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Abstract: The Multi-Scale Multi-Group Wide-Band (MSMGWB) model was used to calculate radiative
transfer in strongly non-isothermal and inhomogeneous media such as the remote infrared sensing
of aircraft exhaust system and jet plume scenario. In this work, the reference temperature was
introduced into the model as an independent variable for each spectral subinterval group. Then, to
deal with the exceedingly vast parameter sample space (i.e., the combination of spectral subinterval
grouping results, reference temperatures and Gaussian quadrature schemes), an MSMGWB model’s
parameter optimization process superior to the exhaustive approach employed in previous studies
was established, which was consisted of the Non-dominated Sorting Genetic Algorithm II method
(NSGA2) and an iterative scan method. Through a series of 0-D test cases and two real 3-D remote
infrared imaging results of an aircraft exhaust system, it was observed that the MSMGWB model
established and optimiazed in current work demonstrated notable improvements in both accuracy
and computational efficiency.

Keywords: remote infrared sensing; genetic algorithm; wide-band model; k-distribution

1. Introduction

The remote infrared detection of aircraft is extensively applied in domains such as
military and aerospace [1]. Among them, the solid walls and jets of the aircraft exhaust
system, which have relatively high temperatures, are one of the main sources of infrared
signals for detection [2]. The calculation and prediction of their remote infrared radiation
possess significant engineering significance. The calculation of remote infrared radiation
mainly encounters two issues: computational efficiency and accuracy [3]. Regarding
the computational efficiency, as the gas radiation absorption spectrum differs from that
of solids and is discontinuous, the calculation of the precise radiation transfer equation
necessitates the adoption of a line-by-line (LBL) calculation approach [4]. However, this
approach demands a considerable amount of computing capacity, severely restricting
its application in engineering issues. Hence, several spectral band models have been
developed and employed in recent years, such as k-distribution models [5–7], l-distribution
models [8], statistical spectral band models [9–11], etc. From the aspect of accuracy, as the
gas absorption coefficient oscillates intensely along the spectrum and changes unpredictably
with the variation of thermodynamic states, these models are challenged by the radiation
transfer calculation in strongly non-isothermal and inhomogeneous media.

For the given remote infrared radiation detection within the atmospheric radiation
window band that does not require detailed spectral radiation characteristics, the wide-
band model possesses the advantage in terms of computational effort in contrast to the
narrow-band model [3]. The early wide-band models, such as the box model [12] and
the exponential wide-band model [13,14], directly obtain the average parameters within
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the spectral band. They are unable to capture and utilize the detailed spectral line infor-
mation, frequently resulting in an average error of over 20% thus mainly concentrating
on qualitative research. Yin employed the k-distribution model based on the principle
of rearrangement of absorption coefficients to deal with the wide-band issue [15]. They
made use of the spectral information to obtain the cumulative k-distribution function and
decreased the average error to below 20%. The k-distribution model possesses two major
advantages [16–18]: Firstly, it exhibits remarkable computational accuracy for radiation
transfer in homogeneous gases and inhomogeneous gases that fulfill the correlated-k (CK)
assumption, and the computational cost is merely a small portion of that of the LBL ap-
proach; Secondly, it is compatible with the methods of discretizing and solving the radiation
transfer equation (RTE) in both differential and integral forms. However, the principal
challenge in employing the aforementioned k-distribution model to solve the radiance issue
such as the remote infrared imaging of the hot jet from an aircraft nozzle using hydrocarbon
fuel is that the substantial disparity in the molar ratio and temperature of the radiative
participating components between the combustion gas and the atmosphere can severely
diminish the CK characteristics [19–21]. Studies have shown that the presence of “hot
lines” in the absorption spectra of radiatively participating components exacerbates the
disruption of CK characteristics due to temperature non-uniformity [22]. Current solu-
tions to this issue can be categorized into the Multiple Line Group (MLG) [23–25] method
and the Spectral Mapping Method (SMM) [26–28]. Both approaches involve dividing the
concerned absorption spectra (SMM) or absorption lines (MLG) into several subsets to
ensure that the absorption spectra of each subset maintain high CK characteristics across
various thermodynamic states. The CK characteristic disruption caused by non-uniformity
in component molar ratios is due to differences in the absorption spectra of the radiative
participating components. Existing solutions include methods based on joint distribution
functions [29], multiple integration [30] and various convolution [31]. Pal [32] incorporated
both the convolution method [33] and the SMM method in the Full-Spectrum k-distribution
(FSK) model, and the established Multi-Scale Multi-Group Full-Spectrum k-distribution
(MSMGFSK) model can cope with the two CK characteristic failure mechanisms at the
same time. Hu refined the same method to develop the MSMGWB model for wide-band
applications, which was successfully applied to remote infrared sensing calculations [21].
However, any of the aforementioned methods for addressing the mechanisms that degrade
CK characteristic come with increased computational demands, when using both the MS
and MG methods to address two CK characteristic degradation issues. Therefore, both the
MSMGFSK model and the MSMGWB model must be optimized to achieve the best balance
between computational accuracy and cost.

Previous works have indicated that the random grouping initialization has a significant
impact on the division results of the wavenumber subintervals, thus further affects the
performance of the corresponding MSMGWB model [21]. Hu established an automatic
optimization scheme to identify the optimal combination within the grouping results of the
wavenumber subintervals and the Gaussian quadrature scheme [34]. Wang enhanced the
scheme by augmenting the quantity of cases for the optimization objective function and the
selection scope of Gaussian quadrature schemes, thereby obtaining model parameters with
superior performance [35]. However, all the schemes of the aforementioned optimization
platforms employ the exhaustive approach. As the optimization sample space increases,
this approach has been incapable of obtaining optimization results within a time period
measured in years.

The research contents of this study are as follows: In contrast to the previous work
where the same reference temperature was employed among RTEs corresponding to each
spectral subinterval group, the reference temperature within each group of the MSMGWB
model was regarded as an independent variable for the first time, giving rise to three
factors that require matching and optimization: the Gaussian quadrature points quantity,
the reference temperature, and the spectral subinterval grouping results. The NSGA2
genetic algorithm was employed to obtain the optimal Gaussian quadrature points quantity
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and reference temperature at given grouping results [36,37]. An iterative scan method was
proposed to determine the most suitable grouping combination result, then the optimization
results of three factors were obtained. Finally, the calculation results and costs of the
MSMGWB model optimized in this work were compared with other models in a series
of 0-D cases, as well as two 3-D cases where the parameters of the combustion gas and
ambient air are completely different.

2. MSMGWB Model

The MSMGWB model was proposed to predict the remote infrared radiation emitted
by hot combustion gas jets. The RTE without scattering gain can be written as{

dIη

ds = (kη(ϕ)− ksη(ϕ))Ibη − kη(ϕ)Iη

I∆η =
∫ ηU

ηL
Iηdη

(1)

where Iη is the spectral radiance, Ibη the spectral radiance of blackbody, and s the location
through the radiation transfer path. kη and ksη are the spectral extinction and scattering
coefficient at wavenumber η, respectively. In this work, kη = ksη +∑4

n=1 knη , and ksη = k4sη ,
where n ranges from 1 to 4, corresponding to water vapor, carbon dioxide, carbon monoxide,
and aerosol particles, respectively. ϕ = ϕ(T, p, x, N) is the gas and particle thermodynamic
state at a certain space location, including temperature, pressure, component concentration,
and particle number density, which determines the local kη and ksη . ηL, ηU , and ∆η
are the lower wavenumber, upper wavenumber, wavenumber range of current infrared
bands user concerned, respectively. In this study, k1˜3η is calculated by LBL based on
HITEMP2010 database for gas components [38], while k4η and ksη by Mie scattering theory
for aerosol [39,40].

In hot combustion gas remote detection scenario, water vapor and carbon dioxide are
treated as participation in both emission and absorption process, while carbon monoxide
and aerosols only contribute to the attenuation part, because they exist only in the atmo-
sphere rather than in turbo gas. Besides, the emission and scattering gain from atmosphere
are not considered here since they are commonly treated as background radiation and
calculated separately. Therefore, Equation (1) can be simplified into [19,41]:

dInη

ds = knη Ibη(T)− kη Inη

Iη =
2
∑

n=1
Inη

k3η = k4η = k4sη = 0, in combustion gas
Ibη = 0, in atmosphere

(2)

where Iη is calculated by emission of water vapor and carbon dioxide while absorption and
scattering of all four components.

Next, to establish and later enhance the relation between the cumulative distribution
function of n-thcomponents gn(kn, T0) and the total extinction coefficient k of the mixed
medium, the equation is given as

∫ gn(k∗n(gn ,T0),T)
0 kn(gn, T)dgn = 1

Ib,∆η(T)

∫ ηU
ηL

knη H
(
k − kη

)
Ibη(T)dη

gn(kn, T) = 1
Ib,∆η(T)

∫ ηU
ηL

H
(
kn − knη

)
Ibη(T)dη

(3)

where Ib,∆η(T) =
∫ ηU

ηL
Ibη(T)dη, kn is the absorption coefficient of n-th components, H the

Heaviside step function, and T0 the reference temperature. Both kη and k are monotonically
increasing with gn(T0) by Equation (3). Consequently, as derived in [34] Equation (2) is
transformed based on the k-distribution theory to
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dIng
ds = k∗n(gn, T0)an(k∗n, T, T0)Ib,∆η(T)− k(gn, T0)Ing

I∆η =
2
∑

n=1
In =

2
∑

n=1

∫ 1
0 Ingdgn(T0)

(4)

where k∗n is a pseudo absorption coefficient of n-th components, and an(k∗n, T, T0) =
dgn(k∗n ,T)
dgn(k∗n ,T0)

is the non-gray stretch factor.
When the inhomogeneous medium contains only one participating component, it is

obvious that Equation (4) is quivalent to Equation (1) if the extinction spectra is correlated,
i.e., gn(ϕ, knη , T0) = F(knη(ϕre f ))|n≡1

∀η,ϕ where F is a monotonically increasing function, ϕre f
is a reference thermodynamic state. Therefore, Equations (1) and (4) are equivalent only
when equation

gn(ϕ, kη , T0) = F
(

kη(ϕre f )
)
|∀η,ϕ (5)

holds for cases involving two or more participating components in inhomogeneous me-
dia [34,35]. Generally, gn(ϕ, kn, T0) is not a constant for each η under various ϕ, introducing
variations between the calculation results derived from Equations (1) and (4). This discrep-
ancy is especially noticeable in scenarios with pronounced ϕ inhomogeneities.

The critical aspect of the MSMGWB model involves partitioning the wavenumber
subintervals that constitute the absorption spectrum of the n-th component into M distinct
subsets. The primary objective is to ensure that Equation (5) is satisfied within each subset
of wavenumber subintervals to the greatest extent possible under the thermodynamic
states of interest. Consequently, Equations (2)–(4) can be reformulated as

dInmη

ds = knmη Ibη(T)− kη Inmη

Iη =
2
∑

n=1

Mn
∑

m=1
Inmη

k3η = k4η = k4sη = 0, in combustion gas
Ibη = 0, in atmosphere

(6)


∫ gnm(k∗nm(gnm ,T0

nm),T)
0 knm(gnm, T)dgnm = 1

Ib,∆η(T)

∫ ηU
ηL

knmη H
(
k − kη

)
Ibη(T)dη

gnm(knm, T) = 1
Ib,∆η(T)

∫ ηU
ηL

H
(
knm − knmη

)
Ibη(T)dη

(7)


dInmg

ds = k∗nm(gnm, T0
nm)anm(k∗nm, T, T0

nm)− k(gnm, T0
nm)Inmg

I∆η = ∑2
n=1 ∑Mn

m=1 Inm =
2
∑

n=1

Mn
∑

m=1

∫ 1
0 Inmgdgnm(T0

nm)

anm(k∗nm, T, T0
nm) =

dgnm(k∗nm ,T)
dgnm(k∗nm ,T0

nm)

(8)

It is different from the previous version MSMGWB model that an independent ref-
erence temperature was employed here, thus each group of each component has its own
reference temperature T0

nm and Gaussian quadrature scheme. M1 and M2 are not con-
strained to be identical; they can take different values since the grouping of k1η and k2η is
independent. The width of the wavenumber subintervals must be smaller than that in LBL,
which was set at 0.005 cm−1 in this study. The grouping method is described as follows:

• Step i. Select the representative thermodynamic states encountered during the com-
putation of atmospheric transmission characteristics for radiation emitted by hydro-
carbon fuel combustion gases, as listed in Table 1.

• Step ii. Stochastically assign an initial group membership for each wavenumber
subinterval within the absorption spectrum of the water vapor.

• Step iii. Compute M1 group tags, which are given by

ξnmη = ∑
i=1∼5

∑
i′=6∼9

ln2
(

kη(ϕi′)

k(ϕi′ , gnm(ϕi, kη , T0), T0)

)
(9)
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for each wavenumber subinterval, followed by their redistribution to the group corre-
sponding to the minimum ξnmη .

• Step iv. Iterate Step iii until fewer than 0.1% of the total k1η numbers change their
group assignment.

• Step v. Repeat Steps ii~iv for each k2η .

Table 1. Representative thermodynamic states for aeroengine jet plume and atmosphere.

Scenario Thermodynamic State T(K) xH2O xCO2 xCO p(atm)

Aeroengine jet plume

ϕ1 1900 0.12 0.12 0 2
ϕ2 1900 0.12 0.12 0 1
ϕ3 1500 0.1 0.1 0 0.5
ϕ4 900 0.08 0.08 0 1
ϕ5 900 0.08 0.08 0 0.5

Atmosphere

ϕ6 300 0.034 3.4 × 10−4 1.42 × 10−7 1
ϕ7 300 0.0068 3.4 × 10−4 1.42 × 10−7 1
ϕ8 293 0.02 3.4 × 10−4 1.42 × 10−7 0.9
ϕ9 263 0.002 3.4 × 10−4 1.42 × 10−7 0.5

It is obvious that ξnmη = 0|∀η ∈ m-th group o f n-th component means Equation (5)

is true within m-th group of n-th component, i.e., gnm(ϕ, kη , T0
nm) = F

(
kη(ϕre f )

)
|∀ϕ
∀ηnm

,
where the ηnm is the wavenumber subinterval of the m-th group of the n-th component.
In practice, the integration in the middle formula of Equation (8) is calculated by Gauss-
Legendre quadrature, to give



dInmg,q
ds = Anm,q(T)Ib,∆η(T)− k(gnm,q, T0

nm)Inmg,q

I∆η =
2
∑

n=1

Mn
∑

m=1
Inm =

2
∑

n=1

Mn
∑

m=1

Nnmg

∑
q=1

Inmg,q

Inmg,q =
∫ g̃nm,q

g̃,m,q−1 Inmgdgnm(T0
nm)

Anm,q(T) = 1
Ib,∆η (T)

∫ ηL
ηU

knmη Ibη(T)H
(
knm(g̃nm,q, T0

nm)− knmη

)
H
(
knmη − knm(g̃nm,q−1, T0

nm)
)

0 = g̃nm,0 < gnm,1 < g̃nm,1 < gnm,2 . . . < g̃nm,q−1 < gnm,q < g̃nm,q <

. . . < g̃nm,Nnmg−1 < gnm,Nnmg
< g̃nm,Nnmg = gnm(∞, T0

nm)

(10)

where the Nnmg is the total number of gnm,q(T
0
nm). Both

gnm,q

gnm(∞,T0
nm)

and
g̃nm,q

gnm(∞,T0
nm)

are
constants that solely denpend on the chosen Gauss quadrature schemes. It is worth noting
that in contrast to the equation presented in [35] for the MSMGWB model, the sole disparity
in the current study is that the reference temperature employed in each group is mutually
independent.

The boundary solution of gray walls involving diffuse emitted and reflected radiation
is transformed from Equation (8) as

Inmḡ,q,w =
ε

k
(
ϕw, ḡnm,q, Tw

) Anm,q(ϕw, Tw)Ib,∆η(Tw)

+
1 − ε

π

∫ 4π

0
Inmḡ,q (⃗s)max(−n⃗w · s⃗, 0)dΩ

(11)

where ϕw = (Tw, pw, xw, Nw) represents the temperature and pressure at wall, gas com-
ponent mole fractions and particle number densities of the medium adjacent to the wall,
respectively. ε is the gray wall emissivity, s⃗ the (unit) direction vector of the incident radia-
tion (Inmg (⃗s)), and Ω the solid angle corresponding to the s⃗, n⃗w the (unit) normal vector of
the wall.
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3. Parameter Optimization Method

The iteration process for group division of wavenumber subintervals, as mentioned
earlier, resembles the standard k-means clustering algorithm. Like other methods of the
k-means family, a distance needs to be defined as the basis for measuring the relationship
between sample point and cluster center, and the distance in this work is defined by
Equation (9). Consequently, akin to the standard k-means clustering, the final results
of group division which directly determine the performance of MSMGWB model are
significantly impacted by its initialization (Step ii in Section 2). Besides, the quadrature
accuracy of Equation (8) may not exhibit a monotonic increase with increasing Nnmg,
especially when the k-gnm function contain stair-like zones, as depicted in Figure 1.

Figure 1. The relationship between k and gnm of a group in different reference temperatures and
thermodynamic states at 8~14 µm band.

Furthermore, the reference temperature value can also substantially impact correlated
k-distribution models as reported in [34] and Figure 1. To identify the optimal combination
of these three factors, we formulated an error function to gauge the performance of the
MSMGWB model as

ferr =
56
∑
j=1


errorj, max

0.08 + 10(errorj, max − 0.08)
0.48 + 100(errorj, max − 0.12)

∣∣∣∣∣∣
errorj, max ≤ 0.08

0.08 < errorj, max < 0.12
errorj, max ≥ 0.12

errorj, max = max
(∣∣∣ I∆η,j,MSMGWB(La)−I∆η,j,LBL(La)

I∆η,j,LBL(La)

∣∣∣)
(12)

where j is the 56 0-D cases number (see in Appendix A), and it is obvious that the larger
the errorj,max is, the more punishment (represented as slope) of ferr gains. These 0-D cases
is selected by typical scenarios of combustion gas and ambient atmosphere to comprehen-
sively evaluate the performance of the MSMGWB model [34]. Figure 2 shows the effects of
the wavenumber subinterval grouping results, the Gaussian quadrature points quantity,
and the reference temperature on the ferr, respectively, when the other two factors are
fixed at their optimal values. It is elucidated that all three factors significantly impact ferr.
Besides, since we are pursuing the minimum value of ferr, the left part of the figure is more
noteworthy. The red line shows lower probability density but big slope at small ferr area
than the other two lines, i.e., the optimal Gaussian quadrature scheme is more difficult to
be discovered than the other two factors.
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In this section, the NSGA2 method will be employed to optimize the Gaussian quadra-
ture points quantity and reference temperature for each group within an arbitrarily given
water vapor and carbon dioxide grouping results combination. The optimization is based
on the dual objective of quantitative accuracy and efficiency of the MSMGWB model. Con-
currently, an iterative scheme driven by the NSGA2 optimization results will be established
to select the optimal combination of water vapor and carbon dioxide grouping schemes.

Figure 2. Relationship between probability density of objective function value and three critical factors
(Gaussian quadrature point quantity, reference temperature, and wavenumber subinterval grouping).

3.1. Genotype Modeling

The genes chain consists of quadrature points quantity and reference temperature
from each group. In 3~5 µm band, for instance, the spectra of H2O and CO2 are divided
into 5 groups and 10 groups, respectively. Each group has its own Gaussian quadrature
points quantity and reference temperature, therefore the length of the genes chain is 30.
The quadrature points quantity range of each group is prescribed from 3 to 9 for feasible
computational cost, and the reference temperature range is constrained from 100 K to
2500 K represented by 9 typical points. The variables in dark background color of the top
chain in Figure 3 stand for quadrature points quantity of each group while the variables in
light background color were the number of the corresponding reference temperature. Here
we defined

fN =
2

∑
n=1

Mn

∑
m=1

Nnmg (13)

which is directly proportional to the total Gaussian quadrature point quantity while solving
RTE. Now, a certain gene chain is corresponding to certain parameters of the MSMGWB
model, which also yields certain ferr and fN .

Figure 3. Genotype and crossover process diagram.
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3.2. Non-Dominated Genetic Algorithm Process

The non-dominated genetic algorithm process is depicted in Figure 4 and basically
consists of three steps as initializing, generating offspring, and ending iteration.

Start

Initializing population

Generating offspring

No

Yes updated ? Set NSI as 0

No

Yes

NSI > N ?

Output results

End

NSI++

Figure 4. NSGA2 algorithm workflow diagram.

3.2.1. Initializing

Randomly generate an initial value for each gene in the genotype of every individual
in the population.

3.2.2. Generating Offspring

As Figure 3 shows, generating offspring contains selection, crossover and mutation
process. Firstly, conduct non-dominated sorting for all individuals in the parent population.
An individual A is considered to dominate individual B only when both objective function
values ferr and fN of individual A are smaller than those of individual B. It is evident that
each individual may dominate others and, in turn, be dominated by different individuals.
The number of times an individual is dominated is referred to as its rank. A rank of 0
indicates that the individual is not dominated by any other individuals, and all individuals
with a rank of 0 form the Pareto front of the current solution set.

Secondly, select parent individuals with the current rank of 0, duplicate them directly
into the new offspring, and decrease the rank values of the individuals they dominate by 1.
After this process a new generation of the current Pareto front is identified and duplicated
into the new offspring. Repeat this operation until the number of parent individuals directly
copied into the offspring reaches 50% of the entire population. Individuals within the same
rank are first reordered then prioritized based on their crowding distance, given to{

di = ∞, i ∈ {1, Nr}
di =

( ferr,i+1− ferr,i−1)
( ferr,max− ferr,min)

+
( fN,i+1− fN,i−1)
( fN,max− fN,min)

, i /∈ {1, Nr}
(14)

where 1 and Nr represent the first and the last individual after ascending reordering of ferr
and fN , respectively. A larger crowding distance implies higher genetic diversity in the
solutions after the individual is added to the offspring, facilitating the expansion of the
search space and reducing the risk of the iterative process getting trapped in local optima.

Finally, Another half of offspring are generated by crossover and mutation. Two
parent individuals are randomly selected from the copied 50% advantageous population
obtained in the second step, then they crossover by the probability Pc. During the crossover
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process, two gene location points are randomly chosen, as depicted in Figure 3, to execute
a two-point crossover and generate a new individual. In the absence of crossover by the
probability Pc, one of the parent individuals is directly duplicated to create a new individual.
Due to the stochastic crossover point selection, overlapping points can lead to single-point
crossover. Moreover when both points are situated at the head or tail location of the genes
chain, it reverts to no crossover, involving a direct duplication of the parent individual.
After crossover, the individual randomly mutate by the number of mutation points and
the probability Pm to finally generated a new individual into the offspring, as shown in
Figure 5.

Non-dominated sorting

Yes

No

Offspring quantity
equals to 0.5N?

Copy the parents at the first
Pareto front directly into

the offspring

Select two parents by
roulette wheel method

No

YesRandom value > Pc ?

Randomly crossover the 
two parents to generate 

a new individual

Copy the first
parent as new

offspring
No

YesRandom value > Pm ?

Randomly choose the
mutate the gene point(s) 

A new offspring

Selection Crossover Mutation

Figure 5. Offspring generation workflow diagram.

In this study, Pc is fixed at 0.8, while the Pm varies with the number of stagnant
iterations of updating best solutions (NSI). When the NSI is less than 20, Pm is set to
0.05, and the number of mutation points is set to 1, while 0.2 and 2 as NSI no less than
20. Note that when the number of mutation points is set to 2, the mutation process will
occur with an equal probability (50%–50%) between single-point mutation and two-points
mutation. Upon each update of the best solutions, the NSI is reset to zero, which ensures
the Pm stay at low value to avoid impeding convergence. When the NSI becomes high, it
often indicates that the iteration process is nearing its conclusion or has reached a local
optimum. In such scenarios, implementing a higher number of mutation points and an
increased mutation probability aids in breaking out of local optima, thereby expanding the
search space.

3.2.3. Iteration Ending

The iteration process is finished when the NSI reaches to 50 for it was proved by
several repeated tests that 50 is large enough for the scale of this study to retain a conver-
gence result.

3.2.4. Iteration Results

Figure 6a shows the fronts of a certain H2O-CO2 grouping results combination. It is
observed that the spacing between fronts is exceedingly thin, corresponding to a convergent
and dense result by genetic algorithm. Therefore, the smallest error function value of
the first front, defined as ferr0, was served as the benchmark for assessing the iteration
progress. Convergence process of ferr0 for ten random grouping results combinations in
20,000 population size is depicted in Figure 6b. All of them began with a large ferr0 for
randomly initializing, descend rapidly, and eventually finish at a small stable ferr0.
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(a) (b)

Figure 6. Convergence results of the NSGA2 method: (a) the foremost 10 Pareto front results,
(b) convergence iteration process of 10 random grouping strategy combinations.

To assess the accuracy of the genetic algorithm, we compared the results obtained
by the genetic algorithm and exhaustive search in the 7.7~9.7 µm band which contains
11 H2O groups and 2 CO2 groups. Each group has 3 options for quadrature points quantity
(3/5/7), and 2 options for reference temperatures (300 K/1900 K), resulting in a total of
13,060,694,016 possible combinations. As shown in Figure 7, the genetic algorithm produced
results identical to those of the exhaustive search with a population size of 1000, while it
costs five orders of magnitude less computational time than the exhaustive search.

Figure 7. ferr0 results between exhaustive search method and NSGA2 method.

3.3. Grouping Result Selection Based on an Iterative Scan Method

Due to the stochastic process in Step ii of wavenumber subintervals group division, it
is nearly impossible to achieve good enough grouping results combinations between H2O
and CO2 in few grouping experiments. Therefore, we produced about 10 to 10,000 grouping
results for both H2O and CO2, then filter them for good combination by iteration method,
as shown in Table 2 (S for the number of grouping results, subscript 1 and 2 for the H2O
and CO2 respectively). Besides, for each group, the quadrature points quantity option is
set to 7 (3 to 9), and the reference temperature is set to 7 (100 K to 2500 K). As a result, the
combination quantity of quadrature points quantity, reference temperature, and grouping
results is exceedingly large so that exhaustive search is totally incompetent. Two methods
were proposed below to address the excessive computational complexity issue, reducing
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the computational burden from quadratic growth with respect to the number of grouping
results to linear growth, and finally collaborated with the non-dominated genetic algorithm
to solve the optimization.

Table 2. Grouping result quantity and wavenumber group quantity of five typical infrared remote
sensing bands for H2O and CO2.

Parameter 2~2.5 µm 3.7~4.8 µm 3~5 µm 7.7~9.7 µm 8~14 µm

S1 3196 247 115 10,000 10,000
S2 728 10,000 10,000 10 2172
M1 15 5 5 11 10
M2 5 10 10 2 10

3.3.1. Iterative Scan Method

To illustrate the problem in hand, 100 grouping results of H2O and 400 grouping
results for CO2 were selected in 3~5 µm band, resulting in a total of 40,000 grouping
combinations. Each combination’s ferr0 were computed using the genetic algorithm with
a population size of 40,000 individuals per generation. The results, as shown in Figure 8,
depict smaller ferr0 in blue and larger ferr0 in red.

Figure 8. The ferr0 results among 100 H2O and 400 CO2 grouping strategy combinations.

Four profile lines are randomly chosen for both H2O and CO2. These lines depict the
ferr0 of the local grouping result combination traversing all CO2(H2O) grouping results
while keeping the H2O(CO2) grouping result fixed. In most cases, if CO2 grouping result
serial number (iCO2 ) at a certain position, for example iCO2 = 10 as indicated by the purple

dashed line in the figure, the inequality relation f
iH2O
err0 ≤ f

i′H2O
err0 holds, then for any value of

i′CO2
, f

iH2O
err0 ≤ f

i′H2O
err0 holds. The same is true for lines with iH2O = Const. Therefore, once the

profile lines with low ferr0 values for both H2O and CO2 are identified, the corresponding
grouping results combinations are highly likely to contain the combination with the globally
lowest ferr0. This probability increases as the number of selected low ferr0 value profile
lines grows. The scanning approach is as follows:
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• Step i. Randomly select an i1x,H2O, combine it with all iCO2 and conduct the genetic
algorithm iteration, arrange them in ascending order based on the ferr0, and identify
the i11,CO2

that results in the minimum ferr0.
• Step ii. Select the i11,CO2

from step i, combine it with all iH2O, and conduct the genetic
algorithm iteration, arrange them in ascending order based on the ferr0, and identify
the i21,H2O that results in the minimum ferr0.

• Step iii. Select the i21,H2O from step ii, combine it with all iCO2 and conduct the genetic
algorithm iteration, and record the first p serial numbers with the smallest ferr0 as a set
ICO2 = {i31,CO2

, i32,CO2
, . . . , i3p,CO2

}.

• Step iv. Select the i31,CO2
in ICO2 from step iii, combine it with all iH2O and conduct the

genetic algorithm iteration, and record the first q serial numbers with the smallest ferr0
as a set IH2O = {i41,H2O, i42,H2O, . . . , i4q,H2O}.

• Step v. Combine the set ICO2 and IH2O, then find out the optimal grouping result
combination from the total p × q combinations.

where the superscript of i (e.g., i21,H2O) represents the step number in which the value is
generated, and the first item of the subscript represents the order sorted by ferr0.

Considering the stochastic selection of i1x,H2O in step i, the scanning approach intro-
duces an additional iteration process to ensure the stability of the results. Clearly, with
an increaseing number of iterations, both the results and stability improve, but the com-
putational cost increases simultaneously. Therefore, we compared 4 different iteration
approaches, evaluating the results when the total groups results for H2O and CO2 are taken
in sets of 100 and 400, respectively. Each plan differs in the way ICO2 and IH2O are obtained,
while the remaining steps are the same. Plan A directly obtains ICO2 and IH2O through
steps i and ii only; Plan B follows the whole steps as described above; Plan C involves one
more steps iii and iv than Plan B; Plan D repeats steps iii and iv multiple times, and filters
out the grouping results corresponding to the higher 50% of ferr0 at each step, until the
remaining number of grouping results decreases to predefined numbers of p and q. As
shown in Figure 9, blue cells represent scanned sample points, green cells represent the
currently scanning sample point, and red cells represent the sample point with the lowest
ferr0 in the current scanning row (column), where the smaller ferr0 the higher saturation of
red color. Orange cells represent the finally selected sample points, i.e., the global optimal
sample points obtained by the algorithm. Black cells represent excluded sample points by
Plan D.

The performance of the 4 plans is demonstrated in Figure 10. The ferr results was
obtained by averaging 100,000 repeated experiments for stability. The number of sample
points is determined by the iterative scan method itself and the sizes of the sets ICO2 and
IH2O. Figure 9 illustrates the execution process of the four plans. It can be observed that
Plan A, due to the randomness of Step i, cannot consistently obtain results with lower
ferr0, and it descends slowly as the number of sample points increases. Plan C, involving
multiple executions of steps iii and iv, leads to an increase in computational complexity, but
quickly approaches the global optimum as the number of sample points increases. Plan D
exhibits a good descending trend with the early increase in sample points, but the descent
slows in the later stages, as some good grouping results are excluded prematurely. Plan B
demonstrates results close to Plan C with a relatively small number of computation sample
points. Therefore, it is adopted as a compromise between performance and efficiency.
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Figure 9. Diagram of 4 iterative scan method process plans.

Figure 10. Convergence perfomance of 4 plans for scan iteration process.

3.3.2. Population Size Selection

Due to the enormous genotype sample space in this study, the genetic algorithm
requires a large population size to achieve satisfactory results. However, the computational
complexity of the NSGA2 increases quadratically with the population size. Therefore, the
computational workload remains significant even with the iterative scanning approach
adopted. As a result, some improvements need to be made at the population size level. In
this section, 20 grouping results of both H2O and CO2 were randomly selected in 3~5 µm
band, forming 400 grouping combination sample points. The genetic algorithm was then
employed with 9 different population sizes (100, 200, 500, 1000, 2000, 5000, 10,000, 20,000,
40,000), and the ferr0 obtained for each population was taken as the representative result.

As shown in Figure 11, the angular axis is divided into 400 parts representing 400 group-
ing results combinations, and the radial axis represents the population size. The results for
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a population size of 40,000 is taken as the baseline, and the contour values represent the
ratio between the ferr0 of the model at current population size and the ferr0 at the baseline
population size. It can be observed that as the population size increases, the ratio gradually
decreases towards 1, indicating an improvement in algorithm performance. When the
population size reaches 20,000, the improvement is not significant. Additionally, Figure 12
analyzes the results for each grouping results combination at population size of 5000 and
40,000. The Spearman correlation analysis shows a high correlation coefficient of 0.920
and a low p-value of 0.000, indicating a strong correlation between them. It is also evident
that for the same grouping results combination, the calculation result for a population size
of 40,000 is significantly better than that for a population size of 5000 in the majority of
grouping results combinations (corresponding to the points under the dash line), especially
at those with smaller ferr0, which are exactly the grouping results combinations we are
searching for. There are still few combination points above the dash line, however the
most of them hold large ferr0 and will not be selected in the iterative scan method. Since
the steps i~iv of Plan B place a higher emphasis on the order of the results rather than
their specific values, it is reasonable and accurate enough to utilize small population size
in these steps. Note that there is approximate 82 times of workload between 5000 and
40,000 methods. Therefore, the completed approach is: steps i~iv employ a population
size of 5000, while step v employs a population size of 40,000. This approach significantly
improves computational efficiency without deteriorating the results.

Figure 11. Ratio of the ferr0 at the current sample population size to its corresponding baseline value.

Figure 12. ferr0 results between the same grouping result combination in the NSGA2 model popula-
tion sizes of 5000 and 40,000.
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4. Results
4.1. 0-D Cases

Adopting the methods established in last section, we optimized the MSMGWB model
in grouping results combination, Gaussian quadrature points quantity, and reference tem-
perature, at 5 typical atmospheric infrared window bands (2~2.5 µm, 3~5 µm, 7.7~9.7 µm,
8~14 µm), and Figures 13a–17a show the fN versus ferr in each band. It is demonstrated that
with increasing fN , the ferr significantly reduces when fN is at low level, while the reduction
of ferr gradually becomes negligible at high fN level and even showing an upward trend.

When compared to the current MSMGWB model [35], the MSMGWB model optimized
in this work achieved significantly better computational accuracy in the vast majority of
the test cases as shown in Figures 13b–17b and Table 3. The theoretical computational cost,
i.e., the total number of solved RTE fN of the 2~2.5 µm band, 3.7~4.8 µm band, 3~5 µm
band, 7.7~9.7 µm band, and 8~14 µm band were decreased by 11.4%, 5.7%, 8.6%, 3.3%, and
11.6%, respectively. Meanwhile, the computational error ( ferr) were decreased by 52.8%,
61.4%, 62.4%, 62.3%, 57.3% at the 5 bands, respectively. The finally selected points at the
Pareto fronts are a trade-off consideration of fN and ferr, as shown by the red points in the
Figures 13a–17a.

(a) (b)

Figure 13. Optimization results at 2~2.5 µm band: (a) Pareto front, (b) errorj,max in 56 0-D cases.

(a) (b)

Figure 14. Optimization results at 3.7~4.8 µm band: (a) Pareto front, (b) errorj,max in 56 0-D cases.
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(a) (b)

Figure 15. Optimization results at 3~5 µm band: (a) Pareto front, (b) errorj,max in 56 0-D cases.

(a) (b)

Figure 16. Optimization results at 7.7~9.7 µm band: (a) Pareto front, (b) errorj,max in 56 0-D cases.

(a) (b)

Figure 17. Optimization results at 8~14 µm band: (a) Pareto front, (b) errorj,max in 56 0-D cases.
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Table 3. Comparison between the optimized MSMGWB model and other models.

ferr Number of Solved RTEs/Transmissivities

Wave-band MSMGWB-new MSMGWB
in [35] SNBFG NBKD MSMGWB-new MSMGWB

in [35] SNBFG NBKD

2~2.5 µm 8.19 17.35 54.21 1212.4 109 123 272 3280
3.7~4.8 µm 5.15 13.33 130.9 51.0 82 87 216 10,300

3~5 µm 2.10 5.59 216.1 111.9 64 70 336 11,840
7.7~9.7 µm 6.30 16.72 24.23 1097.2 59 61 65 550
8~14 µm 3.4 7.01 12.86 1111.2 72 95 137 1730

4.2. Two High-Temperature Exhaust System 3-D Cases

Two 3-D cases of the high-temperature exhaust system cases were calculated. The
MSMGWB model optimized in this work was used for remote infrared imaging and the
error contours was obtained. These two 3-D cases have different exhaust system sizes,
structures, working conditions, atmosphere parameters (see Tables 4 and 5), and aerosol
spectral extinction characteristics (see Figure 18).

Table 4. Atmosphere thermodynamic state parameters at 0~7 km altitude in the large-sized case.

Altitude [km] p [atm] T [K] xH2O xCO2 xCO

0~1 0.947 296.7 2.073 × 10−2 3.301 × 10−4 1.476 × 10−7

1~2 0.843 290.7 1.925 × 10−2 3.300 × 10−4 1.426 × 10−7

2~3 0.750 285.7 1.488 × 10−2 3.298 × 10−4 1.378 × 10−7

3~4 0.665 280.4 6.619 × 10−3 3.294 × 10−4 1.331 × 10−7

4~5 0.588 273.6 3.926 × 10−3 3.296 × 10−4 1.306 × 10−7

5~6 0.519 267.0 2.761 × 10−3 3.298 × 10−4 1.295 × 10−7

6~7 0.456 260.3 1.718 × 10−3 3.302 × 10−4 1.268 × 10−7

Table 5. Atmosphere thermodynamic state parameters at 0~7 km altitude in the small-sized case.

Altitude [km] p [atm] T [K] xH2O xCO2 xCO

0~1 0.938 258.1 1.350 × 10−3 3.300 × 10−4 1.481 × 10−7

1~2 0.822 257.5 1.778 × 10−3 3.298 × 10−4 1.434 × 10−7

2~3 0.719 254.3 1.629 × 10−3 3.295 × 10−4 1.377 × 10−7

3~4 0.628 250.2 9.886 × 10−4 3.295 × 10−4 1.331 × 10−7

4~5 0.547 244.3 6.202 × 10−4 3.293 × 10−4 1.307 × 10−7

5~6 0.475 237.5 3.396 × 10−4 3.295 × 10−4 1.295 × 10−7

6~7 0.411 230.7 1.946 × 10−4 3.302 × 10−4 1.268 × 10−7

(a) (b)

Figure 18. Aerosol spectral extinction coefficient at 0~7 km altitude and 2~14 µm: (a) large-sized case,
(b) small-sized case.
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For the large-sized case, as shown in Figure 19, the equivalent outlet diameter of the
main nozzle of the supersonic exhaust system and the maximum diameter of the outer
sleeve are 791 mm and 1220 mm, respectively. The inner wall of the main nozzle contains
a heat shield and cooling structure, with a convergence angle of 35°. The working altitude
of the nozzle is 7 km, the flight Mach number 0.7, the nozzle pressure ratio 2.38, the exhaust
total temperature 900 K, and the surface emissivity of the material 0.8. The infrared detector
is located on the ground and is 70 km away from the nozzle. The environmental atmosphere
parameters are selected as the equatorial mode and the aerosol mode is selected as the
23-km visibility aerosol mode over the sea surface in the MODTRAN5 software. The
infrared imaging resolution is 720 × 260 pixels, and the imaging direction forms an angle
of 30° with the axis of the nozzle.

Figure 19. Diagram of the Large-sized exhaust system with a cooling structure.

The number of computational grids for the internal and external flow fields of this
exhaust system is approximately 920,000. The calculation results show that there is a series
of shock waves and expansion waves in internal fluid field and jet plume, as well as
a complex-shaped combustion gas and environment air mixing layer, which causes the non-
uniformity of the gas temperature, pressure, and mole fraction of components. However,
although the mole fractions of water vapor and carbon dioxide change in the fluid field,
their ratio is close to 1 everywhere (Figure 20). Due to the inclusion of the gas film cooling
structure, solid wall temperature is relatively low (Figure 21).

Figure 20. Distribution of temperature (T), pressure (p), carbon dioxide mass fraction (yCO2 ), and
Mach number (Ma) in the meridional and axial sections of the fluid field of the large-sized exhaust
system with a cooling structure.
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Figure 21. Temperature (T) distribution of the solid part of the large-sized exhaust system with
a cooling structure.

The calculation results of long-distance infrared imaging at 2~2.5 µm, 3.7~4.8 µm,
3~5 µm, 7.7~9.7 µm, and 8~14 µm of this exhaust system and the calculation error distribu-
tion of the MSMGWB model are shown in Figure 22, with the latter based on the calculation
results of the LBL model. Considering the computational cost of the LBL method, the
radiative reflection of the solid wall is ignored.

Figure 22. Remote infrared imaging of the large-sized exhaust system with a cooling structure
in different atmospheric window bands (left), and the distribution of calculation errors of the
optimized MSMGWB model (right), (a,b) 2~2.5 µm band, (c,d) 3.7~4.8 µm band, (e,f) 3~5 µm band,
(g,h) 7.7~9.7 µm band, (i,j) 8~14 µm band.
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4.3. Small-Sized High-Temperature Exhaust System 3-D Cases

For the small-sized case, as shown in Figure 23, the diameter of the throat and the
maximum diameter of the outer sleeve are 128.6 mm and 152.4 mm, respectively. The high-
temperature inner wall of the main nozzle has no cooling structure, with the convergence
and divergence angles are 15.05° and 2.12° respectively. The working altitude of the
nozzle is 0 km, the nozzle pressure ratio 10.1, the exhaust total temperature 1500 K, and
the surface emissivity of the material 0.8. The infrared detector is located at an altitude
of 7 km and is 50 km (for 2~2.5 µm band), 70 km (for 7.7~9.7 µm band), and 140 km
(for other bands) away from the nozzle. The environmental atmosphere parameters are
selected as the mid-latitudes winter mode and the aerosol mode is selected as the marine
aerosol mode over the sea surface in the MODTRAN5.2.1.0 software.The infrared imaging
resolution is 1000 × 400 pixels, and the imaging direction forms an angle of 30° with the
axis of the nozzle.

Figure 23. Diagram of the small-sized exhaust system without a cooling structure.

The number of computational grids for the internal and external flow fields of this
exhaust system is approximately 890,000. The calculation results show that compared with
the large-sized exhaust system, although the size is much smaller, the temperature and
pressure of the exhaust jet are higher. Since it has the same V-shaped trailing edge as the
large-sized exhaust system, the shape of the mixing layer between the jet plume and the
ambient air is complex (Figure 24). Due to the higher exhaust temperature and the absence
of a gas film cooling structure, the temperature of its solid structure is much higher than
that of the large-sized case, and the temperature distribution of the main nozzle shows a
distinct 3-D heat conduction effect. Moreover, the outer sleeve is affected by the radiative
heat transfer from the outer wall of the main nozzle, and its temperature is significantly
higher than the surrounding ambient temperature (Figure 25).

Figure 24. Distribution of temperature (T), pressure (p), carbon dioxide mass fraction (yCO2 ), and
Mach number (Ma) in the meridional and axial sections of the fluid field of the small-sized exhaust
system without a cooling structure.
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Figure 25. Temperature (T) distribution of the major components of the small-sized exhaust system
without a cooling structure.

The same as in the large-sized case, Figure 26 shows the calculation results of long-
distance infrared imaging and error distribution.

Figure 26. Remote infrared imaging of the small-sized exhaust system without a cooling structure
in different atmospheric window bands (left) and the distribution of calculation errors of the op-
timized MSMGWB model (right), (a,b) 2~2.5 µm band, (c,d) 3.7~4.8 µm band, (e,f) 3~5 µm band,
(g,h) 7.7~9.7 µm band, (i,j) 8~14 µm band.
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As shown in Table 6, the max relative calculation error of both the large-sized case and
small-sized case are no more than ±13% compared to the LBL results, which shows great
accuracy with less computational cost than the previous MSMGWB model.

Table 6. Max relative error of the optimized MSMGWB model in two 3-D cases at five wave-bands.

Wave-Band Max Relative Error (Large-Sized Case) Max Relative Error (Small-Sized Case)

2~2.5 µm −8.35/+9.95% −3.24/+10.41%
3.7~4.8 µm −6.19/+10.19% −5.48/+12.17%

3~5 µm −4.06/+3.78% −4.43/+7.79%
7.7~9.7 µm −9.84/+4.86% −6.48/+0.04%
8~14 µm −6.65/+5.56% −8.49/+2.32%

5. Discussion

The Pareto front results of the NSGA2 algorithm show that as the number of RTE
equations solved increases, the calculation accuracy is further improved, but there is a
marginal diminishing effect (Figures 13a–17a). Note that we might not have deep enough
search for the samples with big fN and overrate the ferr0 of them, because the central limit
theorem leads few individuals with big fN at the initialization step of NSGA2, meanwhile
a part of the driving force for the NSGA2 iterations is directed towards generating in-
dividuals with smaller fN . However, due to the compromise considerations of fN and
ferr0, the samples with big fN were not considered in practice for their disadvantage in
computational efficiency.

Even though this study made progress in the modeling and parameter optimization
of the MSMGWB model, several issues warrant further exploration. Firstly, In addition to
the four main substances adopted in this work, there are some other radiative absorption
components in the atmosphere (such as methane, nitrous oxide, etc.). More accurate
calculations need to take all these components into account. Secondly, the number of
groups for water vapor and carbon dioxide will also affect the calculation accuracy and
efficiency of the model. After adding the remaining atmospheric components in the second
point, this parameter needs to be updated. In the future work, we will commence from
the aforementioned contents and keep enhancing the performance and universality of the
MSMGWB model.

6. Conclusions

In this study, compared with the MSMGWB models where each spectral subinterval
group shares the same reference temperature [34,35,42], we proposed to optimize the
reference temperature as an independent parameter within each group. To deal with the
increase in the number of model parameter combinations, the NSGA2 genetic algorithm
and an iterative scan method were introduced, and it was demonstrated that the above
algorithms can obtain the optimal model parameters combination. The calculation results of
0-D and 3-D cases show that the MSMGWB model optimized based on the above algorithms
has significantly improved computational efficiency and accuracy in 5 atmospheric infrared
window wavebands compared to the present MSMGWB model.

Other conclusions were drawn as follows:
The Gaussian quadrature scheme has a greater influence on the computational accu-

racy of the MSMGWB model than the spectrum grouping results and reference temperature;
A population size of 20,000 is sufficient for parameter optimization of the MSMGWB model
based on the NSGA2 algorithm; At the scanning and screening stage of spectrum grouping
results combinations, 5000 of population is enough and can greatly reduce the calculation
time; The spectrum grouping result of water vapor and carbon dioxide has an approxi-
mately independent influence on the accuracy of the MSMGWB model. Therefore, the itera-
tive scan method can be used to quickly obtain the optimal grouping results combination.
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Appendix A

As shown in Figure A1, there are two types of radiative transfer paths in this study
among 56 0-D cases. In the first type, radiance emits through a hot combustion gas with
a transmission path length Lh (which holds constant in the 0-D case calculation), then
attenuates though the atmosphere under various transmission distances Lc. In the second
type, radiance emits from a black wall and is attenuated by the atmosphere after passing
through a hot gas layer and a cold gas layer with constant path lengths of Lh and Lc,
respectively. The detailed parameters of the cases are shown in Table A1.

Figure A1. Two types of radiative transfer paths, diagram of 56 0-D cases.

https://github.com/1oyue/mdpi_data
https://github.com/1oyue/mdpi_data
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Table A1. Thermal dynamic states table of 56 0-D cases.

Hot Gas Parameters Cold Gas Parameters Environmental Atmospheric Parameters

Number Lh
[cm]

p
[atm] T [K] xH2O xCO2

Tw
[K]

Lc
[cm]

p
[atm] T [K] xH2O xCO2 xCO

La
[cm]

p
[atm] T [K] xH2O xCO2 xCO

1 50 1 800 0.1 0.1 40 1 308.15 0.05724 3.23 × 10−4 1.47 × 10−7

2 50 1 600 0.1 0.1 40 1 288.15 0.00184 3.23 × 10−4 1.47 × 10−7

3 50 1 800 0.1 0.1 40 1 288.15 0.00184 3.23 × 10−4 1.47 × 10−7

4 80 1.5 1300 0.1 0.1 100 0.9 298.15 0.03226 3.23 × 10−4 1.47 × 10−7

5 80 1 1300 0.1 0.1 100 1 298.15 0.03226 3.23 × 10−4 1.47 × 10−7

6 80 2 1300 0.1 0.1 100 0.8 285.2 0.00959 3.23 × 10−4 1.39 × 10−7

7 80 1 1300 0.1 0.1 100 1 298.15 0.03226 3.23 × 10−4 1.47 × 10−7

8 80 1 400 0.11 0.11 40 1 300 0.0323 3.23 × 10−4 1.47 × 10−7

9 80 1 1600 0.11 0.11 100 1 300 0.0323 3.23 × 10−4 1.47 × 10−7

10 80 2 1600 0.11 0.11 100 0.9 300 0.0323 3.23 × 10−4 1.47 × 10−7

11 80 1 1900 0.12 0.12 100 1 300 0.0323 3.23 × 10−4 1.47 × 10−7

12 80 1.5 1900 0.12 0.12 100 0.9 300 0.0323 3.23 × 10−4 1.47 × 10−7

13 80 1.5 1900 0.12 0.12 100 0.9 294.2 0.0184 3.23 × 10−4 1.47 × 10−7

14 70 1.6 1800 0.14 0.12 100 0.8 300 0.03 3.23 × 10−4 1.47 × 10−7

15 60 1 1050 0.1 0.1 80 1 294.2 0.0184 3.23 × 10−4 1.47 × 10−7

16 60 2 1050 0.1 0.1 80 0.9 294.2 0.0184 3.23 × 10−4 1.47 × 10−7

17 60 2 1050 0.1 0.1 80 1 294.2 0.0184 3.23 × 10−4 1.47 × 10−7

18 60 2 1050 0.1 0.1 80 0.7 279.2 0.00595 3.28 × 10−4 1.34 × 10−7

19 100 0.42 1500 0.08 0.08 200 0.42 254.7 0.00102 3.30 × 10−4 1.25 × 10−7

20 100 0.177 1800 0.1 0.1 200 0.177 215.8 8.01 × 10−6 3.30 × 10−4 6.38 × 10−8

21 50 1 1500 0.1 0.1 900 150 1 550 0.05 0.05 100 0.9 300 0.0323 3.23 × 10−4 1.47 × 10−7

22 50 1 1500 0.1 0.1 450 150 1 550 0.05 0.05 100 0.9 300 0.0323 3.23 × 10−4 1.47 × 10−7

23 50 2 1500 0.1 0.1 450 150 1 550 0.05 0.05 100 0.9 300 0.0323 3.23 × 10−4 1.47 × 10−7

24 50 2.5 1700 0.1 0.1 650 300 1 550 0.05 0.05 200 0.62 273.2 0.0038 3.29 × 10−4 1.31 × 10−7

25 50 1.5 1700 0.1 0.1 650 300 1 550 0.05 0.05 200 0.62 273.2 0.0038 3.29 × 10−4 1.31 × 10−7

26 50 2.5 1700 0.1 0.1 650 100 1 550 0.05 0.05 200 0.62 273.2 0.0038 3.29 × 10−4 1.31 × 10−7

27 50 2.5 1400 0.1 0.1 450 300 1 550 0.05 0.05 200 0.62 273.2 0.0038 3.29 × 10−4 1.31 × 10−7

28 50 0.7 1800 0.12 0.12 500 150 0.48 550 0.1 0.1 200 0.32 241.7 4.13 × 10−4 3.30 × 10−4 1.09 × 10−7

29 50 1 800 0.1 0.1 40 1 308.15 0.05724 3.23 × 10−4 1.47 × 10−7

30 50 1 600 0.1 0.1 40 1 288.15 0.00184 3.23 × 10−4 1.47 × 10−7
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Table A1. Cont.

Hot Gas Parameters Cold Gas Parameters Environmental Atmospheric Parameters

Number Lh
[cm]

p
[atm] T [K] xH2O xCO2

Tw
[K]

Lc
[cm]

p
[atm] T [K] xH2O xCO2 xCO

La
[cm]

p
[atm] T [K] xH2O xCO2 xCO

31 50 1 800 0.1 0.1 40 1 288.15 0.00184 3.23 × 10−4 1.47 × 10−7

32 80 1 1300 0.1 0.1 100 1 298.15 0.03226 3.23 × 10−4 1.47 × 10−7

33 80 1 1300 0.1 0.1 100 1 298.15 0.03226 3.23 × 10−4 1.47 × 10−7

34 80 1 1300 0.1 0.1 30 1 298.15 0.03226 3.23 × 10−4 1.47 × 10−7

35 80 1 400 0.11 0.11 40 1 300 0.0323 3.23 × 10−4 1.47 × 10−7

36 80 2 1600 0.11 0.14 60 0.9 300 0.0323 3.23 × 10−4 1.47 × 10−7

37 2 1.6 1800 0.14 0.12 20 0.8 300 0.024 3.23 × 10−4 1.47 × 10−7

38 60 1 1050 0.1 0.1 80 1 294.2 0.0184 3.23 × 10−4 1.47 × 10−7

39 60 2 1050 0.1 0.1 80 0.9 294.2 0.0184 3.23 × 10−4 1.47 × 10−7

40 100 0.42 1500 0.08 0.08 200 0.42 254.7 0.00102 3.30 × 10−4 1.25 × 10−7

41 100 0.177 1800 0.1 0.1 200 0.177 215.8 8.01 × 10−6 3.30 × 10−4 6.38 × 10−8

42 50 1 1500 0.1 0.1 150 1 550 0.05 0.05 100 0.9 300 0.0323 3.23 × 10−4 1.47 × 10−7

43 15 0.8 650 0.1 0.1 100 0.8 288.15 0.005 3.23 × 10−4 1.47 × 10−7

44 5 1 750 0.1 0.1 100 0.8 288.15 0.01 3.23 × 10−4 1.47 × 10−7

45 5 0.5 900 0.1 0.1 120 0.5 263.15 0.002 3.23 × 10−4 1.47 × 10−7

46 10 0.5 500 0.1 0.1 40 1 293.15 0.015 3.23 × 10−4 1.47 × 10−7

47 10 1 550 0.12 0.1 100 0.6 273.15 0.004 3.23 × 10−4 1.47 × 10−7

48 10 1 500 0.1 0.12 80 1 300 0.012 3.23 × 10−4 1.47 × 10−7

49 150 2.5 1600 0.1 0.1 100 0.8 288.15 0.015 3.23 × 10−4 1.47 × 10−7

50 10 0.5 1500 0.13 0.1 120 0.9 293.15 0.02 3.23 × 10−4 1.47 × 10−7

51 70 1 1400 0.12 0.12 400 30 1 300 0.03 3.4 × 10−4 1.47 × 10−7 120 0.6 260 0.0015 3.30 × 10−4 1.31 × 10−7

52 150 0.6 1700 0.1 0.12 600 10 0.6 260 0.0015 3.3 × 10−4 1.31 × 10−7 40 1 300 0.03 3.30 × 10−4 1.47 × 10−7

53 80 2 1600 0.11 0.14 100 0.9 300 0.0323 3.23 × 10−4 1.47 × 10−7

54 20 3 1800 0.12 0.12 1000 40 1.5 1400 0.1 0.1 40 1 300 0.03 3.23 × 10−4 1.47 × 10−7

55 3 0.8 600 0.05 0.05 450 5 0.8 500 0.02 0.02 30 1 300 0.02 3.23 × 10−4 1.47 × 10−7

56 3 0.8 350 0.05 0.05 450 0.8 400 400 0.02 40 1 288 0.01 3.23 × 10−4 1.47 × 10−7
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