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Abstract: Convolutional neural networks (CNNs) and graph convolutional networks (GCNs) have
made considerable advances in hyperspectral image (HSI) classification. However, most CNN-based
methods learn features at a single-scale in HSI data, which may be insufficient for multi-scale feature
extraction in complex data scenes. To learn the relations among samples in non-grid data, GCNs
are employed and combined with CNNs to process HSIs. Nevertheless, most methods based on
CNN-GCN may overlook the integration of pixel-wise spectral signatures. In this paper, we propose a
pyramid cascaded convolutional neural network with graph convolution (PCCGC) for hyperspectral
image classification. It mainly comprises CNN-based and GCN-based subnetworks. Specifically,
in the CNN-based subnetwork, a pyramid residual cascaded module and a pyramid convolution
cascaded module are employed to extract multiscale spectral and spatial features separately, which
can enhance the robustness of the proposed model. Furthermore, an adaptive feature-weighted fusion
strategy is utilized to adaptively fuse multiscale spectral and spatial features. In the GCN-based
subnetwork, a band selection network (BSNet) is used to learn the spectral signatures in the HSI
using nonlinear inter-band dependencies. Then, the spectral-enhanced GCN module is utilized to
extract and enhance the important features in the spectral matrix. Subsequently, a mutual-cooperative
attention mechanism is constructed to align the spectral signatures between BSNet-based matrix with
the spectral-enhanced GCN-based matrix for spectral signature integration. Abundant experiments
performed on four widely used real HSI datasets show that our model achieves higher classification
accuracy than the fourteen other comparative methods, which shows the superior classification
performance of PCCGC over the state-of-the-art methods.

Keywords: hyperspectral image classification; multiscale features extraction; convolutional neural
network; graph convolutional network; mutual-cooperative attention mechanism

1. Introduction

With the development of hyperspectral imaging techniques, hyperspectral images
(HSIs) with abundant spectral signatures and spatial features are available. HSIs have
hundreds of narrow and continuous electromagnetic spectrum bands, spanning from the
visible to the near-infrared ranges. HSI can reflect the area on an earth surface with spectral
and spatial information. And, it has been widely utilized in various applications, e.g.,
mineral exploitation [1], environment surveillance [2], water quality monitoring [3], and
urban planning [4,5]. Among various applications, HSI classification, which discriminates
each land-cover type at the pixel-by-pixel level [6], plays a critical role and has attracted
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more researchers to study it. However, it is a significant challenge for HSI classification that
the HSIs contain excessively high spectral dimensions and complex spatial features [7].

The traditional methods based on hand-crafted features for HSI classification mainly
fall into two categories, such as spectral-based and spatial spectral-based methods [8,9]. The
spectral-based method, e.g., random forest [10], k-nearest neighbor [11], and support vector
machine [12], which only learn spectral signatures, produce the classification maps with
salt-and-pepper phenomena and unsatisfactory classification performance. At the same
time, the principal component analysis [13] method is developed to remove redundant
spectral signatures for spectral signatures extraction. To further improve the classification
performance, another category of methods based on spectral-spatial feature have emerged,
such as extended morphological profile [14] and superpixel segmentation [15]. In these, the
classification result is enhanced compared with the spectral-based methods. Although the
aforementioned methods can effectively solve the HSI classification tasks, these methods
have some limited feature extraction capabilities and fail to learn deep semantic information
due to a lack of strong data fitting abilities and being less robust for complex HSI data
scenes [16,17].

Over the past few years, deep learning (DL) has been recognized as a powerful data
analysis technique [18] for effectively addressing nonlinear problems, and it has been exten-
sively used for HSI processing tasks. Compared with traditional machine learning methods,
DL, which includes various deep networks such as CNN [19], RNN [20], GNN [21], Trans-
former [22–24], and GAN [25], makes significant progress in HSI classification. Among
various network architectures, CNN and GCN have received the most attention. In the
case of CNN, it is extensively used because it can reuse convolutional kernels with shared
weights across input feature maps, enabling it to adeptly learn features of images [26].
For example, Hu et al. [19] employ 1D convolution to learn features along the spectral
channel of the HSI data cube, resulting in good classification performance compared with
traditional methods. Although the method based on 1D convolution better adapts to
spectral signatures, it overlooks spatial information, which limits the capability of the
method to describe spatial contextual information. To cope with this problem, in [27], a
novel devised dual-branch spectral and spatial model is proposed. This network uses 1D
convolution and 2D convolution to learn spectral signatures and spatial features separately.
Subsequently, a fully connected layer is utilized to exploit spectral and spatial correlation.
The mentioned double-branch network learns the spectral signatures and spatial features
separately. To jointly excavate features from a 3D HSI cube, in [28], a newly developed
cascaded 3D convolution to learn spectral-spatial features is used. However, this cascaded
3D CNN uses a 3D kernel with a size of (h × w × d), which has many parameters. In this
article, 3D convolutions with kernel sizes of (h × w × 1) and (1 × 1 × d) are employed
to reduce the network parameters. Meanwhile, too many 3D convolutions will lead to
the disappearance of the network gradients and decrease the final classification accuracy.
To conquer this phenomenon, the residual network [29] and the dense network [30] are
utilized. Although the above-mentioned CNN-based methods can be better used for HSI
classification, they overlook the extraction of multiscale features [31], thus not being robust
enough for various HSI data scenes. Meanwhile, the CNN method based on grid data has
limitations in capturing the relationships between samples in HSI data.

With the emergence of graph neural network (GNN) [32] architecture, GNNs have
been used by some researchers as effective tools to deal with HSI data based on non-
Euclidean geometry properties. Among various GNN architectures [33–35], GCN has
been widely used in HSI processing due to its direct application to arbitrarily shaped
graphs, allowing it to learn the graph structure information and node features simultane-
ously [36]. To proficiently utilize the relationships between different nodes, the methods for
graph construction of HSI data typically include superpixel-based and pixel-based [37,38]
approaches. Specifically, from the perspective of superpixels, in [33], a novel graph convo-
lutional method that utilizes the GCN to extract features from the constructed graph using
superpixel methods was explored. Based on the superpixel graph, Wan et al. [33] employ
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multiscale stacked GCN layers to learn context-based spatial information. Although the
above-mentioned methods based on GCN can achieve satisfactory feature extraction, the
graph constructed by the superpixel method tends to overlook certain local spectral and
spatial information. Then, a graph-in-graph method is devised by Jia et al. [39], where each
node within a local range structure is called an internal graph, and all the nodes of the HSI
form an external graph. This approach can highlight both the local and global information
of the entire graph. Although the graph based on superpixels can describe the local features
of HSI well, pixels with different labels may be assigned to the same superpixel region,
resulting in the misclassification of results in the final classification map [8]. Meanwhile, the
constructed superpixel-based graph models may overlook pixel-level feature descriptions,
which further leads to poor pixel-level classification results. To cope with these difficulties,
from another pixel-based perspective, a mini-batch GCN method is proposed by [40], which
employs a batch-by-batch GCN network training approach for pixel-wise feature extraction
of HSI data. Based on the patch training strategy, Gao et al. [41] propose a novel model,
which proficiently improves neighborhood node aggregation by adaptively learning the
weight correlations between different nodes. Zhang et al. [42] devise a proficient GCN
method, which regards the HSI data as graph-structured data and systematically aggregates
structural information between different nodes for pixel-wise land cover processing.

GCNs use convolution as a weighted function to indicate the influence exerted on a
target node by its neighbors and itself, which is beneficial for graph-based data processing.
The constructed graph can be updated to adapt to the HSI data representations produced
by each GCN layer, which in turn makes the data representations more accurate [43].
Meanwhile, the GCN can handle arbitrary graph-based data and efficiently learn the
internal similarity relationships between adjacent nodes in HSI data [44]. Following the
benefits of GCN, some researchers try to combine the advantages of CNNs and GCNs for
classifying different HSI data scenes [45]. Lu et al. [46] develop a novel model that combines
a separable GCN with a CNN for HSI classification. Specifically, the model encodes spectral–
spatial features, adaptively learned by the designed attention module, into the structure of
a graph. Then, a separable deep GCN is developed to learn long-range contextual structure
relationships from the graph. Meanwhile, a local convolutional feature extraction network
is employed to extract complementary local features. To make the model compatible with
different HSI data scenes, Li et al. [47] design a staged feature fusion model that combines
CNNs and GCNs. In the first stage, the model uses CNN to extract non-local features.
In the second stage, GCN is employed to optimize the connectivity relationships of the
graph constructed based on spectral similarity. Shi et al. [44] propose a novel network that
has a graph convolution branch and grouping convolution branch. In the graph branch, a
multihop graph rectify attention is proposed to weigh the features extracted by the GCN. In
the convolution branch, a spectral intra-group and inter-group signature extraction module
is designed to address the problem of high spectral dimensionality. Ghotekar et al. [45]
devise an feature segmentation network, consisting of hybrid convolution and graph
convolution networks, for HSI classification. First, a CNN is used to extract multi-layer
features. Then, the features are fed into GCN module to obtain patch-to-patch correlation
feature maps. Finally, the extracted features are concatenated to be fed into the linear layer
for the final classification results.

These hybrid collaborative networks, which include CNNs and GCNs, show efficient
performance in HSI processing. Nevertheless, some challenges persist in hybrid networks
for HSI feature learning. For hybrid networks, the CNN module based on the single-scale
kernel exhibits limited effectiveness in extracting features from original spectral and spatial
information included in complex HSI data scenes. And the lack of multiscale features will
inevitably lead to poor classification results. To extract graph-based high-level features, the
GCN-based module employs multiple stacked graph convolutional layers, which inevitably
results in oversmoothing issues. Considering that CNNs employ shared kernels across
spectral feature maps to learn pixel spectral signatures and GCNs obtain pixel spectral
signatures through two different matrix multiplications, the CNN-based spectral signatures
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may have a certain degree of incompatibility with the GCN-based spectral signatures.
Therefore, directly integrating the two different types of pixel spectral signatures can result
in degraded final classification accuracy.

In this article, we propose a novel pyramid cascaded convolutional neural network
with graph convolution (PCCGC) for HSI classification. It contains two parallel subnet-
works, e.g., a CNN-based subnetwork and a GCN-based subnetwork. Specifically, from
the perspective of the CNN-based subnetwork, it includes a spectral pyramid residual cas-
caded module and a spatial pyramid convolution cascaded module. The spectral module
features a designed spectral pyramid hybrid convolution block and multiple 3D spectral
convolution layers, which are connected in a cascaded manner for multiscale spectral
signature extraction. Moreover, considering that HSIs have rich spectral signatures, a
residual connection is employed for spectral signature extraction. The spatial module
is similar to the spectral module for multiscale spatial feature extraction. The difference
between the two modules is the 3D convolution kernel used. Then, an adaptive feature-
weighted fusion strategy is utilized to fuse multiscale spectral and spatial features based
on their respective weights. From another perspective of the GCN subnetwork, a band
selection network (BSNet) is used to learn the spectral signatures in the HSI using non-
linear inter-band dependencies. Then, a spectral-enhanced GCN module is utilized to
learn and accentuate the important information in the spectral matrix. And to prevent the
oversmoothing problem and learn deep features, multiple graph convolution layers are
utilized in a one-shot strategy. Subsequently, a mutual-cooperative attention mechanism
is constructed that can align the spectral signatures between a BSNet-based matrix with
a spectral-enhanced GCN-based matrix for pixel-wise spectral signature integration. It
can transfer the spectral features extracted by BSNet to the GCN-based feature matrix
through cross multi-head self-attention blocks, and transfer the spectral features learned by
the spectral-enhanced GCN module to the BSNet-based spectral feature matrix through
cross multi-head self-attention block. Finally, an additive fusion strategy is utilized to fuse
the features extracted by the CNN-based and the GCN-based subnetworks. Our main
contributions are as follows:

(1) To extract multiscale spectral and spatial features from complex HSI datasets, the
spectral pyramid residual cascaded module and spatial pyramid convolution cascaded
module are designed. The spectral module includes a devised spectral pyramid hybrid
convolution block and multiple 3D spectral convolution layers, which are connected in a
cascaded manner. Moreover, considering that HSIs have rich spectral signatures, a residual
connection is employed to enhance spectral signature extraction. The spatial module is
similar to the spectral module but is used for spatial feature extraction. Furthermore, the 3D
convolution kernels used in spectral and spatial modules are different, which benefits the
extraction of spectral and spatial features separately. Then, an adaptive feature-weighted
fusion strategy is utilized to fuse multiscale spectral and spatial features based on their
respective weights.

(2) To model the important spectral relations of the samples, a spectral-enhanced
GCN module is employed. It can strengthen the deep significant spectral relations based
on the constructed graph and capture the interconnectivity between pixels as well as the
interdependencies among spectral signatures. To prevent the oversmoothing problem, the
multiple graph convolution layers in the spectral-enhanced GCN module are stacked in a
one-shot strategy.

(3) A mutual-cooperative attention mechanism is constructed to align the spectral
signatures between the BSNet-based matrix and the spectral-enhanced GCN-based matrix
for spectral signature integration. It transfers the spectral features extracted by BSNet to the
GCN-based feature matrix through a cross multi-head self-attention block, and transfers
the spectral features learned by the spectral-enhanced GCN module to the BSNet-based
spectral feature matrix through another cross multi-head self-attention block. Subsequently,
the two aligned matrices are concatenated for spectral signature integration.
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(4) A novel method called the PCCGC is proposed to realize hyperspectral image
classification. PCCGC can extract CNN-based multiscale spectral and spatial features,
which are then fused adaptively. In addition, PCCGC utilizes BSNet and spectral-enhanced
GCN for significant pixel-wise spectral signature extraction, and these extracted pixel-
wise spectral signatures are integrated using a mutual-cooperation attention mechanism.
Furthermore, the integrated spectral signature are added to the CNN-based features,
resulting in the proposed model achieving good classification performance.

The remainder of this article is structured as follows: related work is shown in Section 2,
the devised PCCGC is characterized in Section 3, the experimental results are listed in
Section 4, some parameters of PCCGC are discussed in Section 5, and the conclusion is
presented in Section 6.

2. Related Work
2.1. Convolutional Neural Network

An HSI data patch with a size H × W × D is specified as input data, where H × W
indicates the spatial size, and D represents the number of spectral bands [48]. In (1),
the 3D convolution has p 3D convolution kernels of size (h × w × c). Following the 3D
convolution process, p feature maps of size (H − h + 1)× (W − w + 1)× (D − c + 1) are
generated. Moreover, by calculating the dot product between the local area position (x, y, z)
and the weight matrix, each feature map (F) is obtained [49]. The output of a neuron vx,y,z

l,i
at the position (x, y, z) of the i-th F in the lth layer can be calculated by:

vx,y,z
l,i = δ

(
∑
p

Hl−1

∑
h=0

Wl−1

∑
w=0

Cl−1

∑
c=0

kh,w,c
l,i,p ×v(x+h),(y+w),(z+c)

(l−1),p + bl,i

)
(1)

where δ indicates the activation function, such as Mish, and bl,i is the bias of the ith F in
the lth layer. The p index indicates the connection between the current F and the F in the
previous layer. Wl and Hl are indicate the width and height of the 3D convolution kernel in
the spatial dimension, respectively. Cl refers to the 3D convolution kernel size of the spectral
dimension. The weight kh,w,c

l,i,p is used to convolve the input data cube v(x+h),(y+w),(z+c)
(l−1),p in

3D convolution kernels, with an offset of (h, w, c) [50].
The (1) in our manuscript is the process of the 3D convolution, which is similar to

1D and 2D convolution. However, it is essential to note that the input format of a 3D
convolutional network is

(
Bbatch, Cchannel , Hheight, Wwidth, Dspectral

)
. The 3D feature extrac-

tion model has demonstrated itself to be very effective in simultaneously capturing the
spatial and spectral features of 3D feature maps by applying 3D kernels to 3D hyperspectral
image data scenes [8,51]. Compared with the 1D convolution and 2D convolution oper-
ation process for HSI data with rich spectral signatures, the 3D convolution can greatly
decrease spectral distortion phenomenon and learn more information (e.g., spatial-spectral
correlation characteristics and absorption differences between adjacent spectral bands).
Moreover, the 3D CNN is theoretically well-suited to excavating 3D feature maps for HSI
processing since HSIs are usually denoted as a 3D patch cube.

2.2. Graph Convolutional Network

Graph neural networks (GNNs) can generalize the convolution process from grid-
based data to graph-based data. The fundamental concept is to describe a node V with its
own feature and neighbors’ feature. The model based on graph convolution can learn the
high-level node feature representation through multiple stacked convolutional layers. And,
GNNs fall into two categories [52], being spectral-based [53] and spatial-based [54] methods.
And the spectral-based GNN methods define convolution in the graph signal processing.
Spatial-based GNN methods define convolution by the information propagation strategy.
Among Spatial-based and Spectral-based GNN methods, the GCN is widely employed due
to its generality.
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The undirected graph is typically defined as G = (V, E), where V denotes the set of
nodes or vertices, and E represents the set of edges. According to the undirected graph G,
the adjacency A is constructed. Based on the convolution on the undirected graph, here is a
layer-by-layer propagation rule for multiple layers GCN, defined as follows:

H(i+1) = φ

(
∼
D

− 1
2 ∼

A
∼
D

− 1
2

HiWi

)
(2)

where
∼
A = A + I is termed as renormalization of A, A is the adjacency matrix of G, and I is

the identity matrix.
∼
D is defined as renormalization of D, and Dii = ∑j

(
Aij
)

is a diagonal
matrix indicating the degree of A. φ() indicates an activation function, such as ELU().
H(i+1) ∈ RN×D and H(i) ∈ RN×D is the matrix of (i + 1)th and (i)th layer, respectively.
Besides, H0 = X, where X indicates a matrix of feature vectors of the input node. Wi

represent the trainable weight matrix.

2.3. CNN and GCN for HSI Classifications

Considering that HSI data has rich spectral and spatial information, an effective
model is well-suited to HSI data classification. CNNs can effectively extract local features
using shared weight kernels. Based on different convolutional kernels, 1D CNNs extract
spectral signatures, 2D CNNs extract spatial features, and 3D CNNs extract spectral-spatial
features. The use of CNNs can greatly improve HSI processing performance. Meanwhile,
GCNs generalize the convolution operation to graph data [8], allowing for the learning
of node feature representations. High-level feature representations can be captured by
multiple stacked GCN layers [52]. In HSI data, GCNs are employed to capture spatial
contextual structure information, which is advantageous for HSI information processing.
Based on the above-mentioned, some models combining CNNs with GCNs are designed
for HSI classification. Liu et al. [43] design a novel heterogeneous network called CNN-
enhanced GCN. Specifically, the 2D CNN is used to extract features from local-range
regular regions, while the GCN is employed to learn features from long-range irregular
region. The features extracted by both CNN and GCN are then used as complementary
features for HSI classification. Lu et al. [46] develop a novel SDGCP method. It employs
a separable deep GCN for learning long-range contextual structure features. The learned
features are then combined with local complementary features extracted by CNN for HSI
classification. Wang et al. [55] design a novel DF2Net for HSI classification, which includes
two subnetworks: a spectral–spatial hypergraph convolutional subnetwork for learning
long-range and high-order correlations, and a spectral–spatial convolution subnetwork for
pixel-wise local feature extraction.

3. Methods
3.1. The Overall Structure of PCCGC

In this article, we propose a novel PCCGC method for HSI classification. As depicted
in Figure 1, it contains two parallel subnetworks, e.g., a CNN-based subnetwork and a
GCN-based subnetwork. Specifically, from the view of CNN subnetwork, a spectral pyra-
mid residual cascaded module (SpePRCM) is used to extract multiscale spectral signatures.
Meanwhile, a spatial pyramid convolution cascaded module (SpaPCCM) is employed to
extract multiscale spatial features. And, the features extracted by the CNN subnetwork
are more robust for the proposed model in classifying HSIs. Furthermore, an adaptive
feature-weighted fusion strategy is utilized to adaptively fuse multiscale spectral and
spatial features based on their respective weights. From another perspective of the GCN
subnetwork, a BSNet is used to learn the spectral signatures in the HSI using non-linear
inter-band dependencies, which also reduces the computational cost of GCN. Then, the
spectral-enhanced GCN module is utilized to learn and accentuate the important informa-
tion in the spectral matrix. Subsequently, a mutual-cooperative attention mechanism is
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constructed to align the spectral signatures between a BSNet-based matrix and a spectral-
enhanced GCN-based matrix for spectral signature integration. Finally, the additive fusion
strategy is utilized to fuse the features extracted from GCN-based and CNN-based sub-
networks. In the following, we will elaborate on the functionalities of each module in the
proposed model.
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3.2. Adaptive Feature-Weighted Feature Fusion Based SpePRCM and SpaPCCM

Considering the HSI data cubes, which contain plentiful spectral signatures and a
lot of spatial information, the SpePRCM and SpaPCCM are devised to extract multiscale
spectral and spatial features separately. Moreover, the spectral pyramid hybrid convolution
(SpePHC) block and spatial pyramid hybrid convolution (SpaPHC) block are included
in SpePRCM and SpaPCCM separately. And then an adaptive feature-weighted fusion
strategy is employed to fuse the extracted multiscale spectral and spatial information.
Furthermore, the 3D convolutional layer used hereinafter refers to 3D convolution, Mish
activation function, and Batch Normalization.

3.2.1. Spectral Pyramid Hybrid Convolution Block

The proposed SpePHC, as shown in Figure 2, includes a pyramid architecture with
different types of convolutional layers, featuring various sizes of kernels and varying
numbers of output feature channels. The processed spectral feature maps FMi

spe ∈ Rh×w×d,
where i indicates the ith layer, are fed into the SpePHC block, then FMi

spe are processed
in parallel by three different steps, e.g., Step_1, Step_2, and Step_3. For Step_1, the FMi

spe

are convolved by the 3D convolutional layer Convi_3
spe located at the bottom of the pyra-

mid architecture, with the purpose of learning the spectral feature using a kernel size
of (1 × 1 × 5). This results in the spectral feature maps FM(i+1)_3

spe , which have an output
dimension of 36. For Step_2, the FMi

spe are convolved by the 3D Transpose convolutional
layer TransConvi_2

spe located at the middle of the pyramid architecture, with the purpose
of learning the spectral feature using a kernel size of (1 × 1 × 3). This yields the spectral
feature map FM(i+1)_2

spe , which has an output dimension of 24. For Step_3, the FMi
spe are

convolved by the 3D convolutional layer Convi_1
spe located at the top of the pyramid architec-

ture, which uses a kernel size of (1 × 1 × 1). The output dimensions of resulting spectral
feature maps FM(i+1)_1

spe are 12. Then, we concatenate the three different spectral feature
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maps using the concatenate operation in the channel dimension, and the output spectral
feature maps FMi+2

spe are obtained. The detailed operation process is shown in the following:

FM(i+1)_1
spe = Convi_1

spe

(
FMi

spe

)
(3)

FM(i+1)_2
spe = TransConvi_2

spe

(
FMi

spe

)
(4)

FM(i+1)_3
spe = Convi_3

spe

(
FMi

spe

)
(5)

FMi+2
spe = Concat

(
FM(i+1)_3

spe , FM(i+1)_2
spe , FM(i+1)_1

spe

)
dim=channel

(6)

where Concat()dim=channel indicates the concatenation operation that operates on the chan-
nel dimension.
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3.2.2. Spatial Pyramid Hybrid Convolution Block

The proposed spatial pyramid hybrid convolution (SpaPHC), as shown in Figure 3, is
employed to learn multiscale spatial features. It has almost the same pyramid architecture
as SpePHC and includes three parallel steps for processing the processed spatial feature
maps FMi

spa.
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For the first and second step, it has almost the same procedures as the Step_1 and
Step_2 in the SpePHC block, but with different kernel sizes within the 3D convolutional
layer Convi_1

spa and 3D Transpose convolutional layer Convi_2
spa, which are (5 × 5 × 1) and

(3 × 3 × 1) respectively. And then, two different spatial feature maps are generated, namely,
FM(i+1)_3

spa with output dimension 12, and FM(i+1)_2
spa with output dimension 24. For the

third step, the FMi
spa are convolved by the 3D convolutional layer Convi_1

spa located at the
top of the pyramid architecture using a kernel size of (1 × 1 × 1), resulting in the spatial
feature maps FM(i+1)_1

spa with an output dimension of 48. Then, we concatenate the three
different spatial feature maps in the channel dimension, the output spatial feature maps
FMi+2

spa are obtained.

FM(i+1)_1
spa = Convi_1

spa

(
FMi

spa

)
(7)

FM(i+1)_2
spa = TransConvi_2

spa

(
FMi

spa

)
(8)

FM(i+1)_3
spa = Convi_3

spa

(
FMi

spa

)
(9)

FMi+2
spa = Concat

(
FM(i+1)_3

spa , FM(i+1)_2
spa , FM(i+1)_1

spa

)
dim=channel

(10)

The Concat()dim=channel indicates the concatenation operation that operates on the
channel dimension of the spatial feature maps.

The proposed SpePHC and SpaPHC can generate spectral and spatial feature maps
with various receptive field and corresponding output feature channels, learning infor-
mation about more granular-level objects with larger output feature channels, as well as
capturing more details about context information with smaller output feature channels.

3.2.3. The Multiscale Spectral and Spatial Feature Extraction of SpePRCM and SpaPCCM

In the spectral pyramid residual cascaded module (SpePRCM), the original feature
map FMj

HSI , j indicates the jth layer, and is first processed by the 3D convolutional layer

Convj
spe with a kernel size of (1 × 1 × 7) to extract the spectral signatures. This generates

the spectral feature maps FMj+1
spe with the output channel number of 46. To extract the

multiscale spectral features, the FMj+1
spe are fed into the SpePHC block Pspe(x; ε), the FMj+2

spe
are generated, where ε is a learnable parameter. Then, the concatenation operation is
employed on this FMj+1

spe and FMj+2
spe along the channel dimension. To further extract

the spectral features from the previous feature maps and prevent information loss, the
3D convolutional layer Convj+2

spe with a kernel size of (1 × 1 × 1) is employed, to obtain

the multiscale spectral feature maps FMj+3
spe . At the same time, the residual connection

Res() is added to the FMj+1
spe and FMj+3

spe to assist the spectral pyramid feature extraction
module in learning the original spectral signatures, thereby benefiting the improvement of
classification accuracy. Finally, to fully extract the multiscale spectral signatures in the HSIs
and decrease the depths of the HSI data cube, the 3D convolutional layer Convj+3

spe with a

kernel size of
(

1 × 1 ×
(

band−7
2 + 1

))
is utilized to obtain the spectral feature maps FMj+4

spe

with an output channel number of 72. The detailed operation is presented below:

FMj+1
spe = Conv

j

spe

(
FMj

HSI

)
(11)

FMj+2
spe = P

(
FMj+1

spe

)
(12)

FMj+3
spe = Convj+2

spe

(
Cat
(

FMj+1
spe , FMj+2

spe

)
dim=channel

)
(13)

FMj+4
spe = Conv

j+3

spe

(
Res
(

FMj+1
spe , FMj+3

spe

))
(14)
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The spatial pyramid convolution cascaded module includes the 3D convolutional layer
Convj

spa with a kernel size of (1 × 1 × band), which is employed to squeeze the depth of

the FMj
HSI , resulting in the spatial feature maps FMj+1

spa . Then, the SpaPHC block Pspa(x; ε)

is utilized to extract the multiscale spatial feature, yielding the spatial feature maps FMj+2
spa .

And the subsequent operations in the spatial pyramid feature extraction module are similar
to the spectral signature extraction process in the spectral pyramid feature extraction
module. The detailed multiscale spatial feature extraction process in the spatial pyramid
convolution cascaded module is shown as follows:

FMj+1
spa = Conv

j

spa

(
FMj

HSI

)
(15)

FMj+2
spa = P

(
FMj+1

spa

)
(16)

FMj+3
spa = Convj+2

spa

(
Cat
(

FMj+1
spa , FMj+2

spa

)
dim=channel

)
(17)

The FMj+3
spa are the output spatial feature maps generated from the spatial pyramid

convolution cascaded module (SpaPCCM). The SpePHC and SpaPHC are included in
CNN-based subnetwork which make it more generalized and robust while learning from
different datasets.

3.2.4. The Multiscale Spectral and Spatial Feature Fusion with the Adaptive
Feature-Weighted Fusion Strategy

Considering the importance of the feature for classification results, the extracted
multiscale spectral and spatial features play a significant but unequal role. Meanwhile,
to fully harness the extracted spectral and spatial features, inspired by [56], the adaptive
feature-weighted fusion strategy is employed. It can fuse the spectral signatures and spatial
features adaptively. In this strategy, the extracted features located at the same location
are added element-wise, aggregating information across spectral signatures and spatial
features, thereby enhancing the features that are important to the classification accuracy.
Meanwhile, to dynamically allocate weights, two different weight coefficients, namely, α_1
and α_2, are used. To avoid the poor classification accuracy that could result from these
two values being too large or too small, a softmax function is applied to adjust the values
of α_1 and α_2. Then, α_1 and α_2 will balance the spectral signatures and spatial features,
enhancing the fusion of different information according to the impact of various features
on classification accuracy. The detailed operation is illustrated as follows:

FM = α_1·FMj+4
spe + α_2·FMj+3

spa , (α_1 + α_2 = 1) (18)

3.3. Spectral-Enhanced GCN Module

To learn the features in the non-grid image data scene, the GCN is employed. It can
capture information different from the CNN, thereby enhancing the classification accuracy.
The graph is usually defined as G = (V, E), where V represent the set of nodes or vertices,
and E represent the set of edges. Assume viϵV to indicate a node and eij =

(
vi, vj

)
ϵE to

indicate an edge starting from vi to vj. The neighborhood of a node v is characterized by
the set NUM(v) = {u ∈ V|(v, u) ∈ E}. The adjacency matrix An×n of graph G is defined
as follows:

An×n =

{
1, eij ∈ E
0, eij /∈ E

(19)

Graph G might possess node attributes denoted as S, where S ∈ Rm×c is a node feature
matrix, and sv ∈ Rc represents the feature vector of a node v. Simultaneously, a graph G
might possess edge attributes denoted as Se, where Se ∈ Rm×d is an edge feature matrix,
and sv,u

e ∈ Rd denotes the feature vector of an edge (v, u).
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In this part, the spectral-enhanced GCN module is developed to extract and accentuate
the features from the spectral channel. Considering the input scalar types required by the
GCN, we need to construct an undirected graph G = (V, E) based on each patch from HSI
data. Due to the abundance of spectral signatures in each pixel of original HSI, the GCN
methods based on the origin HSI data will create a larger graph, resulting in an abundance
of computational resource costs [37,57]. To address the above-mentioned issue, inspired
by [58], we employ the BSNet to select important spectral signatures from the original HSI
patch FMHSI ∈ Rh×w×c in the spectral channel.

FMBS = BSNet(FMHSI ; θ) (20)

where FMBS is the output of BSNet, and BSNet() function indicates the BSNet. Here, θ
is the learnable parameter in BSNet. This selection enhances the performance of GCN
for HSI classification by considering the nonlinear interdependencies among different
spectral bands.

By stacking multi-layer GCN, it is possible to learn deeper node information from
the constructed graph. However, stacking a certain number of GCN layers will result in
a decrease in model performance and lower classification accuracy. In this part, to avoid
the mentioned issues, the multi-hop adjacency matrix [57] is constructed, in which record
nodes are at a distance of d hops from the selected nodes. It can excavate the underlying
feature relationships and enlarge the receptive field. The used multi-hop adjacency matrix
is constructed in the spectral channel to help the GCN learn the spectral signature in
the HSI.

For constructing the multi-hop adjacency matrix, the FMHSI processed by the BSNet
is first transformed into feature nodes MBS ∈ Rhwc:

MBS = reshape(FMBS) (21)

where MBS is the result processed by BSNet, abbreviated as the BS-based feature matrix,
and reshape() indicates the reshape operation. Then, the multi-hop adjacency matrix A is
constructed based on the MBS.

The spectral-enhanced GCN module, depicted in Figure 4, is employed to learn the
feature relationships among multi-hop adjacency matrix through a multi-layer GCN. To
learn the features of HSIs from the perspective of GCN, a four-layer cascaded GCN, in
which the number of GCN layers is discussed in the Section 5.2, is first implemented in a
one-shot strategy. In each GCN layer, a collection of feature nodes from the MBS, denoted
as Ni = {N1, N2, N3, · · · , Nn}, N ∈ R, where n represents the number of feature nodes, are
fed into the GCN layer. And a learnable parameter matrix W ∈ Rd×d is employed on each
node, resulting in the nodes Ni+1

j with comprehensive expressive abilities. Then, the nodes

N j
i+1 are multiplied by the adjacency matrix A. An exponential linear unit (Elu) activation

function is used to accelerate the GCN learning process, which is denoted as:

Elu
(

Ni+1
j

)
=

Ni+1
j , i f Ni+1

j > 0

α
(

exp
(

Ni+1
j

))
, i f Ni+1

j ≤ 0
(22)

In the above expression, the hyperparameter α controls the points at which Elu func-
tion saturates towards negative values for negative inputs in the GCN layer. Then, the
concatenation operation is utilized to concatenate the features from the outputs of the four
GCN layers.

Fi+5 = Elu
(((

Ni, Wi
)

, A
))

(23)

Fi+5 = Cat
(

Fi+1, Fi+2, Fi+3, Fi+4
)

(24)
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where Cat() denotes the concatenation operation. Fi+1 indicates the features yielded from
the i-th GCN layer. To mitigate the overfitting problem in the four-layer GCN, which may
lead to a decrease in HSI classification performance, the dropout technique is utilized. The
parameter p (here, we set the p value to 0.3) in the dropout layer of each GCN layer is
used as a threshold value that determines which part of the features in the GCN layer
is dropped. To further learn and integrate information from the HSIs, another one-layer
GCN is employed after these four GCN layers. Meanwhile, an Elu nonlinearity activation
function is used. Finally, to ensure comparability among the features yielded from different
GCN layers, the softmax function is applied.

Fi+6 =
exp

(
Elu
(((

Fi+5, Wi+5), A
)))

∑
k∈Ni

Elu
(((

Fi+5, Wi+5
)
, A
)) (25)
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After obtaining the features extracted from the four-layer cascaded GCN and the
one-layer GCN, we further enhance them through a spectral-enhanced method. Specifically,
the linear layer is employed to improve the linear expressive skill of the features. Then,
we reshape the features to obtain the feature matrix M1 ∈ Rc×hw. In order to learn the
significant spectral signature, the two cascaded adaptive average pooling layers are used.
Additionally, a Mish activation function is included in the adaptive average pooling layer
to avoid gradient saturation. Then, the feature matrix M2 ∈ Rc×1 is obtained. Finally, the
M1 ∈ Rc×hw is multiplied with the M2 ∈ Rc×1 to obtain the feature matrix MGCN ∈ Rc×hw

with significant information in the spectral channel. Furthermore, the important values in
the spectral channel of the feature matrix are emphasized. And the detailed procedure is
shown as follows:

M1 = reshape
(

Fi+6
)

(26)

M2 = Mish(AAPool2(Mish(AAPool1(M 1)))) (27)

MGCN = M1
⊗

M2 (28)

where
⊗

in Equation (33) indicates the matrix product operation. MGCN is the result of
processing by a spatial-based GCN module, abbreviated as the GCN-based feature matrix.

In this module, the GCN layers are employed to learn the inherent features of nodes,
which are different for CNN to extract. Then, the spectral-based method is employed to
accentuate significant features in the spectral dimension. The significant spectral signature



Remote Sens. 2024, 16, 2942 13 of 40

can be learned and accentuated, and the HSI classification performance can be enhanced
through the spectral-enhanced GCN module.

3.4. Mutual-Cooperative Attention Mechanism

After obtaining the feature matrix MGCN , extracted by spectral-enhanced GCN mod-
ule, and the feature matrix MBS, extracted by BSNet, we construct a customized mutual-
cooperative attention mechanism (MCAM) to align the spectral signature between MGCN
and MBS. As shown in Figure 5, the MCAM mainly includes two cross multi-head self-
attention mechanisms (CMSM). One improved CMSM, referred to as the MBS to MGCN
cross multi-head self-attention block (BG-CMSB), enables the transfer of spectral signatures
from MBS into MGCN . Vice versa, the other CMSM, referred to as the MGCN to MBS cross
multi-head self-attention block (GB-CMSB), enables the transfer of enhanced spectral sig-
nature from MGCN to MBS. Subsequently, the obtained two-feature matrices are merged
using an element-wise addition operation. The detailed process is shown as follows:

M = A
(

fBG−CMSB(MBS, MGCN), f GB−CMSB(MGCN , MBS)
)

(29)

where fBG−CMSB(), fGB−CMSB(), and A() represent the BG-CMSB, GB-CMSB, and the
element-wise addition, respectively. M indicates the output feature matrix of the mutual-
cooperative attention mechanism.
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3.4.1. BS-Based Feature Matrix to GCN-Based Feature Matrix Cross Multi-Head
Self-Attention Block

The proposal of this block is aimed at improving the transfer and expression of spectral
signatures between BS-based feature matrix MBS and GCN-based feature matrix MGCN .
Given MBS ∈ Rhw×c and MGCN ∈ Rhw×c are inputs to BG-CMSB. The BG-CMSB initially
combines the MBS and MGCN using the element-wise addition, resulting in the feature
matrix Mi_1

BG. Then, Mi_1
BG is concatenated with MBS to construct a new feature matrix. Next,

the new feature matrix is separately multiplied with two different matrices, thereby linearly
constructing the key K ∈ Rhw×2c and value V ∈ Rhw×2c simultaneously. At the same time,
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the MBS is used, being multiplied with a weight matrix to linearly construct the query
Q ∈ Rhw×c. Additionally, the Q, K, and V are all projection matrices. Then Q, K, and the
scale factor are processed by softmax, subsequently with V, to calculate the cross multi-
head self-attention score from MBS to MGCN . Moreover, the scale factor is used to control
the gradient of the model during the training process. The detailed overall operation is
shown as follows:

CABG = Attention(Q, K, V) = so f tmax
(

QKT
√

ddim

)
(30)

ddim =
1√
c

(31)

To obtain stable results, we execute the attention calculation process multiple times
in parallel; here, it is executed eight times. Then, we reshape the CABG, and the linear
operation is used to project the reshaped attention score into Mi_2

BG ∈ Rhw×c. Subsequently, a
softmax operation is performed. To enhance the important features, the residual connection
is added on the MBS. Subsequently, element-wise addition is used to concatenate the MBS
and the processed result of MBS using softmax as well as Mi_2

BG. The process is shown
as follows:

MBG−CMSB = MBS + so f tmax(MBS) + Mi_2
BG (32)

where MBG−CMSB indicates the resulting feature maps from BG-CMSB, and so f tmax() is
the softmax function.

3.4.2. GCN-Based Feature Matrix to BS-Based Feature Matrix Cross Multi-Head
Self-Attention Block

This block is devised to transfer and improve the expression of enhanced spectral
signature between GCN-based feature matrix MGCN and BS-based feature matrix MBS.
Given MBS ∈ Rhw×c and MGCN ∈ Rhw×c as inputs to GB-CMSB, the GB-CMSB first
combines the MGCN and MBS using the element-wise addition, resulting in the feature
matrix Mi_1

GB. Then, Mi_1
GB is concatenated with MGCN to linearly build the key K ∈ Rhw×2c

and value V ∈ Rhw×2c simultaneously. At the same time, the MGCN is employed to linearly
construct the value Q ∈ Rhw×c. The following operations are similar to those of the
BG-CMSB:

Mi_2
GB = reshape

(
CAGB

(
Mi_1

GB, MGCN

))
(33)

MGB−CMSB = MGCN + so f tmax(MGCN) + Mi_2
GB (34)

where CAGB is the result of the CMSM score from MGCN to MBS, and reshape() indicates
the reshape operation.

Then, the obtained MBG−CMSB and MGB−CMSB are concatenated to obtain an output
result for the mutual-cooperative attention mechanism. With the help of the mutual-
cooperative attention mechanism, integrating comprehensive spectral features from various
neural networks has a positive impact on subsequent classification tasks.

3.5. Additive Feature Fusion Based on CNN-Based Subnetworks and GCN-Based Subnetworks

Considering that the features extracted from different network architectures may play
different roles in HSI classification, it is important to fuse multi-type features with a proper
fusion strategy. For instance, classification performance can be enhanced when different
types of features are effectively integrated. Conversely, when different types of features
cannot be effectively integrated, the classification performance may be degraded.

In this article, the proposed network includes two subnetworks: one is the CNN-based
subnetwork, and the other is the GCN-based subnetwork, which includes a spectral-
enhanced module and a mutual-cooperative attention mechanism. Specifically, we first
reshape the features extracted from CNN subnetwork, and then a linear layer is utilized to
yield the final classification performance of CNN subnetwork. Concurrently, the features
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extracted from the GCN subnetwork are reshaped. An adaptive average pooling layer is
utilized to produce the final classification performance of the GCN subnetwork. Finally, an
additive fusion strategy is employed to achieve the final classification results of PCCGC.
Based on the above operations, the CNN-based features can be well integrated with the
GCN-based features in an additive strategy for the HSI processing.

4. Experiments
4.1. Experimental Datasets

In this part of the experiments, five widely used real HSI datasets are utilized to
validate the robustness and practicality of our designed model, e.g., the Pavia University
dataset, WHU-Hi-Honghu dataset, Houston University dataset, and Indian Pines dataset.

(1) Pavia University (PU) dataset: The PU is collected by using the ROSIS equipment
over the University of Pavia, Italy, and its surrounding areas. The spatial area of the PU
dataset is 610 × 340 pixels, with an approximate resolution of 1.3 m per pixel. The PU
dataset in our experiment includes 103 spectral bands, spanning a spectrum wavelength
from 430 to 860 nm. The quantities of samples for each class utilized in the training,
validation, and testing sets are exhibited in Table 1.

Table 1. The landcover classes of the PU, the color of each class, and the number of each class in the
training set, validation set, and test set.

Class Color Total Train Validation Test

C1 6631 66 66 6499

C2 18,649 186 186 18,277

C3 2099 20 20 2059

C4 3064 30 30 3004

C5 1345 13 13 1319

C6 5029 50 50 4929

C7 1330 13 13 1304

C8 3682 36 36 3610

C9 947 9 9 929

Total 42,776 423 423 41,930

(2) Houston University (Houston) dataset: The Houston dataset is gathered over
the campus of University of Houston, Houston, USA. The spatial dimension size of the
Houston dataset is 349 × 1905 pixels, with 144 spectral bands from 380 to 1050 nm, and
the spatial resolution of Houston is about 2.5 m per pixel. The Houston dataset contains
15 categories, and the number of samples used for training, validation, and testing are
recorded in Table 2.

Table 2. The landcover classes of the Houston, the color of each class, and the number of each class in
the training set, validation set, and test set.

Class Color Total Train Validation Test

C1 1251 25 25 1201

C2 1254 25 25 1204

C3 697 13 13 671

C4 1244 24 24 1196

C5 1242 24 24 1194

C6 325 6 6 313

C7 1268 25 25 1218
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Table 2. Cont.

Class Color Total Train Validation Test

C8 1244 24 24 1196

C9 1252 25 25 1202

C10 1227 24 24 1179

C11 1235 24 24 1187

C12 1233 24 24 1185

C13 469 9 9 451

C14 428 8 8 412

C15 660 13 13 634

Total 15,029 293 293 14,443

(3) WHU-Hi-Honghu (Honghu) dataset: The Honghu dataset is obtained in Hubei
Province, China via imaging sensors mounted on a UAV platform. And, the Honghu
dataset has a spatial size of 940 × 475 pixels, containing 270 spectral bands spanning from
400 to 1000 nm. In our experiments, only 16 categories are selected due to the limitations
of the utilized device. The numbers of training, validation, and testing samples for each
selected class, as well as the corresponding totals, are listed in Table 3.

Table 3. The landcover classes of the Honghu, the color of each class, and the number of each class in
the training set, validation set, and test set.

Class Color Total Train Validation Test

C1 3320 33 33 3254

C2 1482 14 14 1454

C3 18,725 187 187 18,351

C4 1792 17 17 1758

C5 14,939 149 149 14,641

C6 5808 58 58 5692

C7 4054 40 40 3974

C8 2375 23 23 2329

C9 939 9 9 921

C10 2584 25 25 2534

C11 3979 39 39 3901

C12 4307 43 43 4221

C13 1002 10 10 982

C14 563 5 5 553

C15 973 9 9 955

C16 2037 20 20 1997

Total 68,879 681 681 67,517

(4) Indian Pines (IP) dataset: The IP scene data is acquired using the Airborne/Infrared
Imaging Spectrometer (AVIRIS) sensor over the Indian Pines area of northwestern Indiana.
The spatial scale of the IP imagery is 145 × 145 pixels, consisting of 220 spectral bands
ranging from 400 nm to 2500 nm. The IP image includes 16 categories, and the number of
labelled samples for training, validation, and testing are displayed in Table 4.
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Table 4. The landcover classes of the IP, the color of each class, and the number of each class in the
training set, validation set, and test set.

Class Color Total Train Validation Test

C1 46 2 2 42

C2 1428 71 71 1286

C3 830 41 41 748

C4 237 11 11 215

C5 483 24 24 435

C6 730 36 36 658

C7 28 1 1 26

C8 478 23 23 432

C9 20 1 1 18

C10 972 48 48 876

C11 2455 122 122 2211

C12 593 29 29 535

C13 205 10 10 185

C14 1265 63 63 1139

C15 386 19 19 348

C16 93 4 4 85

Total 10,249 505 505 9239

(5) Xiongan New Area (Xiongan) dataset: The Xiongan (Matiwan Village) scene data is
acquired using the Visble and Near-Infrared Imaging Spectrometer over the Xiongan Coun-
try, and Baiyangdian Lake. The spatial range of the Xiongan imagery is 3750 × 1580 pixels,
containing 250 spectral bands ranging from 400 to 1000 nm. The Xiongan image includes
19 categories, and the number of labelled samples for training, validation, and testing are
listed in Table 5.

Table 5. The landcover classes of the Xiongan, the color of each class, and the number of each class in
the training set, validation set, and test set.

Class Color Total Train Validation Test

C1 426,138 4261 4261 417,616

C2 187,425 1874 1874 183,677

C3 124,862 1248 1248 122,366

C4 91,518 915 915 89,688

C5 197,218 1972 1972 193,274

C6 19,663 196 196 19,271

C7 296,538 2965 2965 290,608

C8 276,755 2767 2767 271,221

C9 44,232 442 442 43,348

C10 372,708 3727 3727 365,254

C11 67,210 672 672 65,866

C12 29,763 297 297 29,169

C13 85,547 855 855 83,837

C14 68,885 688 688 67,509

C15 986,139 9861 9861 966,417

C16 7456 74 74 7308
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Table 5. Cont.

Class Color Total Train Validation Test

C17 27,178 271 271 26,636

C18 6506 65 65 6376

C19 26,140 261 261 25,618

Total 3,341,881 33,411 33,411 3,275,059

4.2. Experimental Setting
4.2.1. The Details of Experiment Implementation

To validate the superior classification performance of our devised method, fourteen
different comparative methods, e.g., SSRN [59], DBDA [60], SSGCA [61], PCIA [62], MDB-
Net [63], HDDA [64], DBPFA [65], ChebNet [66], GCN [67], MVAHN [68], DGFNet [38],
DKDMN [69], FTINet [49], and MRCAG [41] are used for comparison with our method, and
the description of each comparative method is shown in Section 4.2.2. To provide a clearer
perspective on the classification results for each method, the metric of overall accuracy
(OA), average accuracy (AA), and kappa (K), and each class classification accuracies are
used to assess their classification performance. All experiments are performed in the same
environment, namely, a mini base station equipped with 128 GB of DDR4 RAM as well
as 8 × NVIDIA GeForce RTX 2080Ti Graphical Processing Units, with a memory of 11 GB.
The software environment used in our experiment includes CUDA Version 11.6, PyTorch
1.10.1, and python 3.8.

To keep a fair comparison environment, we standardized the parameters, optimizer,
and architecture of the other fourteen comparison methods to be consistent with the
experimental settings of our proposed model. During the training process of our proposed
model, the parameter is updated by applying the Adam optimizer. And, the sets {0.0005,
350}, {0.0009, 150}, {0.0007, 120}, and {0.0003, 130} are elected as the learning rate and
number of epochs for the proposed model in the PU, Houston, Honghu, and IP data scenes
separately, which is discussed in Section 5.3. Moreover, the set {0.0007, 200} is selected
as the learning rate and number of epochs for the proposed model in the Xiongan data
scenes. The spatial size of 9 × 9 is employed for the HSI patch cube, and the batch size
of 64 is chosen. Early stopping is utilized in the training process of our model. Also, the
numbers for the training set, validation set, and the test set for PU, Honghu, Houston, IP,
and Xiongan data scenes can be observed in Tables 1–5.

The averaged results and standard deviation of quantitative assessments, in terms
of OA, AA, K, and the accuracy values for each class, and qualitative assessments for the
fourteen comparative methods and our proposed method on the five HSI datasets are
recorded in Tables 6–10, and Figures 6–10, respectively. And, the averaged results and
standard deviations for all measurements are derived based on ten repeated experiments.
Additionally, the highest values for the three indices and accuracy values for each class
are bolded.
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Table 6. Classification results of the PU data based on 1% training samples.

Class SSRN DBDA SSGCA PCIA MDBNet HDDA DBPFA ChebNet GCN MVAHN DGFNet FTINet DKDMN MRCAG Ours

C1 84.43 ± 1.35 96.21 ± 0.34 96.20 ± 1.10 98.47 ± 0.31 85.75 ± 0.29 95.57 ± 0.35 99.51 ± 0.20 78.60 ± 0.77 83.78 ± 1.35 98.60 ± 0.12 92.69 ± 0.14 88.98 ± 0.49 98.58 ± 0.54 84.90 ± 2.53 98.54 ± 0.07
C2 88.67 ± 0.90 98.54 ± 0.10 99.33 ± 0.09 99.86 ± 0.12 85.74 ± 0.29 99.28 ± 0.35 98.91 ± 0.10 94.58 ± 0.26 95.19 ± 0.08 99.78 ± 0.13 99.07 ± 0.44 86.15 ± 0.33 98.22 ± 0.84 92.03 ± 1.93 99.79 ± 0.06
C3 53.60 ± 2.47 95.66 ± 0.48 99.03 ± 0.35 94.83 ± 1.13 59.23 ± 1.18 91.31 ± 1.58 96.23 ± 1.16 67.15 ± 0.80 73.84 ± 1.55 99.23 ± 0.11 94.47 ± 0.10 54.21 ± 1.52 96.70 ± 1.52 53.67 ± 4.21 99.31 ± 0.40
C4 100.00 ± 0.00 97.46 ± 0.13 98.59 ± 0.02 99.23 ± 0.33 93.43 ± 0.22 96.73 ± 0.69 99.24 ± 0.14 98.51 ± 0.19 97.37 ± 0.32 98.35 ± 0.11 99.73 ± 0.02 98.97 ± 0.24 93.97 ± 0.58 95.27 ± 1.97 98.83 ± 0.09
C5 99.84 ± 0.14 99.58 ± 0.04 99.66 ± 0.04 96.30 ± 0.92 97.49 ± 0.25 98.08 ± 0.55 95.00 ± 0.20 97.50 ± 0.32 97.15 ± 0.36 92.61 ± 0.18 100.00 ± 0.00 96.27 ± 0.27 99.97 ± 0.04 97.48 ± 0.34 98.38 ± 0.11
C6 98.44 ± 0.61 99.09 ± 0.21 99.84 ± 0.02 99.97 ± 0.03 76.62 ± 1.23 99.01 ± 2.37 99.90 ± 0.03 94.70 ± 0.21 92.13 ± 0.26 99.66 ± 0.05 98.12 ± 1.38 78.57 ± 2.17 99.47 ± 0.04 73.36 ± 1.44 99.92 ± 0.02
C7 99.92 ± 0.20 98.84 ± 0.23 100.00 ± 0.00 98.79 ± 1.36 64.78 ± 0.55 83.10 ± 0.61 94.13 ± 4.53 57.20 ± 3.01 54.53 ± 4.93 99.97 ± 0.05 98.36 ± 0.95 63.48 ± 3.21 93.12 ± 1.87 65.58 ± 4.14 100.00 ± 0.00
C8 81.16 ± 1.93 83.32 ± 0.40 95.54 ± 0.82 87.18 ± 1.18 78.63 ± 1.00 86.94 ± 1.02 90.01 ± 0.61 72.23 ± 0.35 76.07 ± 0.68 95.64 ± 0.34 84.89 ± 1.11 70.00 ± 3.84 92.79 ± 0.52 70.45 ± 1.18 97.58 ± 1.19
C9 74.69 ± 6.55 96.18 ± 0.39 98.97 ± 0.23 97.34 ± 0.47 99.35 ± 0.07 98.28 ± 0.95 100.00 ± 0.00 95.95 ± 0.79 95.88 ± 0.76 96.38 ± 0.20 97.73 ± 0.43 99.58 ± 0.28 98.85 ± 0.35 94.38 ± 1.71 99.79 ± 0.03

OA 85.95 ± 0.70 96.52 ± 0.05 98.52 ± 0.27 97.98 ± 0.15 83.65 ± 0.12 96.39 ± 0.44 97.90 ± 0.25 88.35 ± 0.33 89.40 ± 0.60 98.78 ± 0.07 96.42 ± 0.09 83.70 ± 0.53 97.44 ± 0.47 84.96 ± 1.15 99.28 ± 0.08
AA 86.75 ± 0.26 96.10 ± 0.04 98.57 ± 0.20 96.89 ± 0.30 82.34 ± 0.12 94.26 ± 0.23 96.99 ± 0.63 84.05 ± 0.64 85.11 ± 0.67 97.80 ± 0.04 96.12 ± 0.09 81.80 ± 0.47 96.85 ± 0.30 80.79 ± 0.94 99.13 ± 0.10

K × 100 80.88 ± 1.00 95.38 ± 0.07 98.04 ± 0.36 97.32 ± 0.20 77.82 ± 0.17 95.22 ± 0.58 97.21 ± 0.33 84.35 ± 0.45 85.84 ± 0.77 98.39 ± 0.09 95.24 ± 0.11 77.87 ± 0.74 96.60 ± 0.62 79.91 ± 1.72 99.05 ± 0.10

Table 7. Classification results of the Houston data based on 2% training samples.

Class SSRN DBDA SSGCA PCIA MDBNet HDDA DBPFA ChebNet GCN MVAHN DGFNet FTINet DKDMN MRCAG Ours

C1 88.54 ± 8.24 97.98 ± 0.11 97.36 ± 0.18 95.64 ± 0.69 86.00 ± 0.47 87.66 ± 0.58 92.15 ± 0.39 89.93 ± 0.36 86.42 ± 1.31 85.30 ± 1.05 96.52 ± 0.42 82.39 ± 1.73 98.05 ± 0.20 91.32 ± 0.72 92.51 ± 0.78
C2 95.54 ± 7.93 94.21 ± 0.71 91.47 ± 0.42 95.99 ± 0.16 92.30 ± 0.31 95.44 ± 0.05 100.00 ± 0.00 76.75 ± 0.60 85.50 ± 1.32 94.08 ± 0.80 90.86 ± 0.46 94.99 ± 1.16 86.94 ± 0.62 90.32 ± 1.07 95.19 ± 0.97
C3 99.53 ± 0.27 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 99.55 ± 0.00 100.00 ± 0.00 99.97 ± 0.09 96.10 ± 0.41 95.98 ± 0.91 100.00 ± 0.00 99.11 ± 0.24 91.96 ± 0.64 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00
C4 61.95 ± 48.01 93.14 ± 0.08 91.69 ± 0.37 94.39 ± 0.13 85.90 ± 0.79 95.48 ± 0.41 96.39 ± 0.16 92.61 ± 0.50 85.69 ± 1.46 96.05 ± 0.28 90.65 ± 0.18 88.72 ± 0.51 94.16 ± 0.19 90.92 ± 027 98.78 ± 0.34
C5 75.29 ± 8.44 97.85 ± 0.29 89.59 ± 0.34 98.51 ± 0.13 98.91 ± 0.04 99.72 ± 0.08 99.83 ± 0.31 85.72 ± 0.22 88.48 ± 1.90 99.24 ± 0.33 98.59 ± 0.18 91.35 ± 0.19 96.14 ± 0.35 94.20 ± 1.53 99.91 ± 0.03
C6 97.70 ± 1.88 96.82 ± 0.21 100.00 ± 0.00 100.00 ± 0.00 99.23 ± 0.00 99.68 ± 0.00 100.00 ± 0.00 97.83 ± 0.40 90.79 ± 1.90 97.44 ± 0.85 99.28 ± 0.00 83.58 ± 1.83 100.00 ± 0.00 98.88 ± 0.32 95.23 ± 1.13
C7 61.44 ± 12.39 88.84 ± 0.62 92.83 ± 0.91 96.14 ± 0.51 74.51 ± 0.45 96.67 ± 0.22 94.79 ± 0.90 82.64 ± 0.46 65.89 ± 0.92 92.87 ± 0.22 85.87 ± 1.50 77.83 ± 3.65 95.43 ± 0.24 85.81 ± 2.10 96.33 ± 0.55
C8 45.99 ± 8.92 99.98 ± 0.05 91.71 ± 0.81 99.12 ± 0.24 94.20 ± 0.25 94.16 ± 0.55 97.83 ± 0.38 89.00 ± 1.19 58.57 ± 2.04 97.58 ± 0.35 92.61 ± 0.06 80.89 ± 0.64 100.00 ± 0.00 88.48 ± 3.54 97.83 ± 0.30
C9 95.56 ± 3.75 93.04 ± 0.90 96.93 ± 0.17 91.69 ± 0.42 78.02 ± 0.68 87.56 ± 0.75 89.39 ± 0.74 67.54 ± 0.32 70.58 ± 2.06 96.06 ± 1.20 88.20 ± 0.85 58.22 ± 1.95 91.47 ± 0.48 69.44 ± 10.00 89.30 ± 0.70
C10 87.82 ± 10.21 93.50 ± 0.15 96.03 ± 1.76 81.71 ± 0.11 78.84 ± 0.47 96.13 ± 1.71 84.75 ± 0.93 54.53 ± 0.30 48.84 ± 1.52 91.91 ± 1.30 87.83 ± 0.94 72.43 ± 2.53 80.86 ± 0.37 66.28 ± 4.48 95.81 ± 0.51
C11 99.64 ± 0.95 97.17 ± 0.35 88.07 ± 5.38 97.72 ± 0.27 79.86 ± 0.54 95.64 ± 2.16 91.72 ± 0.62 74.35 ± 0.41 51.76 ± 0.96 96.78 ± 0.42 93.19 ± 0.06 74.38 ± 2.05 92.68 ± 0.17 83.28 ± 3.06 89.99 ± 0.49
C12 82.08 ± 4.49 90.85 ± 0.47 89.34 ± 0.29 88.37 ± 0.57 81.50 ± 0.50 95.09 ± 0.35 96.37 ± 0.42 54.03 ± 0.68 53.69 ± 0.45 83.75 ± 1.60 88.68 ± 1.19 63.24 ± 0.85 89.64 ± 1.23 81.07 ± 3.51 95.75 ± 0.44
C13 100.00 ± 0.00 67.17 ± 0.66 67.51 ± 6.86 90.58 ± 0.89 93.29 ± 0.21 89.55 ± 0.72 92.40 ± 0.35 84.42 ± 1.71 50.65 ± 3.93 96.00 ± 0.61 58.10 ± 2.60 23.40 ± 2.68 84.87 ± 0.18 80.37 ± 2.17 88.31 ± 0.25
C14 88.63 ± 4.61 92.38 ± 0.00 95.59 ± 0.00 99.30 ± 0.07 92.99 ± 0.20 92.03 ± 0.61 89.51 ± 1.43 95.18 ± 0.17 97.65 ± 0.42 95.40 ± 0.59 92.38 ± 0.00 98.78 ± 0.16 95.15 ± 0.00 92.11 ± 0.18 99.29 ± 1.09
C15 88.34 ± 0.62 94.63 ± 0.00 94.11 ± 0.14 99.83 ± 0.05 98.66 ± 0.14 93.33 ± 0.19 96.02 ± 0.53 97.82 ± 0.26 78.67 ± 3.31 98.05 ± 0.52 96.52 ± 0.08 93.28 ± 1.10 98.60 ± 0.00 85.64 ± 0.45 99.63 ± 0.12

OA 77.23 ± 2.16 93.55 ± 0.10 91.69 ± 0.41 94.49 ± 0.03 86.77 ± 0.10 94.36 ± 0.32 94.31 ± 0.06 77.87 ± 0.10 72.02 ± 0.76 93.81 ± 0.10 90.42 ± 0.33 79.46 ± 0.95 92.84 ± 0.12 84.35 ± 0.62 95.42 ± 0.08
AA 84.53 ± 3.25 93.17 ± 0.09 92.15 ± 0.07 95.27 ± 0.03 88.92 ± 0.06 94.54 ± 0.29 94.74 ± 0.11 82.56 ± 0.10 73.94 ± 0.58 94.70 ± 0.03 90.56 ± 0.30 78.36 ± 0.74 93.60 ± 0.09 86.54 ± 0.13 95.59 ± 0.13

K × 100 75.34 ± 2.33 93.03 ± 0.11 91.03 ± 0.44 94.05 ± 0.03 85.69 ± 0.10 93.90 ± 0.34 93.85 ± 0.06 76.03 ± 0.11 69.74 ± 0.82 93.31 ± 0.11 89.65 ± 0.36 77.75 ± 1.03 92.26 ± 0.12 83.08 ± 0.68 95.04 ± 0.09

Table 8. Classification results of the Honghu data based on 1% training samples.

Class SSRN DBDA SSGCA PCIA MDBNet HDDA DBPFA ChebNet GCN MVAHN DGFNet FTINet DKDMN MRCAG Ours

C1 60.82 ± 3.50 95.24 ± 0.40 97.91 ± 0.40 98.85 ± 0.12 71.95 ± 0.39 98.28 ± 0.35 96.53 ± 0.52 98.07 ± 0.08 95.22 ± 1.12 96.22 ± 0.05 94.47 ± 0.05 92.93 ± 0.72 93.39 ± 0.17 88.86 ± 1.39 99.64 ± 0.15
C2 93.96 ± 2.01 80.88 ± 2.27 84.51 ± 1.62 87.29 ± 1.16 90.40 ± 0.35 73.60 ± 5.34 95.10 ± 1.54 78.06 ± 2.36 90.21 ± 1.55 80.05 ± 0.39 92.11 ± 0.43 74.01 ± 0.85 86.14 ± 1.20 77.75 ± 3.59 91.11 ± 0.63
C3 95.54 ± 0.90 95.85 ± 0.98 98.40 ± 0.81 98.02 ± 0.18 87.87 ± 0.31 97.97 ± 0.79 95.06 ± 2.31 91.54 ± 0.82 92.21 ± 0.46 98.61 ± 0.10 95.48 ± 1.41 92.43 ± 1.39 97.76 ± 0.36 96.12 ± 0.73 96.84 ± 0.20
C4 40.80 ± 4.22 98.55 ± 0.58 99.86 ± 0.05 98.38 ± 0.11 83.39 ± 0.80 98.45 ± 1.53 99.25 ± 0.51 85.24 ± 1.23 85.30 ± 3.86 97.44 ± 0.15 99.80 ± 0.10 88.84 ± 0.34 97.78 ± 0.20 93.86 ± 0.38 99.96 ± 0.03
C5 92.91 ± 1.93 99.21 ± 0.13 99.78 ± 0.07 99.41 ± 0.04 87.51 ± 0.34 99.31 ± 0.09 97.42 ± 1.93 93.39 ± 0.39 95.24 ± 0.64 99.71 ± 0.00 99.61 ± 0.08 95.79 ± 0.34 99.28 ± 0.13 93.65 ± 0.39 99.83 ± 0.08
C6 83.91 ± 3.23 97.05 ± 1.27 93.87 ± 1.47 97.90 ± 0.18 75.01 ± 0.47 96.48 ± 0.49 94.11 ± 5.31 81.05 ± 0.52 95.06 ± 0.72 97.73 ± 0.20 96.76 ± 0.93 84.65 ± 0.53 97.86 ± 0.24 88.15 ± 1.90 95.47 ± 0.21
C7 99.30 ± 0.46 89.84 ± 0.97 90.91 ± 2.71 88.35 ± 1.15 45.58 ± 0.28 90.23 ± 1.53 92.70 ± 2.49 63.99 ± 1.54 63.17 ± 1.53 92.60 ± 0.35 88.33 ± 0.49 61.71 ± 1.50 87.36 ± 1.31 69.02 ± 4.47 96.43 ± 0.49
C8 100.00 ± 0.00 98.42 ± 0.37 99.49 ± 0.09 99.70 ± 0.09 65.29 ± 0.66 98.16 ± 0.63 99.16 ± 0.73 93.27 ± 0.50 95.73 ± 0.79 99.28 ± 0.08 98.61 ± 0.37 96.23 ± 0.25 99.61 ± 0.07 97.50 ± 1.08 99.50 ± 0.02
C9 0.00 ± 0.00 96.80 ± 0.37 95.89 ± 1.08 88.48 ± 0.16 51.10 ± 1.19 89.93 ± 1.71 93.05 ± 2.58 66.94 ± 5.48 76.26 ± 2.67 97.35 ± 0.61 88.49 ± 0.99 65.09 ± 6.69 91.57 ± 1.17 81.28 ± 6.15 97.25 ± 0.54
C10 98.47 ± 0.74 95.58 ± 1.16 89.02 ± 1.25 94.14 ± 0.38 63.10 ± 0.57 88.64 ± 5.61 93.79 ± 1.21 69.90 ± 0.75 86.43 ± 1.19 93.64 ± 0.60 88.95 ± 0.89 77.72 ± 1.81 96.07 ± 0.18 74.03 ± 2.48 97.17 ± 0.29
C11 76.94 ± 2.25 96.54 ± 3.46 97.57 ± 1.24 93.92 ± 0.61 79.23 ± 1.05 94.72 ± 3.87 99.21 ± 0.42 75.94 ± 0.36 71.28 ± 3.90 99.07 ± 0.16 97.89 ± 0.70 73.36 ± 2.18 97.56 ± 0.97 81.47 ± 1.85 96.80 ± 0.23
C12 68.79 ± 4.20 99.66 ± 0.10 96.69 ± 5.00 99.61 ± 0.03 81.52 ± 0.72 92.99 ± 0.50 99.16 ± 1.40 72.69 ± 0.60 79.37 ± 0.58 99.55 ± 0.23 97.41 ± 0.37 85.27 ± 1.90 98.72 ± 0.48 84.78 ± 0.83 99.86 ± 0.04
C13 34.11 ± 6.88 93.04 ± 0.26 99.41 ± 0.17 98.08 ± 0.12 76.92 ± 0.72 99.13 ± 0.24 98.82 ± 0.88 96.91 ± 0.86 81.88 ± 6.61 99.07 ± 0.09 95.26 ± 0.75 84.20 ± 2.66 96.70 ± 0.28 92.54 ± 2.21 97.54 ± 0.69
C14 90.80 ± 1.04 98.65 ± 1.22 99.96 ± 0.12 98.39 ± 1.68 78.85 ± 0.62 88.55 ± 4.02 100.00 ± 0.00 82.92 ± 0.78 64.85 ± 1.69 95.79 ± 0.51 88.31 ± 1.04 77.50 ± 2.78 98.62 ± 0.09 80.27 ± 5.06 100.00 ± 0.00
C15 89.76 ± 29.92 89.61 ± 1.71 91.15 ± 3.13 97.40 ± 0.70 50.53 ± 1.26 94.36 ± 1.69 99.00 ± 0.71 72.71 ± 0.96 67.11 ± 3.71 96.25 ± 0.94 99.19 ± 0.60 73.17 ± 1.31 99.74 ± 0.18 41.04 ± 3.60 99.17 ± 0.14
C16 0.00 ± 0.00 91.89 ± 1.29 97.68 ± 0.68 96.37 ± 0.11 73.70 ± 1.18 89.16 ± 1.25 97.26 ± 1.88 85.56 ± 0.86 76.50 ± 1.42 95.56 ± 0.45 91.10 ± 0.46 78.54 ± 1.65 97.32 ± 0.52 84.91 ± 2.42 97.66 ± 0.46

OA 82.12 ± 1.37 96.16 ± 0.74 96.87 ± 0.53 97.09 ± 0.13 80.20 ± 0.10 95.66 ± 0.85 96.20 ± 1.71 86.25 ± 0.09 88.21 ± 0.78 97.56 ± 0.07 95.90 ± 0.33 87.09 ± 0.17 96.91 ± 0.01 88.70 ± 0.32 97.82 ± 0.05
AA 70.38 ± 2.05 94.80 ± 0.74 95.76 ± 0.20 95.89 ± 0.29 72.62 ± 0.22 93.12 ± 1.02 96.85 ± 0.89 81.76 ± 0.28 82.24 ± 1.28 96.12 ± 0.12 94.49 ± 0.13 81.34 ± 0.54 95.96 ± 0.17 82.83 ± 0.54 97.77 ± 0.07

K × 100 79.00 ± 1.64 95.49 ± 0.87 96.34 ± 0.62 96.60 ± 0.16 76.54 ± 0.12 94.92 ± 1.00 95.52 ± 2.03 83.77 ± 0.10 86.11 ± 0.92 97.14 ± 0.09 95.19 ± 0.40 84.84 ± 0.22 96.38 ± 0.01 86.75 ± 0.37 97.44 ± 0.06
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Table 9. Classification results of the IP data based on 5% training samples.

Class SSRN DBDA SSGCA PCIA MDBNet HDDA DBPFA ChebNet GCN MVAHN DGFNet FTINet DKDMN MRCAG Ours

C1 0.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 97.55 ± 0.82 64.44 ± 1.79 94.03 ± 1.91 100.00 ± 0.00 100.00 ± 0.00 73.83 ± 4.12 96.87 ± 0.52 100.00 ± 0.00 100.00±0.00 97.63 ± 0.03 0.00 ± 0.00 100.00 ± 0.00
C2 89.93 ± 10.42 94.41 ± 3.03 97.63 ± 1.21 98.62 ± 1.70 47.25 ± 0.74 94.85 ± 0.50 98.16 ± 0.51 71.35 ± 0.77 76.26 ± 0.90 97.61 ± 0.26 85.29 ± 1.08 65.15 ± 1.31 97.77 ± 0.44 60.57 ± 1.75 97.40 ± 0.54
C3 84.88 ± 5.88 94.66 ± 0.20 98.44 ± 0.66 97.11 ± 0.31 46.46 ± 0.81 96.20 ± 0.31 92.39 ± 0.57 67.13 ± 1.10 46.93 ± 4.01 96.63 ± 0.18 89.36 ± 1.93 52.57 ± 1.46 96.50 ± 0.44 61.54 ± 3.65 98.99 ± 0.42
C4 60.00 ± 48.98 98.42 ± 1.36 94.93 ± 2.58 99.10 ± 0.33 56.10 ± 1.98 95.06 ± 1.20 99.03 ± 2.29 63.51 ± 4.08 57.63 ± 4.48 99.48 ± 0.14 85.04 ± 4.29 41.21 ± 3.51 100.00 ± 0.00 59.34 ± 3.46 92.98 ± 0.28
C5 71.86 ± 21.30 96.05 ± 1.03 93.77 ± 1.88 94.40 ± 0.64 63.99 ± 0.97 95.13 ± 0.69 97.62 ± 0.50 94.35 ± 0.61 74.96 ± 1.87 99.74 ± 0.00 96.64 ± 0.20 79.13 ± 2.32 99.02 ± 0.66 83.44 ± 0.88 97.04 ± 0.55
C6 80.70 ± 4.30 99.18 ± 0.12 97.74 ± 0.20 96.80 ± 0.15 76.59 ± 0.45 99.13 ± 0.54 96.68 ± 0.69 77.77 ± 0.48 85.92 ± 1.29 98.59 ± 0.07 98.14 ± 0.21 67.46 ± 0.99 99.95 ± 0.07 75.49 ± 2.63 98.31 ± 0.60
C7 0.00 ± 0.00 72.61 ± 9.26 62.86 ± 22.03 69.96 ± 35.02 50.92 ± 7.44 100.00 ± 0.00 90.00 ± 30.00 0.00 ± 0.00 90.92 ± 14.46 63.15 ± 1.59 81.23 ± 13.36 80.00 ± 28.28 43.58 ± 0.35 0.00 ± 0.00 98.89 ± 2.22
C8 96.65 ± 4.01 93.57 ± 0.60 99.36 ± 1.41 99.84 ± 0.41 78.48 ± 1.56 99.04 ± 0.32 96.09 ± 0.33 89.18 ± 0.35 89.13 ± 0.96 96.68 ± 1.27 97.60 ± 1.36 89.09 ± 0.60 99.85 ± 0.11 88.17 ± 0.82 100.00 ± 0.00
C9 0.00 ± 0.00 100.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 24.72 ± 4.38 96.32 ± 2.41 0.00 ± 0.00 0.00 ± 0.00 53.33 ± 6.67 100.00 ± 0.00 92.31 ± 10.88 16.67 ± 23.57 86.63 ± 0.73 0.00 ± 0.00 73.85 ± 2.31
C10 63.66 ± 4.72 94.64 ± 1.36 93.50 ± 1.49 95.07 ± 0.44 44.05 ± 1.09 93.06 ± 0.59 92.37 ± 4.97 85.09 ± 0.60 73.67 ± 1.22 96.33 ± 0.60 94.22 ± 1.70 72.67 ± 0.27 95.75 ± 0.10 53.86 ± 2.15 96.79 ± 0.36
C11 93.00 ± 2.71 96.20 ± 0.25 98.50 ± 0.89 95.48 ± 0.24 60.26 ± 0.41 96.20 ± 0.29 95.70 ± 0.47 68.66 ± 0.68 77.30 ± 3.00 97.84 ± 0.13 90.66 ± 1.56 67.85 ± 0.57 98.12 ± 0.30 71.57 ± 0.68 98.97 ± 0.42
C12 71.53 ± 12.24 96.95 ± 0.18 93.14 ± 6.70 96.91 ± 0.15 40.18 ± 1.31 95.00 ± 1.08 96.45 ± 0.86 47.91 ± 0.49 51.25 ± 1.98 98.03 ± 0.65 84.41 ± 0.83 48.40 ± 2.91 92.82 ± 0.68 54.63 ± 0.49 95.85 ± 0.72
C13 98.28 ± 2.57 99.39 ± 0.17 93.98 ± 3.18 98.98 ± 0.16 66.73 ± 0.66 98.35 ± 0.28 100.00 ± 0.00 93.07 ± 0.43 73.91 ± 2.10 98.35 ± 0.28 99.61 ± 0.27 89.17 ± 1.46 100.00 ± 0.00 97.57 ± 1.23 100.00 ± 0.00
C14 96.40 ± 3.05 97.92 ± 0.23 99.75 ± 0.10 97.00 ± 0.14 77.88 ± 1.29 96.53 ± 0.21 97.85 ± 0.67 86.36 ± 0.69 87.83 ± 3.69 97.18 ± 0.24 97.05 ± 0.48 94.41 ± 0.33 96.35 ± 0.70 87.82 ± 2.09 97.78 ± 0.43
C15 94.16 ± 7.94 96.39 ± 0.58 90.55 ± 1.31 96.08 ± 0.26 70.61 ± 1.03 93.91 ± 0.50 94.50 ± 1.17 82.25 ± 0.75 70.41 ± 3.42 98.10 ± 0.26 94.20 ± 2.01 70.71 ± 0.94 93.89 ± 0.23 83.21 ± 1.36 98.70 ± 0.13
C16 87.48 ± 9.94 97.51 ± 0.03 98.74 ± 0.04 98.79 ± 0.00 59.59 ± 3.10 94.22 ± 2.83 98.73 ± 0.04 96.63 ± 1.15 53.61 ± 3.20 98.45 ± 0.52 97.54 ± 0.98 100.00 ± 0.00 96.18 ± 0.51 91.96 ± 1.35 96.03 ± 0.68

OA 84.12 ± 3.52 96.03 ± 0.65 96.86 ± 0.97 96.74 ± 0.22 60.16 ± 0.11 95.87 ± 0.14 96.02 ± 0.87 75.38 ± 0.13 74.00 ± 1.78 97.48 ± 0.12 91.80 ± 0.50 70.68 ± 0.38 96.94 ± 0.11 70.88 ± 0.89 97.92 ± 0.12
AA 68.03 ± 4.54 95.49 ± 0.22 88.31 ± 2.00 89.48 ± 2.26 58.02 ± 0.43 96.06 ± 0.33 90.35 ± 2.47 70.20 ± 0.34 71.06 ± 1.26 95.81 ± 0.25 92.71 ± 0.36 70.91 ± 2.66 93.38 ± 0.10 60.58 ± 0.57 96.35 ± 0.13

K × 100 81.82 ± 4.04 95.47 ± 0.74 96.42 ± 1.11 96.27 ± 0.25 54.13 ± 0.14 95.29 ± 0.16 95.45 ± 0.99 71.49 ± 0.16 70.29 ± 2.10 97.12 ± 0.14 90.62 ± 0.58 66.15 ± 0.44 96.51 ± 0.12 66.49 ± 1.05 97.63 ± 0.13

Table 10. Classification results of the Xiongan data based on 1% training samples.

Class SSRN DBDA SSGCA PCIA MDBNet HDDA DBPFA ChebNet GCN MVAHN DGFNet FTINet DKDMN MRCAG Ours

C1 100.00 ± 0.00 99.78 ± 0.19 99.96 ± 0.03 99.99 ± 0.00 99.98 ± 0.01 99.97 ± 0.03 99.74 ± 0.20 98.54 ± 1.08 99.63 ± 0.12 99.40 ± 0.19 99.95 ± 0.02 99.83 ± 0.14 99.99 ± 0.00 99.83 ± 0.04 99.99 ± 0.00
C2 98.23 ± 2.46 99.59 ± 0.10 99.90 ± 0.08 99.86 ± 0.07 99.83 ± 0.09 99.94 ± 0.03 99.32 ± 0.31 96.38 ± 1.61 98.77 ± 0.44 99.75 ± 0.01 99.70 ± 0.09 99.53 ± 0.09 99.95 ± 0.01 99.56 ± 0.07 99.85 ± 0.12
C3 0.00 ± 0.00 99.81 ± 0.06 97.85 ± 0.54 99.62 ± 0.03 99.73 ± 0.03 99.40 ± 0.59 98.64 ± 0.37 93.36 ± 2.38 98.79 ± 0.42 99.84 ± 0.02 99.34 ± 0.22 99.05 ± 0.36 99.91 ± 0.03 99.49 ± 0.10 99.63 ± 0.03
C4 0.00 ± 0.00 90.32 ± 1.66 90.51 ± 4.25 91.70 ± 0.73 94.56 ± 0.29 84.12 ± 15.56 82.52 ± 6.36 69.78 ± 2.19 86.06 ± 0.71 93.58 ± 1.52 96.09 ± 0.26 90.54 ± 2.97 94.86 ± 0.96 91.83 ± 1.77 96.91 ± 0.18
C5 32.23 ± 9.18 92.43 ± 5.12 88.48 ± 3.61 93.13 ± 0.23 98.12 ± 0.49 94.51 ± 6.08 92.22 ± 2.16 75.28 ± 7.74 91.31 ± 0.75 98.30 ± 0.32 97.93 ± 0.49 93.76 ± 0.40 98.15 ± 0.32 96.03 ± 0.57 98.46 ± 0.22
C6 0.00 ± 0.00 88.32 ± 1.40 98.55 ± 0.30 90.20 ± 0.87 94.88 ± 0.45 96.32 ± 0.69 97.04 ± 1.44 63.51 ± 16.50 75.40 ± 4.80 93.89 ± 0.96 96.48 ± 0.51 87.09 ± 5.12 96.37 ± 1.18 91.04 ± 1.37 96.19 ± 1.09
C7 80.50 ± 6.06 92.18 ± 1.25 84.66 ± 7.52 88.95 ± 2.25 95.23 ± 0.86 90.00 ± 8.54 82.93 ± 1.88 69.82 ± 3.18 86.47 ± 0.90 95.34 ± 0.80 95.16 ± 2.06 90.43 ± 0.31 94.98 ± 0.29 92.43 ± 1.18 96.56 ± 0.29
C8 51.68 ± 40.89 88.89 ± 1.98 93.28 ± 4.18 84.64 ± 0.88 93.49 ± 0.56 93.20 ± 3.32 78.54 ± 3.23 70.64 ± 4.37 83.63 ± 1.34 93.60 ± 0.67 95.79 ± 0.46 90.15 ± 1.37 92.33 ± 0.74 91.14 ± 0.54 94.55 ± 0.21
C9 0.00 ± 0.00 94.33 ± 2.15 86.48 ± 3.62 95.76 ± 0.41 90.91 ± 0.35 96.31 ± 2.77 99.56 ± 0.18 85.51 ± 3.69 91.52 ± 0.48 95.14 ± 0.27 88.31 ± 0.59 88.79 ± 1.25 93.08 ± 0.77 87.02 ± 3.78 95.90 ± 0.58
C10 63.74 ± 14.91 90.53 ± 3.95 97.67 ± 1.24 89.41 ± 1.68 96.34 ± 0.19 94.98 ± 2.19 93.51 ± 1.49 63.64 ± 5.56 88.00 ± 0.60 96.67 ± 0.46 97.93 ± 0.27 92.58 ± 1.31 95.81 ± 0.79 94.37 ± 0.35 98.19 ± 0.34
C11 0.00 ± 0.00 97.30 ± 0.92 96.21 ± 1.36 96.78 ± 0.20 96.33 ± 0.73 96.99 ± 0.78 98.00 ± 1.10 83.84 ± 9.08 93.78 ± 1.40 96.71 ± 0.26 98.00 ± 0.79 91.32 ± 2.73 97.49 ± 0.25 94.13 ± 0.54 98.10 ± 0.71
C12 0.00 ± 0.00 80.38 ± 1.64 58.62 ± 7.80 87.68 ± 2.58 82.00 ± 2.42 80.46 ± 10.32 78.03 ± 4.57 39.88 ± 15.45 79.10 ± 2.46 85.88 ± 1.32 88.53 ± 1.33 71.02 ± 2.00 84.82 ± 0.63 77.96 ± 1.56 93.03 ± 1.00
C13 64.70 ± 45.79 80.04 ± 5.37 73.53 ± 1.02 84.17 ± 1.86 86.61 ± 1.58 76.37 ± 16.98 89.34 ± 1.49 76.51 ± 1.55 79.02 ± 1.02 83.06 ± 0.58 89.18 ± 0.12 78.95 ± 1.65 83.35 ± 0.35 81.30 ± 1.87 88.43 ± 1.09
C14 66.42 ± 46.97 85.55 ± 2.96 66.59 ± 3.75 82.75 ± 2.29 90.89 ± 0.63 90.00 ± 4.76 91.32 ± 4.87 63.62 ± 1.93 72.84 ± 2.67 92.93 ± 0.47 92.14 ± 0.89 86.26 ± 0.33 89.46 ± 0.99 85.11 ± 1.61 94.24 ± 1.09
C15 58.84 ± 3.72 93.69 ± 0.95 84.31 ± 5.34 92.99 ± 1.31 95.74 ± 0.55 94.86 ± 3.08 87.22 ± 2.55 74.14 ± 3.30 88.88 ± 0.40 97.67 ± 0.27 93.26 ± 1.13 93.15 ± 0.08 96.01 ± 0.20 94.51 ± 0.37 97.63 ± 0.54
C16 0.00 ± 0.00 88.50 ± 1.46 78.74 ± 7.44 95.92 ± 1.45 84.86 ± 1.69 88.46 ± 20.3 95.69 ± 0.58 74.06 ± 8.96 71.91 ± 3.61 84.28 ± 1.52 88.12 ± 2.40 77.68 ± 2.72 93.04 ± 0.59 85.89 ± 1.22 88.42 ± 0.83
C17 0.00 ± 0.00 93.56 ± 1.38 84.63 ± 9.40 95.75 ± 1.84 96.16 ± 0.45 98.27 ± 0.31 98.47 ± 0.56 0.00 ± 0.00 86.94 ± 4.19 98.31 ± 0.19 98.03 ± 0.14 94.76 ± 3.07 96.41 ± 0.31 96.41 ± 0.34 98.82 ± 0.23
C18 0.00 ± 0.00 76.80 ± 10.70 33.16 ± 46.90 95.55 ± 2.38 85.99 ± 3.50 73.69 ± 22.98 73.94 ± 9.50 0.00 ± 0.00 71.11 ± 3.12 89.63 ± 1.04 93.83 ± 0.34 74.54 ± 1.31 90.70 ± 1.33 86.79 ± 2.12 92.54 ± 1.17
C19 100.00 ± 0.00 98.88 ± 0.58 99.27 ± 0.47 98.53 ± 0.18 98.83 ± 0.32 99.05 ± 0.69 96.02 ± 2.76 0.00 ± 0.00 96.92 ± 1.04 98.93 ± 0.28 99.86 ± 0.03 96.57 ± 2.24 98.67 ± 0.09 97.88 ± 0.83 98.78 ± 0.47

OA 62.40 ± 2.47 93.38 ± 1.47 89.00 ± 2.59 92.65 ± 0.39 96.09 ± 0.06 94.04 ± 4.22 89.81 ± 1.19 77.14 ± 2.75 89.90 ± 0.29 96.66 ± 0.11 95.89 ± 0.54 93.14 ± 0.39 96.02 ± 0.11 94.39 ± 0.20 97.49 ± 0.15
AA 37.70 ± 5.49 91.10 ± 1.56 84.86 ± 3.50 92.81 ± 0.24 93.71 ± 0.43 91.94 ± 4.87 91.16 ± 1.02 63.08 ± 3.14 86.32 ± 0.91 94.36 ± 0.18 95.14 ± 0.08 89.26 ± 1.19 94.49 ± 0.09 91.72 ± 0.07 96.12 ± 0.24

K × 100 54.16 ± 2.56 92.28 ± 1.73 87.04 ± 3.13 91.42 ± 0.47 95.44 ± 0.08 93.07 ± 4.90 88.02 ± 1.43 72.89 ± 3.39 88.20 ± 0.34 96.11 ± 0.13 95.19 ± 0.64 92.00 ± 0.45 95.37 ± 0.12 93.47 ± 0.24 97.07 ± 0.18
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Figure 6. Full-pixel classification maps for the PU data scene. (a) Ground-truth; (b) SSRN; (c) DBDA; 
(d) SSGCA; (e) PCIA; (f) MDBNet; (g) HDDA; (h) DBPFA; (i) ChebNet; (j) GCN; (k) MVAHN; (l) 
DGFNet; (m) FTINet; (n) DKDMN; (o) MRCAG; (p) Ours; (q) False-color image. 
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Figure 6. Full-pixel classification maps for the PU data scene. (a) Ground-truth; (b) SSRN; (c) DBDA;
(d) SSGCA; (e) PCIA; (f) MDBNet; (g) HDDA; (h) DBPFA; (i) ChebNet; (j) GCN; (k) MVAHN;
(l) DGFNet; (m) FTINet; (n) DKDMN; (o) MRCAG; (p) Ours; (q) False-color image.
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Figure 6. Full-pixel classification maps for the PU data scene. (a) Ground-truth; (b) SSRN; (c) DBDA; 
(d) SSGCA; (e) PCIA; (f) MDBNet; (g) HDDA; (h) DBPFA; (i) ChebNet; (j) GCN; (k) MVAHN; (l) 
DGFNet; (m) FTINet; (n) DKDMN; (o) MRCAG; (p) Ours; (q) False-color image. 
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Figure 7. Full-pixel classification maps for the Houston data scene. (a) Ground-truth; (b) SSRN; (c) 
DBDA; (d) SSGCA; (e) PCIA; (f) MDBNet; (g) HDDA; (h) DBPFA; (i) ChebNet; (j) GCN; (k) 
MVAHN; (l) DGFNet; (m) FTINet; (n) DKDMN; (o) MRCAG; (p) Ours; (q) False-color image. 
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Figure 7. Full-pixel classification maps for the Houston data scene. (a) Ground-truth; (b) SSRN;
(c) DBDA; (d) SSGCA; (e) PCIA; (f) MDBNet; (g) HDDA; (h) DBPFA; (i) ChebNet; (j) GCN;
(k) MVAHN; (l) DGFNet; (m) FTINet; (n) DKDMN; (o) MRCAG; (p) Ours; (q) False-color image.
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Figure 8. Full-pixel classification maps for the Houghu data scene. (a) Ground-truth; (b) SSRN; (c) 
DBDA; (d) SSGCA; (e) PCIA; (f) MDBNet; (g) HDDA; (h) DBPFA; (i) ChebNet; (j) GCN; (k) 
MVAHN; (l) DGFNet; (m) FTINet; (n) DKDMN; (o) MRCAG; (p) Ours; (q) False-color image. 
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Figure 8. Full-pixel classification maps for the Houghu data scene. (a) Ground-truth; (b) SSRN;
(c) DBDA; (d) SSGCA; (e) PCIA; (f) MDBNet; (g) HDDA; (h) DBPFA; (i) ChebNet; (j) GCN;
(k) MVAHN; (l) DGFNet; (m) FTINet; (n) DKDMN; (o) MRCAG; (p) Ours; (q) False-color image.
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Figure 8. Full-pixel classification maps for the Houghu data scene. (a) Ground-truth; (b) SSRN; (c) 
DBDA; (d) SSGCA; (e) PCIA; (f) MDBNet; (g) HDDA; (h) DBPFA; (i) ChebNet; (j) GCN; (k) 
MVAHN; (l) DGFNet; (m) FTINet; (n) DKDMN; (o) MRCAG; (p) Ours; (q) False-color image. 
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Figure 9. Full-pixel classification maps for the IP data scene. (a) Ground-truth; (b) SSRN; (c) DBDA; 
(d) SSGCA; (e) PCIA; (f) MDBNet; (g) HDDA; (h) DBPFA; (i) ChebNet; (j) GCN; (k) MVAHN; (l) 
DGFNet; (m) FTINet; (n) DKDMN; (o) MRCAG; (p) Ours; (q) False-color image. 

Figure 9. Full-pixel classification maps for the IP data scene. (a) Ground-truth; (b) SSRN; (c) DBDA;
(d) SSGCA; (e) PCIA; (f) MDBNet; (g) HDDA; (h) DBPFA; (i) ChebNet; (j) GCN; (k) MVAHN;
(l) DGFNet; (m) FTINet; (n) DKDMN; (o) MRCAG; (p) Ours; (q) False-color image.
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Figure 10. Full-pixel classification maps for the IP data scene. (a) Ground-truth; (b) SSRN; (c) DBDA; 
(d) SSGCA; (e) PCIA; (f) MDBNet; (g) HDDA; (h) DBPFA; (i) ChebNet; (j) GCN; (k) MVAHN; (l) 
DGFNet; (m) FTINet; (n) DKDMN; (o) MRCAG; (p) Ours; (q) False-color image. 

4.2.2. The Fourteen State-of-the-Art Comparison Methods 
(1) SSRN: The SSRN adopts spectral and spatial residual modules as its backbone and 

combines them in a consecutive manner to address the accuracy decreasing problem. It 
first extracts spectral signatures and then extracts the spatial features for pixel-wise HSI 
classification. Additionally, batch normalization is used in each 3D convolutional layer to 
regulate the feature extraction process. 

(2) DBDA: The DBDA has spectral and spatial branches, with dense spectral block 
and channel attention mechanisms included in the spectral branch for extracting and re-
fining spectral features, and a spatial attention block and a dense spatial block included 

Figure 10. Full-pixel classification maps for the IP data scene. (a) Ground-truth; (b) SSRN; (c) DBDA;
(d) SSGCA; (e) PCIA; (f) MDBNet; (g) HDDA; (h) DBPFA; (i) ChebNet; (j) GCN; (k) MVAHN;
(l) DGFNet; (m) FTINet; (n) DKDMN; (o) MRCAG; (p) Ours; (q) False-color image.

4.2.2. The Fourteen State-of-the-Art Comparison Methods

(1) SSRN: The SSRN adopts spectral and spatial residual modules as its backbone and
combines them in a consecutive manner to address the accuracy decreasing problem. It
first extracts spectral signatures and then extracts the spatial features for pixel-wise HSI
classification. Additionally, batch normalization is used in each 3D convolutional layer to
regulate the feature extraction process.

(2) DBDA: The DBDA has spectral and spatial branches, with dense spectral block and
channel attention mechanisms included in the spectral branch for extracting and refining
spectral features, and a spatial attention block and a dense spatial block included in the
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spatial branch for learning and optimizing spatial information. Then, a concatenation
operation is utilized to fuse spectral and spatial information.

(3) SSGCA: The SSGCA first uses a spectral–spatial module to excavate spectral
and spatial features separately. Then, a channel global context attention mechanism is
developed to enhance the significance of the extracted spectral signatures, and a position
global context attention mechanism is devised to enhance the importance of the extracted
spatial features.

(4) PCIA: The PCIA is a dual-branch model, which first uses spectral and spatial
pyramidal blocks to efficiently learn spectral and spatial information. Then, a novel iterative
attention, namely, a new expectation-maximization attention, is employed to refine the
learned spectral and spatial information. Finally, the refined spectral-spatial information is
conveyed to the fully connected layer for the final classification outcomes.

(5) MDBNet: The MDBNet uses PCA to operate on the original dataset, yielding the
processed dataset. The processed dataset is then processed by the multiscale spectral–
spatial feature extraction module to extract the multiscale spectral and spatial features.
Then, a dual-branch information fusion block consisting of residual connections and dense
connections is used to learn discriminant features. Finally, a new shuffle attention is
proposed to adaptively weigh the spectral and spatial features, resulting in improved
classification accuracy.

(6) HDDA: The HDDA architecture features a novel hybrid dense module and dual
attention mechanisms. It utilizes a stacked autoencoder to decrease the number of channels
in the HSI. And then, a hybrid 2D-3D CNN module is employed to extract the spectral
and spatial information. The channel and spatial attention mechanism is designed to
refine the extracted spectral and spatial features separately. Additionally, a dropout layer
and batch normalization are employed separately to mitigate overfitting and enhance
computational efficiency.

(7) DBPFA: The DBPFA mainly consists of dual-branches and an improved attention
mechanism for HSI classification. It includes a spectral feature extraction branch for
extracting spectral signatures and a spatial feature excavating branch for extracting spatial
features. It also includes a polarized fully attention for learning context feature information.

(8) ChebNet: The Spectral GCN is a graph convolutional operation with fast local
convolutional filters, where the filter is approximated by a K-order Chebyshev polynomial.
And, it is applicable to any graph structure. In this article, a filter with a 1-order Chebyshev
polynomial is used.

(9) GCN: The GCN is an efficient tool based on convolutional neural networks and
constructed by an approximation of localized first-order spectral graph convolutions, which
can be directly operate on graphs. The GCN is also a linear layer model that can learn
the representation of both graph edges relations and node information. In this article, a
five-layer GCN is employed.

(10) MVAHN: The MVAHN is a new hybrid vision architecture-based model, which
first utilizes CNN to extract the spectral signatures and spatial features from HSIs. Next,
the generated features are divided into two components; one is for the GCN module, and
another is for the transformer module. Finally, a residual learning block is used to fuse the
extracted features.

(11) MRCAG: The MRCAG model mainly has three components: a developed multi-
scale random shape convolution part for learning convolution-based multiscale features,
where the convolution kernels used are randomized. A designed adaptive graph convo-
lution part for learning graph-based features, where the weights for neighborhood nodes
are learned adaptively. A local feature processing part is designed to exploit CNN-based
features and GCN-based features, enhancing the feature representation.

(12) FTINet: The FTINet method consists of three stages: First, multiple stacked
CIformers are used to learn the dynamic and static spatial contextual information of the
data. Then, concatenated FTCUs are employed to learn the spectral and topological features
of the processed data. Meanwhile, the edges of the graph are learned for information
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aggregation and propagation. Finally, the learned features and information are fed into the
classification stage to produce the classification results.

(13) DKDMN: The DKDMN method is a hybrid neural network architecture. It
first employs the proposed multi-scale spectral signature extraction module for spectral
signature extraction. Then, the extracted multiscale spectral signature is combined with
positional embedding for Transformer preprocessing. Then, the signatures are fed into the
designed module for comprehensive spectral signature learning. This module is composed
of multiple CNN-Transformer blocks and a residual GCN. To better achieve the final
classification results, the learned spectral signature is combined with the features extracted
by the diffusion model.

(14) DGFNet: The DGFNet is a dual-branch GNN fusion network, which includes a
spatial-based branch and a spectral-based branch. It takes HSI subcubes as input data. The
spatial branch first employs a Graph Attention Network to learn the intrinsic relationships
within the input data. Then, it develops a local guidance module to learn significant features.
The spectral branch employs weights for different spectral bands to obtain spectral features.
Finally, a linear layer is used to fuse the spatial features and spectral features.

4.3. Experimental Results

In this section, for the five widely used data scenes, the training set, validation set,
and test set are composed of randomly selected labeled samples from each category on the
five HSI data scenes, which are recorded in Tables 1–5 separately. Tables 6–10 show the
accuracy of OA, AA, K, and each class of the fourteen competitive methods as well as our
proposed model on the five widely used data scenes. Figures 6–10 show the ground truth
map, full-pixel classification maps, and False-color images on the PU, Houston, Honghu,
and IP data scenes. The detailed discussion of classification results on the five used data
scenes is shown as follows:

(1) Classification results on the PU dataset: In the PU dataset, as recorded in Table 6,
in terms of the value of OA, our proposed method surpasses SSRN, DBDA, SSGCA,
PCIA, MDBNet, HDDA, DBPFA, ChebNet, GCN, and MVAHN by about 13.33%, 2.76%,
0.76%, 1.30%, 15.63%, 2.89%, 1.38%, 10.93%, 9.88%, and 0.50%, respectively, demonstrating
the superior classification performance of our method. The methods based on CNN,
namely SSRN, DBDA, SSGCA, PCIA, MDBNet, HDDA, and DBPFA, all achieved excellent
classification performance in terms of OA, AA, K, and accuracy values for each class, except
for SSRN and MDBNet. This can be attributed to CNN being one of the powerful data fitting
tools of deep learning. The GCN-based methods, namely ChebNet and GCN, exhibit lower
classification performance, except for MVAHN. This can be ascribed to the fact that GCN-
based methods only consider features from a single perspective. To some extent, the pure
GCN-based method has limited feature extraction performance compared to the spectral
and spatial CNN-based method. The hybrid vision architectures, namely our proposed
method and MVAHN, which are based on CNN and GCN architecture, both achieve
outstanding classification performance on the PU dataset. Specifically, our proposed
method achieve the highest OA, AA, and K values among the other fourteen comparative
methods on the PU dataset. Furthermore, from Figure 6, the classification map yielded by
our proposed method is not only clearer than those from the other fourteen comparative
experiments, but also has smoother land cover edges. Conversely, the classification maps
yielded by MDBNet and GCN show a lot of salt-and-pepper scenarios.

(2) Classification results on the Houston dataset: For the Houston dataset, our pro-
posed method achieves the highest records in terms of OA, AA, and K compared to the
fourteen comparative methods, as documented in Table 7. The OA value of our proposed
method is approximately 0.47% higher than that of MVAHA, about 0.33% higher than SS-
GCA, a CNN-based method with higher OA among CNN-based methods, and about 18.53%
higher than ChebNet, a GCN-based method with higher OA among GCN-based methods.

This is due to the fact that our proposed method is designed by combining the CNN
and GCN networks, which can excavate the multiscale spectral-spatial features and learn
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the pixel-wise spectral signature among the graphs. From Figure 7, it can be observed that
our proposed method exhibits a classification map that closely resembles the ground-truth
feature map in comparison to the other fourteen classification methods.

(3) Classification results on the Honghu dataset: On the Honghu dataset, as seen in
Figure 8a, the terrain regions of same land covers are more concentrated, so this dataset is
more conductive to being distinguished. From Table 8, our proposed method shown higher
values of OA, AA, and K compared with the fourteen comparative methods. The MVAHN
achieve the second classification performance. The reason for this can be attributed to the
method combining the CNN and GCN, which enables the extraction of different types of
features. The CNN-based methods, namely PCIA and DBPFA, all get good classification
performance, but worse than hybrid CNN and GCN methods. It is also shown that
the features extracted by CNN-based methods are less expressive than the hybrid CNN
and GCN methods. Furthermore, the classification performance of categories of C1, C4,
C5, C12, and C15 that are obtained by our proposed method is higher than the other
fourteen comparative methods, which is shown the in better feature extraction ability of
our proposed method. At the same time, from Figure 8, the classification map obtained
by our proposed method has less salt-and-pepper noise and more similarity to the ground
truth map.

(4) Classification results on the IP dataset: To validate the classification performance
under limited training samples, the IP data scene is used. From Table 9, it can be seen that
our proposed model gets the best classification accuracy on OA, AA, and K. Meanwhile, our
proposed model gets 100% classification accuracy on the classes of C1, C8, and C13, which
demonstrates the effectiveness of our devised model under the IP data scene. Especially
under the condition of limited sample quantities from classes C1, C7, C9, and C16, our
proposed model achieves good accuracy in individual class classification. The SSRN and
ChebNet receive 0% classification accuracy on C7 and C9, respectively. However, both
the MVAHN and our proposed model achieve better classification accuracy on C7 and
C9 compared to SSRN and ChebNet. This shows that the model combining CNN with
GCN has better feature extraction performance than a model only based on CNN or GCN
architecture. In Figure 9, the classification map generated by our proposed model shows
clear boundaries between different classes. Compared to other comparative methods,
MDBNet gets a worse OA value, and its classification map exhibits a higher occurrence of
the salt-and-pepper noise phenomenon.

(5) Classification results on the Xiongan dataset: To further validate the superior
classification performance of our designed method, we use the Xiongan dataset. From
Table 10, it can be observed that our method achieves the best OA, AA, and k compared
to other methods. Conversely, the SSRN method, which is based on CNN, has lower
classification results, especially for the AA value, compared to other comparative methods.
The classification accuracy of C3, C4, C6, C9, C11, C12, C16, C17, and C18 produced by
SSRN is 0%, which contributes to the lower AA value. MVAHN, a hybrid architecture
that combines CNN and GCN models, yields comparable results but has slightly lower
classification performance than our method. For GCN-based comparative methods, such
as ChebNet and GCN, the classification results are relatively lower compared to other
methods. Other comparative methods, such as DGFNet, FTINet, and MRCAG exhibit
acceptable classification results. From Figure 10, the full-pixel classification map of SSRN
displays unclear edges between different classes, resulting in a poor classification map.
Our method shows a classification map that is more similar to the ground-truth map,
demonstrating superior classification performance.

5. Discussion
5.1. The Importance of an Adaptive Feature-Weighted Strategy in Feature Fusion

In the CNN subnetwork of our proposed method, the extracted spectral and spatial
information plays unequally significant roles in the classification process. The spectral
signature learning weight α_1 and spatial features learning weight α_2 are employed to
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show the importance of spectral and spatial features in the training accuracy and validation
accuracy of the four used HSI datasets. As shown in Figure 11a, it can be observed that
for the PU data scene, the value of the spectral learning weight α_1 is higher than that of
the spatial weight α_2, and the difference between them becomes increasingly larger as the
epochs increase, while both the training accuracy and validation accuracy are increasing.
Therefore, when the proposed method achieves higher training and validation accuracy,
it demonstrates that the spectral learning weight α_1 and the spatial learning weight α_2
play different roles in classification, which shows the appropriateness of the used adaptive
feature-weighted fusion strategy. The extracted spectral signatures have a relatively larger
proportion than spatial features in classification. From Figure 11a, when the value of α_1
is 0.5329 and the value of α_2 is 0.4671, the proposed model gets the best performance in
training and validation accuracy on the PU dataset.
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Additionally, in Figure 11b–d, feature learning weights α_1 and α_2 are analyzed
respectively on Honghu, Houston, and IP data scene. In these three figures, phenomena
similar to those in Figure 11a can be observed. Especially in the Honghu data scene, when
the value of α_1 is 0.6279 and the value of α_2 is 0.3721, the training accuracy reaches a
value of 100%, and the validation accuracy reaches a value of 98.09%.
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5.2. The Value of n in n-Layer GCN of the Spectral-Enhanced GCN Module

To learn the features from the perspective of GCN as well as to learn the relations in
the spectral feature matrix, an n-layer GCN is used. In general, GCN-based architectures
can learn deep node features by using more stacked GCN layers. However, when the GCN
layers reach a certain level, it will lead to a drop in the performance of the spectral-enhanced
GCN module. Additionally, using the spectral-enhanced GCN module with fewer GCN
layers results in inadequate capture of deep information. To ensure that the values of n
are reasonable, an experiment is conducted. To be specific, we implement experiments
with different n-layer (n = 1, 2, 3, 4, 5) GCNs in spectral-enhanced GCN modules on the
four datasets used. The purpose is to determine the optimal value of n to achieve the
best performance of our model. From Figure 12, when the value of n is 4, the OA of our
model gets the best classification accuracy on four used data scenes separately. Therefore, a
four-layer GCN is utilized in the spectral-enhanced GCN module, which is beneficial for
spectral signature learning.
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5.3. The Learning Rate under Different Epoch Numbers

The learning rate, a vital hyperparameter, plays a great role in training a deep learning-
based model. And, it has a significant influence on both the convergence and the final
classification performance of our model. Additionally, the number of epochs can affect the
convergence speed of the model as well as its training time. So, we evaluate the impact
of various learning rates on the classification accuracy of our proposed model under the
different number of epochs on the four used data scenes, and the results are shown in
Figure 13. To analyze the impact of learning rates and various epochs on the proposed
model, the learning rate for the PU, Honghu, Houston, IP, and Xiongan are selected from
the sets {0.007, 3 × 10−4, 5 × 10−4, 7 × 10−4, 9 × 10−4}, {0.003, 0.007, 3 × 10−4, 7 × 10−4,
9 × 10−4}, {0.003, 0.005, 3 × 10−4, 5 × 10−4, 7 × 10−4, 9 × 10−4}, and {0.01, 0.005, 3 × 10−4,
5 × 10−4, 7 × 10−4}. Simultaneously, the learning rate settings for PU, Honghu, Houston,
and IP are tested under various epochs sets {200, 250, 300, 350, 400}, {100, 120, 150, 180,
200}, {100, 120, 150, 180, 200}, and {130, 150, 200, 250, 300} respectively. From Figure 13,
it is observed that when the set of learning rate and epochs {5 × 10−4, 350}, {7 × 10−4,
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120}, {9 × 10−4, 150}, and {3 × 10−4, 130} are selected for the PU, Honghu, Houston, IP,
and Xiongan data scenarios separately, our proposed model gets the best classification
performance in each of these data scenes.
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5.4. Impact of Different Training Samples on the Classification Result

For our proposed model and other comparative methods, as deep learning-based mod-
els, the training sample is an important factor that influences the classification performance.

To analyze the classification performance of our proposed model and the other fourteen
comparison algorithms under different limited training samples, {0.5%, 1%, 2%, 3%, 4%},
{1%, 2%, 3%, 4%, 5%}, {2%, 3%, 4%, 5%, 6%}, and {5%, 6%, 7%, 8%, 9%} training samples
sets are separately selected to train our proposed model and fourteen different comparison
algorithms and to evaluate their classification performances on the PU, Honghu, Houston,
and IP data scenes separately. From Figure 14, it is clear that our proposed model exhibits
the best classification accuracy under different training samples, especially with limited
training samples.
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5.5. Visual Results about Different Methods

In this section, to intuitively visualize the classification performance of fourteen com-
parative methods and our devised model, a t-distributed stochastic neighbor embedding
(T-SNE) technique is employed. And, we take IP data scene as an example. From the
Figure 15e, it can be observed that the classification map of MDBNet shows different class
mix-ups together, causing a phenomenon of confusion. This is consistent with the result
from Table 9, that the OA of MDBNet is lower than other comparative methods. Addition-
ally, the T-SNE-based classification maps of DBPFA, MVAHN, and our proposed model
demonstrate a clearer inter-class separation phenomenon. Furthermore, the intra-class
separation phenomenon of the T-SNE-based classification maps produced by our model
is the best compared to DBPFA and MVAHN, demonstrating the superior classification
performance of our method. Meanwhile, as depicted in Figure 15f,j,k, the T-SNE-based clas-
sification map generated by the hybrid GCN and CNN model exhibits a better inter-class
separation phenomenon compared to the T-SNE-based classification maps generated by
models based solely on GCN or CNN, which shows the benefit of models that combine the
CNN and GCN for feature extraction. From Figure 15l, the T-SNE-based classification map
of our proposed model, which shows a better inter-class and intra-class clustering scenario,
indicates better classification performance compared to other comparative methods.
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5.6. Ablation Experiment

As described in the Methods Section, our proposed model mainly includes a CNN-
based subnetwork and a GCN-based subnetwork. And in each subnetwork, the spectral
and spatial pyramid hybrid convolution block, adaptive feature-weighted fusion strategy,
spectral-enhanced GCN module, and mutual-cooperative attention mechanism are crucial
for our proposed model. In this section, some ablation experiments are performed to verify
the effectiveness of various designed modules in our proposed model. The environment
settings of ablation experiments performed on PU, Honghu, Houston, and IP image data
scenes are described in Section 4.2. And, we take the value of OA as an evaluation indicator
to show the effectiveness of various devised modules, which will compare the complete
model with the model lacking corresponding modules to show the effectiveness of each
corresponding module. In detail, from Figure 16, the OA of model_0 is higher than that of
model_1, model_2, model_3, model_4, model_5, model_6, model_7, and model_8, which
shows the reasonability and the superlative classification accuracy of our proposed model.

To demonstrate the validity of the designed spectral pyramid hybrid convolution
block and spatial pyramid hybrid convolution block, we individually eliminate the spatial
pyramid hybrid convolution block and spectral pyramid hybrid convolution block from
the complete model. As demonstrated in Figure 16, the OAs of model_8 and model_7 are
both lower than that of model_0, which indicates the importance of the spectral pyramid
hybrid block and spatial pyramid hybrid convolution block in multiscale feature extraction.
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Figure 16. Ablation experiments of our proposed model on PU, Houston, Honghu, and IP data
scenes: model_0: complete model; model_1: model without mutual-cooperative mechanism; model_2:
model with mutual-cooperative attention mechanism that includes GCN-based spectral signature;
model_3: model without spectral-enhanced GCN module; model_4: the model that only includes
GCN-based subnetwork; model_5: model that only includes CNN-based subnetwork; model_6:
model without adaptive feature-weighted fusion strategy; model_7: model without spectral pyramid
hybrid convolution block; model_8: model without spatial pyramid hybrid convolution block.

To verify the effectiveness of the devised GCN-based subnetwork, we remove the
GCN-based subnetwork from the proposed model. The OA of model_5 is lower than that
of model_0, which shows the effectiveness of the GCN-based subnetwork.

To demonstrate the robustness of the CNN-based subnetwork to the complete model,
we remove the CNN-based subnetwork; as shown in Figure 16, the OA of model_4 is lower
than that of model_0 on the four widely used HSI data scenes. Meanwhile, the OA of
model_4 is lower than others on the model axis; especially on the IP data scene, the OA
of model_4 is much lower than model_0. And, the limited feature extraction ability of the
GCN-based subnetwork is also shown.

To show the importance of the mutual-cooperative attention mechanism, we remove
the mutual-cooperative attention mechanism from the proposed model; as shown in
Figure 16, the OA of model_1 is lower than the OA of model_0, which indicates the impor-
tance of the mutual-cooperative attention mechanism. Meanwhile, the OAs of model_2
and model_3 are both lower than the OA of model_0, which shows the significance of
the mutual-cooperative attention mechanism without BSNet-based spectral features and
GCN-based spectral signatures separately. And, the phenomenon that the OA of model_3
is lower than the OA of model_0 also demonstrates the significance of spectral-enhanced
GCN modules.
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5.7. The Visualization of the Spectral-Enhanced GCN Module

To validate the effectiveness of the proposed spectral-enhanced GCN modules, the
heatmaps of features before and after using the spectral-enhanced GCN module are shown
in Figure 17. Taking the PU data scene as an example, we randomly chose a 9 × 11 pixel
region from the spectral matrix to show the features contained in the spectral matrix. From
Figure 17a, it can be seen that the image has lighter color, especially in the range of lighter
green, and each pixel does not show significant differences. It shows that the features within
a certain region before using the spectral-enhanced GCN module have weak differences.
Conversely, from Figure 17b, it can be seen that the heatmap displays darker colors, with
different darker shades among pixels for different classes. According to Figure 17b,d,f,g,h,
the features within the feature matrix are accentuated, which demonstrates the effectiveness
of the proposed spectral-enhanced GCN module. On the Houston, Honghu, and IP datasets,
Figure 17c,e,g shows that the feature matrices display relatively lighter colors. In contrast,
Figure 17d,f,h present relatively darker feature maps, which are processed by the spectral-
enhanced GCN module. These heatmaps exhibit more pronounced differences between
pixels of different classes, highlighting the significant features in the feature map.
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5.8. Training Times

In this subsection, the time consumed in experiments is discussed to compare the
efficiency of our proposed method on each dataset used. Tables 11–14 show the detailed
training and testing times for each comparative method and our method. Taking the PU
data scene as an example, Table 11 shows that the method called HDDA has the highest
training time. HDDA also has the highest testing times compared to other methods. The
GCN comparative method has the lowest training and testing times. SSRN, DBDA, and
MDBNet have much higher training and testing times than our proposed method. For the
other datasets used in our experiment section, our method exhibits similar training and test-
ing times compared to other comparative methods. Although our proposed method does
not have the lowest training and testing times, its time efficiency is acceptable compared to
other comparative methods.
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Table 11. Training and testing times of different comparative methods and our method on the PU data.

SSRN DBDA SSGCA PCIA MDBNet HDDA DBPFA ChebNet GCN MVAHN DGFNet FTINet DKDMN MRCAG Ours

Train Time (s) 23.79 42.37 31.39 26.77 51.72 211.94 50.55 12.86 13.25 48.39 92.50 69.94 84.06 23.00 50.12
Test Time (s) 3.88 7.20 4.19 5.42 12.50 21.42 7.93 2.30 2.32 8.16 28.28 9.67 12.09 18.78 7.15

Table 12. Training and testing times of different comparative methods and our method on the Houston data.

SSRN DBDA SSGCA PCIA MDBNet HDDA DBPFA ChebNet GCN MVAHN DGFNet FTINet DKDMN MRCAG Ours

Train Time (s) 177.35 10.30 10.00 10.15 14.80 22.77 11.42 4.14 3.81 16.33 46.42 78.58 53.41 23.46 17.79
Test Time (s) 0.64 0.84 0.87 1.10 1.51 2.36 1.03 0.46 0.44 1.51 8.23 3.51 3.17 5.84 1.56

Table 13. Training and testing times of different comparative methods and our method on the Honghu data.

SSRN DBDA SSGCA PCIA MDBNet HDDA DBPFA ChebNet GCN MVAHN DGFNet FTINet DKDMN MRCAG Ours

Train Time (s) 793.08 206.92 194.94 215.90 252.04 1026.96 190.63 7.90 10.25 51.13 110.74 102.42 156.44 61.60 362.80
Test Time (s) 14.94 20.98 17.51 24.08 66.60 86.48 21.48 3.16 3.26 13.76 51.80 16.97 30.97 31.92 44.05

Table 14. Training and testing times of different comparative methods and our method on the IP data.

SSRN DBDA SSGCA PCIA MDBNet HDDA DBPFA ChebNet GCN MVAHN DGFNet FTINet DKDMN MRCAG Ours

Train Time (s) 798.44 152.24 86.51 111.95 127.58 442.71 81.32 14.04 10.91 51.09 86.10 98.10 90.18 34.22 114.91
Test Time (s) 1.64 3.18 1.88 2.27 5.64 8.87 2.40 1.08 0.69 4.71 6.41 2.36 2.46 4.26 3.79
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6. Conclusions

In this article, we propose a novel PCCGC method that combines CNN and GCN for
HSI classification. It contains two parallel subnetworks, namely, a CNN-based subnetwork
and a GCN-based subnetwork. Specifically, in the CNN subnetwork, a SpePRCM is em-
ployed to extract multiscale spectral signatures. Meanwhile, SpaPCCM is used to extract
multiscale spatial features. Furthermore, an adaptive feature-weighted fusion strategy is
employed to adaptively fuse multiscale spectral and spatial features based on their respec-
tive weights. Based on the above, the CNN subnetwork can enhance the robustness of the
proposed model in classifying HSIs. In the GCN subnetwork, a BSNet is first used to learn
the spectral signatures in the origin HSI using nonlinear inter-band dependencies. Then,
the spectral-enhanced GCN module is employed to learn and accentuate the important
features in the spectral channel. Subsequently, a mutual-cooperative attention mechanism
is constructed that can align the spectral signatures between BSNet-based matrix with
spectral-enhanced GCN-based matrix for spectral signature integration. Finally, the ad-
ditive fusion strategy is utilized to fusion the features extracted from GCN-based and
CNN-based subnetworks. The effectiveness and robustness of our designed model are
demonstrated by quantitative and qualitative experiments. In addition, to verify the supe-
rior performance of our model, numerous parametric analyses and ablation experiments
are conducted.

However, the spectral-enhanced module used in GCN-based subnetwork only learns
the significant features in the spectral channel. In the future, the designed GNN will be
employed to extract the features from the spectral and spatial channels simultaneously.
And, a fusion-based mechanism will be employed to exquisitely combine the CNN and
GCN model.
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