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Abstract: Accurate, detailed, and long-term urban land use mapping is crucial for urban planning,
environmental assessment, and health evaluation. Despite previous efforts, mapping essential urban
land use categories (EULUCs) across multiple periods remains challenging, primarily due to the
scarcity of enduring consistent socio-geographical data, such as the widely used Point of Interest (POI)
data. Addressing this issue, this study presents an experimental method for mapping the time-series
of EULUCs in Dalian city, China, utilizing Local Climate Zone (LCZ) data as a substitute for POI data.
Leveraging multi-source geospatial big data and the random forest classifier, we delineate urban land
use distributions at the parcel level for the years 2000, 2005, 2010, 2015, 2018, and 2020. The results
demonstrate that the generated EULUC maps achieve promising classification performance, with an
overall accuracy of 78% for Level 1 and 71% for Level 2 categories. Features derived from nighttime
light data, LCZ, Sentinel-2 satellite imagery, and topographic data play leading roles in our land use
classification process. The importance of LCZ data is second only to nighttime light data, achieving
comparable classification accuracy to that when using POI data. Our subsequent correlation analysis
reveals a significant correlation between POI and LCZ data (p = 0.4), which validates the rationale
of the proposed framework. These findings offer valuable insights for long-term urban land use
mapping, which can facilitate effective urban planning and resource management in the near future.

Keywords: urban land use; random forest; mapping; local climate zone; image segmentation; point
of interest

1. Introduction

The demand for land resources by humans has been expanding with the accelerating
pace of urbanization. Many studies have demonstrated that since World War II, cities
worldwide have undergone varying degrees of rapid expansion. A single city in the United
States could have expanded by over 20% between 1993 and 2001 [1], while the entire country
witnessed a total urban area expansion of 11% between 2001 and 2011 [2]. On a global
scale, recent research has indicated that by 2018, the impervious surface area worldwide
had expanded to 1.5 times that in 1985 [3]. According to United Nations statistics, in 1990,
42% of the population (2.3 billion people) lived in cities, while this figure jumped to 55%
(4.2 billion people) in 2018 [4]. Cities represent vast ecosystems of human habitation, facing
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challenges including resource limitations, the completeness of urban functions, and the
rationality of urban expansion planning [5–11].

Cities are not homogeneous impervious surfaces, which causes mismatch when land
cover guidelines are employed for land use studies [12,13]. Urban land use mapping
requires better data support when detailed mapping guidelines are introduced. Similar to
land cover studies at comparable scales, the Landsat series and Sentinel series have been
widely used to date [14–18]. As research progresses towards finer granularity, synthetic
aperture radar (SAR) data [19–21] and other high-resolution remote sensing data, such as
QuickBird and WorldView data, have also been incorporated into mapping studies [22–25].
In comparison to daytime remote sensing imagery, nighttime light data can easily describe
human activities and populations [26–28] and, thus, are often used in relevant research.
With the development of the internet and the popularity of social media, researchers also
have increasingly applied socio-geographic data to land use mapping, due to their ability
to directly explain human activity patterns [29–32]. The most commonly used data in
socio-geographical studies include Point of Interest (POI) data, geolocation data from social
media, and traffic data [33–38].

While most research was conducted at the pixel level in the past [39–41], the basic
mapping unit at present often represents a larger logical region, reflecting people’s everyday
cognitive processes. In the most common sense, the smallest unit of urban function is
usually a building or a block, as we recognize a certain place by a continuous built-up
object which is often multiple pixels in remote sensing image. One type of mapping unit
is based on actual existing roads, with individual areas surrounded by roads serving as
the smallest units in the classification process [42–45]. We call such mapping units “land
parcels”. Another method aims to ensure that pixels within each mapping unit have similar
characteristics, often employing clustering segmentation to obtain mapping units smaller
than land parcels [46–49]. We call these mapping units “objects”, and a land parcel may
contain multiple objects [25,50,51].

As summarized by previous studies [52–55], existing methods of urban land use
mapping can be generally divided into two groups: traditional machine learning and
advanced deep learning. In the former, classic algorithms like maximum likelihood, lin-
ear regression, voting, decision tree, random forest, and support vector machine were
the most widely adopted approaches [55–58]. Most of these methods are applied at the
parcel level, although some have also been used in pixel-based or object-based urban land
use mapping [59,60]. On the other hand, recent advances in deep learning, such as the
Convolutional Neural Network (CNN) and the Generative Adversarial Network (GAN),
have become more efficient for dealing with high-dimensional data and extracting deeper
contextual features [61–63]. Due to the nature of these models, they are more commonly
employed in pixel-based or object-based mapping initiatives.

Despite these efforts, mapping long time-series of urban land use remains a challenge.
Point of Interest (POI) data are a type of data provided by commercial map companies,
containing a set of latitude and longitude coordinates of a point and the social functions that
this point can provide. Prior studies have underscored the limitations of POI data related
to their restricted temporal and spatial coverage [34,64–66]. Since socio-geographic data
depend on the operational presence of users on a commercial website [67,68], data gaps can
occur in times or areas where users are not present. This hinders the tracking of historical
urban land use. Moreover, current time-series urban land use mapping efforts often rely
on coarse classification categories or focus on changes in a single land use type [69–71],
which limits their applicability in studies of urban thermal environments, urban expansion
simulations, and urban ecology [72–75].

In response, researchers have turned to alternative indicators, such as elevation and
slope, which not only impact floods [76] and landslides [77], but also interact with factors
such as hazard probability, thereby influencing urban land use outcomes [78–80]. Further-
more, building morphology data—specifically, the Local Climate Zone (LCZ) classification
system—have proven invaluable in capturing urban land use [81,82]. LCZ data characterize
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urban areas based on their surface cover and morphology, exerting a notable influence
on local climate [83,84]. These data categorize urban zones into types such as high-rise,
low-rise, industrial, parkland, and water bodies, providing critical insights into phenomena
such as urban heat islands, energy consumption, and urban planning considerations [85,86].
Given that LCZ data encompass diverse information, including pixel textures, building
height data, and built-up density, the researchers can seamlessly integrate this information
to form a valuable urban descriptor.

To overcome the research gap of POI absence mentioned above and better inform
the spatio-temporal dynamics of urban functions, this study explores time-series EULUC
mapping by replacing unavailable POI data with LCZ data. Taking the city of Dalian as
an experimental site, we aim to address the following questions: (1) Can the use of LCZ
data as an alternative achieve similar accuracy as POI? (2) If this substitution is feasible,
what is the relative importance of LCZ in the classification process? (3) With this alternative
approach, can we achieve long-term urban land use mapping and effectively visualize and
analysis the temporal changes in land use types?

2. Study Area, Data Source, and Methods
2.1. Study Area

The city of Dalian in Liaoning, China, was chosen as our study area (Figure 1).
Dalian is a rapidly developing coastal city located on the southern Liaodong Peninsula
(38◦42′–39◦44′N, 120◦59′–123◦28′E). Given its undulating terrain, Dalian’s roads and urban
blocks are irregularly distributed. With a population of over 6.8 million and a coastal line
of over 1900 km, Dalian is a significant transportation hub and an important industrial
and commercial center in Northeast China that has undergone rapid urbanization and
industrialization over the past few decades. According to the global artificial impervious
area (GAIA) data [3], Dalian’s total impervious area expanded from 232 km2 in 1985 to
2339 km2 in 2018. Dalian’s unique geography, complex land use patterns, and diverse
economic activities make it a unique area for research on land use mapping methods.
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Figure 1. The study area of Dalian. (A) Location of Dalian (highlighted in red) in East Asia in Google
Maps. (B,C) Annual mean composites of Sentinel-2 optical image of Dalian for the year 2018. The
extent of subregion B corresponds to the red region in subfigure (A), and the extent of subregion c
corresponds to the yellow region in subfigure (B).
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2.2. Data Source

As listed in Table 1, the data used in this research comprise four categories: remote
sensing data, social data, land surface data, and support data. Each category is introduced
in the subsequent sections.

Table 1. List of data used in the study and their sources.

Data Type Data Name
Spatial

Resolution
(m)

Description Data Source

Remote
Sensing Data Sentinel-2 10–60 Level-2A Sentinel-2 remote sensing images

Google Earth Engine
(GEE) (https://
earthengine.google.com,
accessed on 23 June 2024)

Landsat-7 30 Landsat-7 Level 2 Collection 2 Tier 1 images GEE
Landsat-8 30 Landsat-8 Level 2 Collection 2 Tier 1 images GEE

Normalized remote
sensing Indexes 10–30

Normalized Difference Vegetation Index
(NDVI)

GEENormalized Difference Build-up Index (NDBI)
Normalized Difference Water Index (NDWI)

Luojia-1 130 Nighttime light data

Luojia-1 official site
(http://59.175.109.173:
8888/app/login.html,
accessed on 23 June 2024)
[27]

Social Data Gaode Point of
Interest (POI) data / Includes the point’s name, latitude, longitude,

and its social function

Accessed via Gaode Map
API (https://lbs.amap.
com/api/webservice/
guide/api/search,
accessed on 23 June 2024)

Land Surface Data LCZ 100
Describes the building patterns in different
urban areas based on buildings, land use, and
vegetation

Zhao et al. [87]

ALOS DSM 30 Global Digital Surface Model (DSM) data for
elevation GEE

NASA SRTM
Digital Elevation 30
m

30 Near-global digital elevation model GEE

Support data FROM-GLC10 10 10 m resolution Global Land Cover (GLC) data

Gong et al. [88] (available
at https://data-starcloud.
pcl.ac.cn/, accessed on 23
June 2024)

GAIA data 30 Global Annual Impervious Area (GAIA) data GEE

OpenStreetMap
(OSM) road data / Used for road information extraction

Accessed via OSM
(https://planet.
openstreetmap.org/,
accessed on 23 June 2024)

Global Urban
Boundaries 30 City boundaries reference generated using

GAIA and nighttime data

Li et al. [89] (available at
https://data-starcloud.
pcl.ac.cn/, accessed on 23
June 2024)

EULUC-China 2018 / Essential Urban Land Use Categories Map for
China in 2018 [42]

Gong et al. [42] (available
at https://data-starcloud.
pcl.ac.cn/, accessed on 23
June 2024)

2.2.1. Remote Sensing Data

The used remote sensing data included Sentinel-2, Landsat-7, Landsat-8 multi-spectral
satellite imagery, and Luojia-1 nighttime light data. For Sentinel-2 images, all bands with
spatial resolutions ranging from 10 to 60 m were considered in our experiment. As Sentinel-
2 data are only available after 2017, we incorporated Landsat-7 and Landsat-8 data to
achieve urban land use mapping in earlier years. We also computed additional layers of
normalized difference indices, including Normalized Difference Vegetation Index (NDVI),
Normalized Difference Build-up Index (NDBI), and Normalized Difference Water Index
(NDWI), for all Sentinel-2, Landsat-7, and Landsat-8 data. Luojia-1 nighttime light data

https://earthengine.google.com
https://earthengine.google.com
http://59.175.109.173:8888/app/login.html
http://59.175.109.173:8888/app/login.html
https://lbs.amap.com/api/webservice/guide/api/search
https://lbs.amap.com/api/webservice/guide/api/search
https://lbs.amap.com/api/webservice/guide/api/search
https://data-starcloud.pcl.ac.cn/
https://data-starcloud.pcl.ac.cn/
https://planet.openstreetmap.org/
https://planet.openstreetmap.org/
https://data-starcloud.pcl.ac.cn/
https://data-starcloud.pcl.ac.cn/
https://data-starcloud.pcl.ac.cn/
https://data-starcloud.pcl.ac.cn/
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detect lights appearing at nighttime with a spatial resolution of 130 m, which represents
human night activities and has played a critical role in urban and demographic studies [27,
90–93]. All the satellite products (except Luojia-1) were acquired through the GEE platform,
with atmospheric correction and annual mean composition.

2.2.2. Social Data

Social data refer to Gaode POI data. These data were extracted using the Gaode Map
API, one of the most common and popular online map services in China. POI data provide
information on the point’s name, its coordinates (latitude and longitude), and its function.
POI data were gathered and re-classified into 10 categories named after EULUC land use
categories, except for the airport (0401) and greenspace (0505) categories. The airport
category was removed as the airport itself was removed during land parcel generation [3]
and is often unique to a single city. Greenspace was removed for a similar reason; that is,
in the GAIA boundaries and further land parcel generation, forests and grasslands were
mostly removed [3].

2.2.3. Land Surface Data

The used land surface data encompassed ALOS DSM Global 30 m data, NASA SRTM
data, and LCZ data. The ALOS DSM Global 30 m data set is a global digital surface model
data set that can be used to calculate elevation height, while the NASA SRTM data provide
an alternate choice for the year 2000. Elevation data can serve as a rough reference for
human building distribution and indicate the topography of our study area. LCZ data
are a type of data that can be used to characterize urban areas based on their distinctive
surface cover and morphology, which are often used in local climate and microclimate
research. The LCZ data used in this study were provided by Zhao et al. [87]. LCZ data
were classified based on the classification system of Steward and Oke [84], which is shown
in Table 2. In our research, we changed the alphabet classes into numbers (1–17), reflecting
the original alphabetical order.

Table 2. LCZ classification system.

LCZ Class Number LCZ Class Name

1 Compact high-rise
2 Compact mid-rise
3 Compact low-rise
4 Open high-rise
5 Open mid-rise
6 Open low-rise
7 Lightweight low-rise
8 Large low-rise
9 Sparsely built
10 Heavy industry
11 Dense trees
12 Scattered trees
13 Bush, scrub
14 Low plants
15 Bare rock or paved
16 Bare soil or sand
17 Water

2.2.4. Support Data

Finally, we refer to the support data sources used in this study. The FROM-GLC10 data
set is derived from samples of the FROM-GLC30 global land cover data set, utilizing sample
transfer theory and refined mapping techniques to enhance their resolution [88]. This data
set offers a detailed depiction of the Earth’s surface, making it instrumental in our study
for combination with other data sets, as described later, to determine impervious surface
outlines [94–96]. In particular, combining the GAIA and Global Urban Boundary (GUB)
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data sets with the FROM-GLC10 data set allowed us to obtain the fundamental outline of
impervious surfaces in urban areas. Building upon this foundation, by segmenting these
outlines using OpenStreetMap (OSM) road net data, we derived the land parcels that serve
as one of the basic research units in this study.

2.3. Methods

Figure 2 shows the overall workflow of our research design, including five major
steps: parcel generation, extractable data preparation, feature extraction, sampling, and
supervised classification and mapping. The methodological components will be described
in detail in the following sections.

Remote Sens. 2024, 16, x FOR PEER REVIEW 7 of 25 
 

 

 
Figure 2. Workflow of the study for mapping the time-series urban land use categories. 

2.3.1. Parcel Generation 
We considered two different approaches for parcel generation. One is the 

fundamental EULUC method [42] with road-cut parcels. The other we named as SEGLUC, 
which combines image segmentation with EULUC in the approach, as demonstrated in 
the work of Tu et al. [46]. 

In the basic EULUC method, the original urban parcels were generated using the 
impervious layer boundaries (GAIA and GUB data) separated according to the OSM data, 
road width data, and the FROM-GLC10 water layer [42]. In our research area, 4234 land 
parcels were generated in our 2018 mapping process. 

In the SEGLUC method, land parcels are generated using not only OSM data and the 
urban boundaries as in the EULUC method, but also segmented Sentinel-2 satellite image 
boundaries. Sentinel-2 satellite images were segmented with the SNIC algorithm on the 
GEE platform, where the pixels were clustered and segmented according to their similar 
band properties [97]. 

Figure 2. Workflow of the study for mapping the time-series urban land use categories.

2.3.1. Parcel Generation

We considered two different approaches for parcel generation. One is the fundamental
EULUC method [42] with road-cut parcels. The other we named as SEGLUC, which
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combines image segmentation with EULUC in the approach, as demonstrated in the work
of Tu et al. [46].

In the basic EULUC method, the original urban parcels were generated using the
impervious layer boundaries (GAIA and GUB data) separated according to the OSM data,
road width data, and the FROM-GLC10 water layer [42]. In our research area, 4234 land
parcels were generated in our 2018 mapping process.

In the SEGLUC method, land parcels are generated using not only OSM data and the
urban boundaries as in the EULUC method, but also segmented Sentinel-2 satellite image
boundaries. Sentinel-2 satellite images were segmented with the SNIC algorithm on the
GEE platform, where the pixels were clustered and segmented according to their similar
band properties [97].

In our research, we chose band 2 (Blue), 3 (Green), 4 (Red), 5, 6, 7 (Vegetation red
edge), 8 (near-infrared range-NIR), 11 (short wave infrared spectral range-SWIR) as our
segmentation base bands for Sentinel 2 data, and the image we used is an annual mean in
the green season (05/01–10/01) for our study area after cloud removal. In Landsat data,
the bands were changed to 1 (Blue), 2 (Green), 3 (Red), 4 (Near-Infrared), 5 (Short-wave
Infrared), 7 (Mid-Infrared), 8 (Panchromatic (PAN)). The seed grid size parameter was
set to 36 after various experiments and human visual judgment were compared to the
original satellite image, and the resolution of segmented outputs was set to 10 m. After
the segmentation was performed, the boundaries of the super-pixels were extracted and
intersected with the basic EULUC land parcels, producing the final mapping objects.

2.3.2. Data Set Combining and Feature Extraction Methods

As mentioned earlier, three types of data were incorporated for EULUC mapping in
this research: remote sensing data, social data, and land surface data. To illustrate their
respective impacts on classification and to assess the feasibility of substituting POI data
with LCZ and DSM data, we designed various data combinations for EULUC mapping, as
listed in Table 3.

Table 3. Data set combinations used in this study.

Data Set Name Remote Sensing (RS) Data Gaode POI Data ALOS DSM Data LCZ Data

RS
√

RS + DSM
√ √

RS + POI
√ √

RS + LCZ
√ √

RS + LCZ + DSM
√ √ √

The extraction of parcel information within the study area was performed using the
GEE platform, where different combinations of data sets were employed. Most satellite
data were integrated within the GEE platform, except Luojia-1. We therefore obtained the
nighttime light data for our study area and imported them manually into the GEE platform.
The LCZ data set, sourced from the work of Zhao et al. [87], was also imported into GEE
manually, mirroring the process used for the nighttime light data set.

Remote sensing, DSM, and DEM data were processed within the GEE platform using
the functions of ‘reduceregion’. This process involved calculating the mean and standard
deviation of various bands within every parcel unit in a resampling resolution of 10 m.
For the LCZ data set, the ‘count’ function in the same resampling resolution was used to
quantify the area and proportion of different LCZ types within each land parcel.

Feature extraction for Points of Interest (POIs) was conducted locally. We imported
parcel and POI data into geographical information software QGIS, version 3.38 where we
tabulated the count and proportion of each POI category within individual land parcels
or objects. Finally, all the computed features were aggregated into a single table to obtain
year-specific feature extraction results. We calculated these combinations for 2018, and only
the best one was used for the other years.



Remote Sens. 2024, 16, 3125 8 of 23

2.3.3. Function of LCZ Data

LCZ is a classification system that characterizes urban areas based on their distinctive
surface cover and morphology, which directly influence the local climate and microclimate.
LCZ categorizes different regions within a city into distinct zones that represent distinct
urban entities, such as compact high-rise, open low-rise, industrial, parkland, and water
bodies, among others. As LCZ classifies the land surface based on remote sensing bands,
pixel textures, building height, and density data, it can be considered an excellent urban
surface descriptor and, therefore, was employed in our research.

Urban land use types can correspond to recognizable LCZ forms. As illustrated in
Figure 3, the residential area in our study area may represent compact mid- to high-rise
buildings in LCZ. Specifically, (a) depicts these typical residential areas, characterized by
their dense and vertically extended structures. In contrast, Figure 3b shows commercial
zones—particularly shopping plazas—which are distinguished by large open spaces and
low- to mid-rise buildings. Figure 3c illustrates parks that encompass vegetation and
paved open spaces. Finally, Figure 3d highlights industrial zones, marked by open low-rise
buildings and industrial machinery. Based on general knowledge, it is evident that different
land use types typically exhibit distinct and recognizable LCZ characteristics.
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2.3.4. Sampling

Samples were manually selected from the same location with two different parcel
division methods. We completed the sampling of the 2018 data set using commercial
mapping website including Google Map, Gaode Map, and Baidu Map, along with field
visits. We selected portions of the Dalian city data set that overlapped with those used by
Gong et al. in EULUC-2018 in 2020 [42], and supplemented additional samples to stabilize
the random forest model. In total, approximately 2000 samples from 2018 were used.
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After collecting the sample parcels in 2018, we overlaid them onto the segmented
study area parcels for other years. By using reference data from historical imagery on
Google Earth Pro, version 7.1.8.3036 and manual identification, areas displaying land use
changes were adjusted accordingly, resulting in sample parcels for the years 2000, 2005,
2010, 2015, and 2020.

2.3.5. Supervised Classification and Mapping

We partitioned the collected samples into training and validation sets at a ratio of
7:3 and trained a random forest model for each year using these training samples. These
models were employed to classify and map parcels corresponding to their respective years.
The entire computational process was carried out using the ‘RandomForest’ function in the
R language. The model precision approached stability with tree counts surpassing 100—a
threshold determined through iterative control sample training. Considering the balance
between sample size and local computational load, all models employed 500 trees in the
random forest.

We randomly divided the training samples and validation samples, then trained the
model. This process was repeated 50 times for each data set, allowing us to obtain stable
model accuracy and standard deviation. Further comparisons and data analyses were
conducted based on the generated maps and data results. The Level 1 and Level 2 mapping
categories were adopted from Gong et al. [42] (see Table 4).

Table 4. EULUC land use categories from Gong et al. in 2020 [42] (with changes in categories 06 and 07).

Level 1 Level 2

01 Residential 0101 Residential
02 Commercial 0201 Business office

0202 Commercial service
03 Industrial 0301 Industrial
04 Transportation 0401 Road

0402 Transportation stations
0403 Airport facilities

05 Public management and service 0501 Administrative
0502 Educational
0503 Medical
0504 Sport and cultural
0505 Park and greenspace

06 Bare land or construction 0601 Bare land or construction
07 Water 0701 Water

There was a partial mismatch between the GAIA and GUB data, which prevented
us from accurately depicting the inner and outer extents of the city. Area types such as
water bodies, forests, or barren areas due to abandonment or construction were included
when we generated the boundary of the study area. At the same time, some reclaimed
areas are still marked as ocean in the GUB data. Considering this mismatch, we extended
the original EULUC classification framework by introducing a class (06) to describe bare
or under-construction land, and another class (07) for urban water bodies. Moreover, the
category 0505, which is indicative of parks and green spaces, was expanded to encompass
forests or mountains within the city boundaries.

2.3.6. Post-Classification Process

During post-classification, we categorized the SEGLUC mapping results into four
types based on the statistical information of objects within each land parcel (Table 5).
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Table 5. Rules for clustering object-scale results into parcel-scale.

Type Total Object
Category Count

Max. Object
Category Count

Max. Category
Percentage

Classification
Result

Chaos
Index

No mapped object in the land parcel 0 0 - 0 −1
Single-type parcel ≥1 1 1 MAX category 0
Dominant-type parcel ≥2 1 >0.5 MAX category

=
n
∑

i=1

Piln Pi

ln n

Mixed-type parcel ≥2 1 <0.5 MIX category
Special (MAX and the second biggest
category are green space or
residential)

≥2 1 - MIXB category

As the generated land parcels were based on the segmentation of impervious surfaces
and road networks in 2020, there were instances where certain land parcels did not have
classification results for earlier years. We designated such cases as having a statistical result
of 0.

For land parcels with one or more types of objects, we categorized them as single-type
parcels, dominant-type parcels, and mixed-type parcels, based on the proportion of each
area type. A single-type parcel corresponds to its own object type. A dominant-type parcel
indicates that the land use type with the largest proportion of area exceeds 50% of the total
area. The final type of this parcel is determined by the land use type with the largest area
in the parcel’s statistics (with the MAX category serving as a placeholder). In contrast, a
mixed-type parcel means that there is no land use type with an area exceeding 50% within
the parcel. The final result is labeled as a special mixed type (MIX category).

Due to the unique nature of the study area, roads are typically distributed along
valleys in mountainous regions, with residential areas on both sides of the roads. This
results in larger land parcels that appear as mixed residential and green areas. Therefore,
we established a separate MIXB type of parcel to describe this unique near-mountain
residential area. The criterion for determining the MIXB type is that the two largest land
use types in terms of area must be greenspace and residential land.

Finally, we introduced the Dominant Proportion (P) and the Chaos Index (CI) to further
describe the land use mixing of each land parcel. The Dominant Proportion, denoted as P,
represents the proportion of the most extensive land use type within the land parcel. The
Chaos Index, as proposed by Tu et al. [98], is an empirically validated index used in various
research fields to describe the degree of land use type mixing within a land parcel. The
index typically ranges between 0 and 1, with values closer to 1 indicating a higher degree
of land use type mixing within the land parcel (i.e., roughly equal proportions of various
land use types).

3. Results

Figure 4 compares the urban land use mapping results for 2018 between the EULUC
and SEGLUC approaches. The SEGLUC method identified 61,950 land parcels for Dalian
in 2018, which is 14 times more than the basic EULUC method. Consequently, SEGLUC
results display more detailed urban land use patterns, which are closely align with the
actual situation of land use depicted in the Sentinel-2 image. In contrast, the EULUC results
show noticeable errors, particularly in the southern part of the mapping area, where the
land parcels are too large to accurately reflect real conditions. Due to these significant
misclassifications in EULUC, we selected SEGLUC as the primary mapping method for
subsequent analysis.
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3.1. Classification Performance with Difference Data Combinations

Random forest models were used to compare and assess the classification accuracy
under different combinations of data sources. The results demonstrated that the combi-
nation of multi-source data significantly improved classification accuracy, despite larger
variances (Table 6). The inclusion of POI and LCZ data introduced uncertainty into the
accuracy results, which derived from the presence of zero values in the distribution of POI
and LCZ types for the excluded types in one parcel. While the LCZ data were relatively
continuous as raster data, the source POI data could not cover scattered points for all land
parcels. As a result, when we randomly split the training and validation samples, it was
highly likely that samples with no POI data would be obtained, which could potentially
affect the accuracy of the final model.

Table 6. Accuracy results under various data set combinations.

Level Mean Accuracy (%) Standard Deviation

RS LV1 69.91 0.0518
LV2 61.96 0.0447

RS + DSM LV1 76.21 0.0417
LV2 69.24 0.0424

RS + POI LV1 74.59 0.0468
LV2 68.23 0.0567

RS + LCZ LV1 74.24 0.0460
LV2 66.30 0.0559

RS + LCZ + DSM LV1 78.80 0.0402
LV2 70.79 0.0554

3.2. Data Set Importance and Correlation Results

Figure 5 displays the top 15 features in the 2018 random forest model using remote
sensing data, LCZ data, and DSM data. Nighttime light data, aerosol bands of Sentinel-
2 satellite remote sensing data, and LCZ type 8 (large low-rise buildings) data showed
significant importance in the assessment. Elevation data and infrared bands of remote
sensing data also exhibited high importance. However, certain LCZ types showed a lack of
importance, indicating a lack of these LCZ types in the land parcels sampled in the study.

The nighttime light data serve as valuable evidence reflecting the intensity of human
activity [99,100], thus showing a strong association with land use types [93,101,102]. Con-
sidering the potential coverage of land surfaces within urban areas, the radiation spectra of
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vegetation, concrete, glass, and metal exhibit good discrimination results in the shortwave
range of 400 nm and the longwave range of 800–900 nm, supporting the high importance of
band 1 and 9. The high importance of LCZ type 8 can be attributed to its typical role in ac-
commodating significant commercial or public service functions in urban areas, providing
an explanatory interpretation.
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Figure 5. Top 15 features ranked by importance in the 2018 random forest model.

We calculated the correlations among all the data factors and obtained a result indicat-
ing that most of the correlation indices between our mapping factors were low. Figure 6
presents the correlation heatmap between the POI data (rows 1–21) and LCZ data (rows
22–38). Apart from the internal correlations within the POI data, various open and compact
urban morphology types (LCZ categories 1–6) exhibited correlation coefficients exceeding
0.4 with specific POI types. This shows that the POI data used to describe urban land use
patterns positively correlate with the LCZ data, which describe the building forms, at least
within the considered city.
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3.3. Urban Land Use Dynamics in Dalian for 2000–2020

Furthermore, we conducted detailed EULUC mapping of Dalian for 2000–2020 using
optical data, LCZ data, and DSM data (Figure 7 shows 2018 result). The accuracy for
the Level 1 and Level 2 maps was 76–77% and 71–73%, respectively, demonstrating the
stability of our developed method. Most uncovered impervious surfaces were concentrated
near the coastline. Upon comparison with existing maps and visual interpretation, these
areas primarily corresponded to ports, aquaculture facilities, and industrial clusters. The
mapping results demonstrated that in urban areas with complex surface conditions, object
segmentation is more efficient than land parcel segmentation.
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Figure 7. Mapping result of Dalian in 2018 with FROM-GLC10 as the base map, 1⃝ and 2⃝ show
different zoom in area (Sentinel-2 image included).

To better illustrate the mapping results, we have zoomed in on the maps and high-
lighted three areas with noticeable changes, denoted as (a), (b), and (c), respectively, in
Figure 8.
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Area (a) is a residential area located within the old city district. Based on existing field
surveys and Google Maps imagery, this area underwent complete reconstruction between
2012 and 2019. Therefore, both the 2015 imagery and the mapping results show bare land
under construction.

Area (b) was an industrial zone along the coast in 2000. According to the same survey
results, this area began to be dismantled and relocated around 2009, with the original site
being developed into a new upscale residential and commercial district. In the imagery
and mapping results, the outcome in 2010 shows bare ground while, by 2015, nearly half of
the area had been covered with construction land.

Area (c) is situated on the outskirts of the city near the university campus. In 2000,
much of this area consisted of bare ground under construction outside of the old city
boundaries. Over the years, there has been a transition to the construction of office buildings,
forming an IT industrial park in this area.
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To facilitate a more accurate quantitative analysis of land use changes, we integrated
the original land use mapping results from object scale to land parcel scale. We selected
the historic core of the city, labeled as 1⃝, and the university town located at the junction of
the old and new city areas (near area (c), detailed above), labeled as 2⃝, as our study areas.
The integrated results for these two regions for each five-year period from 2000 to 2020
are depicted in Figure 9. During the transition of a parcel from one existing land use type
to another, the P value gradually decreased and then increased again, while the CI value
initially increased and then decreased. In region 1⃝ of the old city core area, most land use
categories remain consistent, and we notice the transition from industrial land to business
offices in the northeast of the region. In region 2⃝, the developed parcels experienced two
stages of transformation, with an increase in office land and residential land, ultimately
also transitioning into residential parcels near the hillsides.
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Figure 10 summarizes urban land use change in Dalian during 2000–2020. Overall,
the residential, industrial, educational, green, and bare land types showed relatively high
proportions across years. Other categories such as commercial, service, and administrative
land consistently maintained lower proportions in each year. Temporally, the residential
land use type—as the primary contributor to population—exhibited a consistent trend in
increasing area, closely mirroring the total impervious surface area. In contrast, the area of
educational land use grew at a slower rate. This corresponds to the typical government-
planned nature of educational land use and the aging population trend that Dalian—as
a relatively modern and early-developed city—experienced between 2000 and 2020. The
total area of industrial land use fluctuated throughout the years, reflecting the relocation of
many factories from the old core areas of the city during the time frame of our mapping,
with these former industrial plots transitioning into residential or commercial and service
land use. Notably, the area of green land experienced a significant increase from 2015 to
2020 compared to other periods, suggesting local environmental improvements over time.
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Figure 10. Urban land use change in Dalian during 2000–2020. The left axis represents the area of the
whole city (i.e., the blue line), and the right axis represents the area of each land use category (i.e.,
bar plots).

We defined the urban land parcels that existed in 2000 as ‘old urban area parcels’,
and the land parcels that only appeared by 2020 as ‘new urban area parcels’. For the new
parcels, we analyzed their land use types. For the old urban area parcels, we analyzed their
original land use types and the types of parcels that had changed by the year 2020. They
were then compared in order to illustrate the similarities and differences as in Figure 11.

We observed significant differences in the distribution of land use types between
newly developed parcels and old urban area parcels, primarily concentrated in industrial
types (labeled as A301), green spaces (labeled as A505), and near-mountain residential
types (labeled as MIXB). This indicates that during the urban expansion process, green
spaces and residential areas expanded faster, while types such as industrial areas showed
a noticeable lag. In the case of land use changes within the old city area, the majority of
transformations were other land use types transitioning into residential or near-mountain
residential areas (Figure 12). Area-based statistical results further indicated the trend that
industrial land types were moving out from the old city area.
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4. Discussion

This research proposes an integrated method for mapping time-series urban land use
categories in Dalian, China. We combined multi-source geospatial big data and machine
learning algorithms to generate parcel-level EULUC maps for the period from 2000 to
2020, achieving an overall accuracy of 71–78%. One major contribution of our research to
the existing literature is the substitution of POI data with LCZ data, offering a promising
approach for long-term time-series urban land use mapping. While social-geographical
data such as POI or AOI are widely used as essential inputs in existing studies, their
inherent temporal and spatial gaps limit their application for time-series urban land use
mapping [34,103,104]. We demonstrate that LCZ data can achieve comparable classification
accuracy to POI data with good importance and that the two data types are highly correlated
(Table 6, Figures 5 and 6). A further visual comparison reveals that residential POIs (poi101)
align closely with residential mapping results across various LCZ categories (Figure 13).
Additionally, commercial POIs (poi201) exhibit spatial consistency with the LCZ labeling of
compact mid- to high-rise areas. The same phenomenon appears in industry type (poi301)
and green space (poi505). In summary, these analyses underscore the effectiveness and
rationale of our approach.
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(a) LCZ data, (b) POI data, and (c) object-based EULUC maps.

Based on the resulting EULUC maps, we analyzed changes in urban land use for the
old urban core, the expanding urban fringe, and the entire city of Dalian. We found that
although the urban area in our study area has expanded more than five times, the increased
area is mainly concentrated in residential land and green space or forest land (Figure 9).
We also found that the core area is experiencing intensive residential development, with
many factories originally located there relocating to other areas (Figures 10 and 11). In
the newly developed outskirts of the city, residential land dominates, raising concerns
about the adequacy of public service and commercial land to prevent future traffic and
infrastructure issues. These findings offer valuable information on urban land changes
in Dalian over the past 20 years, which can inform future urban planning and resource
management strategies.

Despite these advancements, several limitations are present in the research. We used
existing multi-year urban boundary products to define the urban area, which differed from
the actual urban boundaries observed in satellite imagery. This discrepancy highlights
the need for more accurate boundary data to capture urban edge expansion effectively.
Moreover, to achieve nationwide and long-term urban land use mapping in the future,
alternative approaches need to be explored to reduce the significant human effort involved
in sampling, especially for large study areas and time scales. At the same time, we should
also consider adding logical constraints to the changes in land use types of each mapping
unit in subsequent time-series mapping, which will better correct the mapping errors.
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5. Conclusions

In this research, we presented an effective approach for mapping time-series EULUCs
in Dalian, China, utilizing a combination of multi-source geospatial big data and machine
learning techniques. The integration of Local Climate Zone (LCZ) data emerged as a
practical substitute for Point of Interest (POI) data in long-term urban land use mapping.
Our results demonstrated the effectiveness of pixel-based clustering and road network-
based land parcel segmentation in accurately representing urban land use types. The
generated EULUC maps achieved satisfactory accuracy levels, with an overall accuracy
of 78% for Level 1 and 71% for Level 2 categories for year 2018. We found that LCZ data
significantly contributed to the classification process, exhibiting a positive correlation with
POI data (p = 0.4). Our subsequent mapping initiatives revealed that residential land
experienced the most significant increase and transformation of land use within the study
area. The methodology and findings of this study are not only beneficial for urban planning,
city development, and resource management efforts, but are also informative in guiding
future research towards developing robust methodologies for comprehensive and accurate
urban land use mapping across large scales.
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