all four domains. Additionally, we conducted a visual comparison between ISAM
and ERM using Grad-CAM [61] in Figure 6. The Grad-CAM heatmaps show that ISAM is
able to better focus on important feature regions of the images while covering a broader
area. As detailed in Table 3, our method excelled in the Caltech, VOC, and Sun domains
of the VLCS dataset and achieved superior average accuracy. Its performance was only
marginally lower than the ERM method by 0.2% in the LabelMe domain. Moreover, in
Table 3, we note that the performance of the ERM method exceeds more than half of the
compared methods. This phenomenon further demonstrates that methods that converge
the minimum to a flat surface can significantly enhance DG performance compared to other
approaches. The results for the Office-Home dataset are shown in Table 4. Our method
still outperforms the other compared DG methods and achieved the best results in the
Clipart and Real domains. Collectively, the results across all three datasets demonstrate the
effectiveness of our proposed method in enhancing DG performance.

Table 2. Comparison with state-of-the-art domain generalization methods on PACS dataset. The best
and second-best results are indicated in bold and underlined, respectively. The results marked with †
are from [52].

Method Art Cartoon Photo Sketch Average

Mixup 80.7 71.7 94.6 71.3 79.6
MTL † 78.7 73.4 94.1 74.4 80.2
MMD 77.9 76.7 94.2 71.9 80.2

CDANN † 80.4 73.7 93.1 74.2 80.4
ARM † 79.4 75.0 94.3 73.8 80.6
ERM 78.7 74.4 95.1 74.7 80.7

GroupDRO † 77.7 76.4 94.0 74.8 80.7
CondCAD † 79.7 74.2 94.6 74.8 80.8

CORAL 79.7 77.4 93.8 73.7 81.2
Fish 77.7 77.1 94.5 75.5 81.2

MLDG † 78.4 75.1 94.8 76.7 81.3
Fishr † 81.2 75.8 94.3 73.8 81.3

SagNet † 82.9 73.2 94.6 76.1 81.7
SelfReg 82.5 74.4 95.4 74.9 81.8
VREx 78.8 75.4 94.0 79.2 81.9
SD † 83.2 74.6 94.6 75.1 81.9

CAD † 83.9 74.2 94.6 75.0 81.9
ISAM (ours) 82.6 74.8 95.8 75.5 82.2



Remote Sens. 2024, 16, 2877 12 of 19

Remote Sens. 2024, 16, x FOR PEER REVIEW 13 of 20 
 

 

CAD † 83.9 74.2 94.6 75.0 81.9 
ISAM (ours) 82.6 74.8 95.8 75.5 82.2 

 
Figure 6. The Grad-CAM heatmap visualization. The results were obtained using ResNet18 on the 
PACS dataset. 

Table 3. Comparison with state-of-the-art domain generalization methods on VLCS dataset. The 
best and second-best results are indicated in bold and underlined, respectively. The results marked 
with † are from [52]. 

Method Caltech LabelMe Sun VOC Average 
MMD 96.0 64.3 68.5 70.8 74.9 
MTL † 94.4 65.0 69.6 71.7 75.2 

MLDG † 95.8 63.3 68.5 73.1 75.2 
CAD † 94.5 63.5 70.4 72.4 75.2 
VREx 96.2 62.5 69.3 73.1 75.3 

GroupDRO † 96.7 61.7 70.2 72.9 75.4 
SagNet 94.9 61.9 69.6 75.2 75.4 

SD † 96.5 62.2 69.7 73.6 75.5 
CORAL 96.5 62.8 69.1 73.8 75.6 

ERM 97.7 62.1 70.3 73.2 75.8 
ARM † 96.9 61.9 71.6 73.3 75.9 

CDANN † 95.4 62.6 69.9 76.2 76.0 
CondCAD † 96.5 62.6 69.1 76.0 76.1 

Fishr † 97.2 63.3 70.4 74.0 76.2 
Mixup 95.6 62.7 71.3 75.4 76.3 
SelfReg 95.8 63.4 71.1 75.3 76.4 

Fish 97.4 63.4 71.5 75.2 76.9 
ISAM (ours) 98.7 61.9 71.8 77.9 77.6 

Table 4. Comparison with state-of-the-art domain generalization methods on Office-Home dataset. 
The best and second-best results are indicated in bold and underlined, respectively. The results 
marked with † are from [52]. 

Method Art Clipart Product Real Average 
VREx 49.2 46.2 68.0 68.0 57.9 
MMD 49.2 46.7 69.4 70.3 58.9 

CDANN † 51.4 46.9 68.4 70.4 59.3 
ARM † 51.3 48.5 68.0 70.6 59.6 
MTL † 51.6 47.7 69.1 71.0 59.9 
ERM 52.1 47.1 70.0 70.5 59.9 

CAD † 52.1 48.3 69.7 71.9 60.5 
GroupDRO † 52.6 48.2 69.9 71.5 60.6 

Fishr † 52.6 48.6 69.9 72.4 60.9 
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PACS dataset.

Table 3. Comparison with state-of-the-art domain generalization methods on VLCS dataset. The best
and second-best results are indicated in bold and underlined, respectively. The results marked with †
are from [52].

Method Caltech LabelMe Sun VOC Average

MMD 96.0 64.3 68.5 70.8 74.9
MTL † 94.4 65.0 69.6 71.7 75.2

MLDG † 95.8 63.3 68.5 73.1 75.2
CAD † 94.5 63.5 70.4 72.4 75.2
VREx 96.2 62.5 69.3 73.1 75.3

GroupDRO † 96.7 61.7 70.2 72.9 75.4
SagNet 94.9 61.9 69.6 75.2 75.4

SD † 96.5 62.2 69.7 73.6 75.5
CORAL 96.5 62.8 69.1 73.8 75.6

ERM 97.7 62.1 70.3 73.2 75.8
ARM † 96.9 61.9 71.6 73.3 75.9

CDANN † 95.4 62.6 69.9 76.2 76.0
CondCAD † 96.5 62.6 69.1 76.0 76.1

Fishr † 97.2 63.3 70.4 74.0 76.2
Mixup 95.6 62.7 71.3 75.4 76.3
SelfReg 95.8 63.4 71.1 75.3 76.4

Fish 97.4 63.4 71.5 75.2 76.9
ISAM (ours) 98.7 61.9 71.8 77.9 77.6

Table 4. Comparison with state-of-the-art domain generalization methods on Office-Home dataset.
The best and second-best results are indicated in bold and underlined, respectively. The results
marked with † are from [52].

Method Art Clipart Product Real Average

VREx 49.2 46.2 68.0 68.0 57.9
MMD 49.2 46.7 69.4 70.3 58.9

CDANN † 51.4 46.9 68.4 70.4 59.3
ARM † 51.3 48.5 68.0 70.6 59.6
MTL † 51.6 47.7 69.1 71.0 59.9
ERM 52.1 47.1 70.0 70.5 59.9

CAD † 52.1 48.3 69.7 71.9 60.5
GroupDRO † 52.6 48.2 69.9 71.5 60.6

Fishr † 52.6 48.6 69.9 72.4 60.9
MLDG † 53.1 48.4 70.5 71.7 60.9

CondCAD † 53.3 48.4 69.8 72.6 61.0
Fish 55.6 49.1 71.4 71.7 62.0

SagNet 56.5 49.6 70.6 72.2 62.2
SelfReg 55.1 49.2 72.2 73.0 62.4
Mixup 55.9 49.8 71.6 72.4 62.4
SD † 55.0 51.3 72.5 72.7 62.9

CORAL 55.4 51.5 71.8 73.2 63.0
ISAM (ours) 55.8 52.2 72.2 73.4 63.4
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4.3. Ablation Study and Parameter Analysis
4.3.1. Ablation Study on DG Datasets

To clearly demonstrate the capability of the proposed ISAM method in finding flat
loss surfaces, we conducted ablation experiments with ERM, SAM, SAGM, and ISAM. The
experimental results are detailed in Tables 5–7. Experiments across three datasets showed
that the average accuracy of the SAM, SAGM, and ISAM methods all exceeded that of the
ERM method. This indicates that methods enabling the minimum to converge to flat loss
surfaces can effectively enhance DG performance. Compared to SAM, the improvements
made by ISAM are significant. Apart from the Sun domain in the VLCS dataset, ISAM
outperformed SAM across all domains and in average accuracy. Figure 7 demonstrates the
feature clustering effects of SAM and ISAM, and it can be observed that ISAM has a better
clustering effect.

Table 5. The ablation study of ISAM on the PACS dataset. The best and second-best results are
indicated in bold and underlined, respectively. All results were obtained by a hyperparameter search
of Domainbed.

Method Art Cartoon Photo Sketch Average

ERM 78.7 74.4 95.1 74.7 80.7
SAM 81.0 74.2 95.1 74.8 81.3

SAGM 81.6 74.3 95.3 75.1 81.6
ISAM 82.6 74.8 95.8 75.5 82.2

Table 6. The ablation study of ISAM on the VLCS dataset. The best and second-best results are
indicated in bold and underlined, respectively. All results were obtained by a hyperparameter search
of Domainbed.

Method Caltech LabelMe Sun VOC Average

ERM 97.7 62.1 70.3 73.2 75.8
SAM 98.6 60.7 72.0 76.8 77.0

SAGM 97.8 62.6 71.0 77.0 77.1
ISAM 98.7 61.9 71.8 77.9 77.6

Table 7. The ablation study of ISAM on the Office-Home dataset. The best and second-best results
are indicated in bold and underlined, respectively. All results were obtained by a hyperparameter
search of Domainbed.

Method Art Clipart Product Real Average

ERM 52.1 47.1 70.0 70.5 59.9
SAM 54.1 49.5 72.2 73.6 62.4

SAGM 54.3 49.8 72.1 73.6 62.5
ISAM 55.8 52.2 72.2 73.4 63.4

Table 8 shows the optimization objectives of different methods. Compared to SAGM,
which has the optimization objective of L(θ; D) + Lp(θ − λ∇θL(θ; D); D), ISAM leads
by 0.6%, 0.5%, and 0.9% in accuracy on the PACS, VLCS, and Office-Home datasets,
respectively. This fully demonstrates that the implicit measure of sharpness can effectively
mitigate the adverse effects caused by conflicts between ∇L(θ; D) and ∇Lp(θ; D).
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Table 8. Ablation study of ISAM. Optimization objectives of different methods and their DG accuracy (%).

Method Optimization Objective PACS VLCS Office-Home

ERM L(θ; D) 80.7 75.8 59.9
SAM Lp(θ; D) 81.3 77.0 62.4

SAGM L(θ; D) + Lp(θ − λ∇θL(θ; D); D) 81.6 77.1 62.5

ISAM Lp(θ; D) + λ 1
M

M
∑

i=1
KL(pθ+ε̂(xi)∥pθ(xi))

82.2 77.6 63.4

4.3.2. Ablation Study on CIFAR-10

We conducted ablation experiments on the CIFAR-10 [63] dataset using ResNet18 to
compare ERM, SAM, SAGM, and ISAM. As depicted in Figure 8, ISAM demonstrated
superior performance among these four methods. Although SAGM, an improved version
of SAM, outperformed ERM, its accuracy was slightly lower than that of SAM. These results
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further validate that ISAM effectively mitigates the adverse effects of conflicts between
∇L(θ; D) and ∇Lp(θ; D) while improving SAM.
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4.3.3. Parameter Analysis

We conducted a study on the hyperparameter, λ, for the implicit measure of sharpness
term. λ is set to (0, 0.1, 0.2, 0.3, 0.4, 0.5). The experiments were carried out with all other
parameters remaining constant, and the sequence of data used in each trial was fixed.
Figure 9 illustrates the impact of different λ values on the generalization performance
within the PACS, VLCS, and Office-Home datasets. It can be observed that the addition of
the implicit measure of sharpness term effectively enhances DG performance.
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5. Discussion

In this work, we introduce ISAM by proposing a novel measure of sharpness. ISAM
addresses the limitations of SAM and mitigates the adverse effects caused by gradient
conflicts. We validated the effectiveness of ISAM through extensive experiments on various
remote sensing and DG datasets. Although ISAM has made progress in terms of DG perfor-
mance, it has not reduced computational complexity during optimization. Consequently,
the computational time and memory consumption increase when handling large-scale
datasets. Our future research will focus on optimizing performance while incorporating
more efficient computational techniques to reduce computational costs.

6. Conclusions

This paper provides a detailed analysis of the issues encountered by SAM and its
variants in optimizing the sharpness of the loss landscape. In particular, we analyze
the adverse effects resulting from gradient conflicts between the original loss and the
perturbation loss. To mitigate these issues, we introduce an implicit measure of sharpness.
Subsequently, we propose an algorithm named ISAM, which promotes the convergence of
the loss minimum to a flat loss surface by minimizing the perturbation loss and the implicit
measure of sharpness. ISAM effectively mitigates the adverse effects of conflicts between
gradients while improving SAM. The extensive experiments on several remote sensing and
DG datasets demonstrate that ISAM effectively enhances the model’s DG performance.
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