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Abstract: Multi-track synthetic aperture radar interferometry (InSAR) provides a good approach for
the monitoring of long-term multi-dimensional earthquake deformation, including pre-, co-, and
post-seismic data. However, the removal of atmospheric errors in both single- and multi-track InSAR
data presents significant challenges. In this paper, a method of spatio-temporal correlation analysis
using independent component analysis (ICA) is proposed, which can extract multi-track deformation
components for the accurate retrieval of earthquake deformation time series. Sentinel-1 data covering
the double earthquakes in Turkey and Syria in 2023 are used to demonstrate the effectiveness of
the proposed method. The results show that co-seismic displacement in the east–west and up–
down directions ranged from −114.7 cm to 82.8 cm and from −87.0 cm to 63.9 cm, respectively.
Additionally, the deformation rates during the monitoring period ranged from −137.9 cm/year
to 123.3 cm/year in the east–west direction and from −51.8 cm/year to 45.7 cm/year in the up–
down direction. A comparative validation experiment was conducted using three GPS stations.
Compared with the results of the original MSBAS method, the proposed method provides results
that are smoother and closer to those of the GPS data, and the average optimization efficiency is
43.08% higher. The experiments demonstrated that the proposed method could provide accurate
two-dimensional deformation time series for studying the pre-, co-, and post-earthquake events of
the 2023 Turkey–Syria Earthquakes.

Keywords: 2023 Turkey–Syria earthquakes; time series two-dimensional deformation; spatio-temporal
correlation analysis; independent component analysis

1. Introduction

Interferometric synthetic aperture radar (InSAR) has been widely used to monitor
ground deformation relative to geological processes over the past three decades [1–3]. In
earthquake deformation monitoring, InSAR offers significant advantages over conventional
methods, such as leveling and global navigation satellite systems (GNSS), due to its high
spatial coverage and fieldwork-free mechanism. Differential InSAR (D-InSAR) is one of the
most common methods for monitoring earthquake deformation, functioning by mapping
interferogram data according to the difference in SAR images before and after earthquakes,
thereby inverting co-seismic deformation patterns [4,5]. Unfortunately, D-InSAR is sus-
ceptible to atmospheric and decorrelation factors [6,7], which makes it challenging to
accurately capture co-seismic deformation. It also has the limitation of only being able to
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obtain line-of-sight (LOS) deformation due to the observation geometry, which results in
an incomplete description of earthquake deformation characteristics [8].

Many methods to mitigate the impact of atmospheric data on D-InSAR processing
have been developed in previous studies, including methods based on external data, such
as weather data, Global Positioning Systems [9–11], and interferogram modeling [12].
However, these methods are affected by the spatial density of the external data and the low-
coherence area in the interferogram, making it difficult to remove atmospheric effects [13].
To obtain multi-dimensional co-seismic deformation, pixel offset tracking (POT) [14] and
multiple aperture interferometry (MAI) [15] are typically used. The POT method utilizes
cross-correlation between master and slave single-look complex (SLC) images to obtain az-
imuth and range pixel-offset field maps. The MAI method utilizes split-beam processing to
generate backward- and forward-looking SLC images, then generates MAI interferograms
to extract deformation along the direction of the track.

Multi-dimensional small baseline subset (MSBAS) can generate a two-dimensional
deformation time series in the horizontal and vertical directions through processing small-
baseline interferometric datasets from ascending and descending paths [16]. The subset
not only overcomes the limitation presented by the fact that single-path D-InSAR can only
obtain co-seismic deformation in a single direction, but the earthquake deformation time se-
ries results are also conducive to the analysis of pre-, co-, and post-seismic mechanisms [17].
As each deformation map in a time series is solved using multiple interferograms, which
can be regarded as a kind of stacking, MSBAS can also overcome decorrelation and alleviate
atmospheric delays.

Atmospheric delay is one of the dominant error sources in InSAR, including stratified
delay, which is correlated with the topography, and turbulent delay, which can be attributed
to random processes in the atmosphere [18]. Stratified delays have a more substantial
impact in areas with significant topographic variation, and can be removed using elevation-
dependent filtering and external data, such as weather data [19,20]. Turbulent delays are
associated with random processes in the atmosphere, including local weather conditions,
strong convective effects, variations in local land covers, and different ecosystems [16].
They can be mitigated using methods such as stacking, filtering, stochastic models, and
interferogram optimization. However, as a kind of stacking technique, MSBAS can only
achieve good atmospheric removal effects in linear deformation scenes, thus, it remains
unsatisfactory in many situations [21].

Independent component analysis (ICA) is a computational signal processing method
used to separate mixed signal matrices into combinations of several non-Gaussian indepen-
dent sub-component matrices [22,23]. It can separate deformation and various errors in seis-
mic time series with no prior knowledge, and is suitable for removing atmospheric delays
and other error components from interferograms. However, the determination of source
types is challenging and usually requires manual identification or external data, making it
difficult to remove atmospheric errors when using multi-dimensional monitoring methods.
In this study, we propose mitigating atmospheric delays in two-dimensional InSAR data
using ICA and spatio-temporal correlation analysis. Taking the double earthquakes in
Turkey on 6 February 2023 as an example, two-dimensional deformation components are
extracted from ascending and descending Sentinel-1 data and their atmospheric effects are
removed using the proposed method.

2. Methods

In this study, we propose a method for removing atmospheric delay errors in multi-
track InSAR data and obtaining accurate two-dimensional earthquake deformation time
series. Our method incorporates ICA, spatio-temporal correlation analysis, and MSBAS
(Figure 1).
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Figure 1. Flow chart of the proposed atmospheric delay removal algorithm.

2.1. Independent Component Analysis

ICA is a statistical method designed to separate independent components from a mixed
signal. It can be used to separate signal components such as surface deformation, atmo-
spheric delay signals, and noise to improve the accuracy of monitoring, thereby facilitating



Remote Sens. 2024, 16, 3139 4 of 17

a better understanding of surface changes induced by earthquakes [24], volcanoes [23],
landslides [25], and other phenomena. The observation matrix X = [x1, x2, · · · , xn]

T con-
sists of the n observation vectors xi. The non-Gaussian independent component matrix
S = [s1, s2, · · · , sm]

T consists of the m known independent component vectors sj, which
represent m independent components separated with ICA, such as deformation, turbulence,
stratified atmosphere, and noise. The mixing matrix A(n × m) and independent component
matrix S comprise the ICA model (Equation (1)), which can be obtained after centering,
whitening, and non-Gaussian maximization [26].

X = AS. (1)

For centering, each observation vector xi subtracts its own mean value xi to become a
zero-mean vector. The centered matrix Xc is composed of these vectors (Equation (2)):

Xc = [x1 − x1, x2 − x2, · · · , xn − xn]
T . (2)

In order to make the components uncorrelated and ensure unit variance, the second
step, whitening, is applied, which is usually achieved by performing eigenvalue decom-
position on the centered observation. The whitening matrix Xcw is obtained using the
eigenvector matrix U and the eigenvalue matrix D of Xc (Equation (3)).

Xcw = UD− 1
2 UTXc. (3)

The independent source vectors can be estimated through maximizing the non-
Gaussianity. The greater the non-Gaussianity of a signal, the more likely that it is an
independent source component [27]. This is because a linear combination of non-Gaussian
distributions is more likely to be composed of different independent source signals. Kur-
tosis and negentropy are common measures of non-Gaussianity [28]. The non-Gaussian
maximum objective function is selected to carry out an iterative process. A matrix W, which
is the inverse of the mixing matrix A, is calculated after the function converges and the
independent component matrix S = WX can be obtained.

ICA can be divided into two categories (Figure 2): spatial ICA (sICA) and temporal
ICA (tICA). The objective of sICA is to maximize the spatial independence of the source
component. In this mode, each row of S represents a spatial feature of the independent
component, while each of column of A represents the temporal characteristics of the
corresponding independent component. The objective of tICA is to maximize temporal
independence. In this mode, the observation matrix X is a transposed version of sICA’s
matrix. Each row of S represents a temporal feature of the independent component,
while each of column of A represents the spatial characteristics of the corresponding
independent component.
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2.2. Spatio-Temporal Correlation Analysis

ICA can be used to separate the monitoring results into independent components and
extract deformation sources from the results that have errors. However, the differences
in multi-track monitoring results due to different observation geometries and monitor-
ing dates, along with the property of random ordering of independent sources, lead to
challenges in correlating deformation-related sources across different tracks. To over-
come this issue, a spatio-temporal correlation analysis method is proposed to identify the
corresponding sources from multi-track results.

The spatial distributions and temporal features of the deformation components are
stable, while those of the atmospheric components are unstable due to the randomness
of the atmosphere. Despite their different observation geometries, the deformation com-
ponents of different paths have similar spatial distribution and temporal characteristics.
Therefore, the deformation components can be identified by calculating the spatial and
temporal correlations of the spatial pattern and temporal feature vectors, respectively.
The spatio-temporal correlation γi can be calculated using the spatial vectors or temporal
vectors of sources, denoted as a and b, respectively, in Equation (4), where i represents
the index of the chosen source vectors and j represents the index of the elements in the
vectors [29].

γi =
∑N

j=1 aij·bij√
∑N

j=1 aij
2∑N

j=1 bij
2

. (4)

During calculation, the vector with the highest spatial or temporal correlation value is
considered a sufficient relevant source. If two sources from different tracks are relevant to
each other, they are considered a source pair. Multiple correlation pairs might be found
during spatial and temporal analysis. The intersection of the spatial and temporal source
pair can be considered the deformation source pair, which is usually a unique source.

In order to test the statistical significance of deformation component extraction, the
F-test is employed to determine whether the pair of sources selected is relatively correlated.
The F-test [30] value can be expressed as a ratio of the squares of the zero-mean vectors
(Equation (5)).

F =
∑N

j=1
(
aj − aj

)2

∑N
j=1

(
bj − bj

)2 . (5)

The F statistic follows the F distribution with (N − 1, N − 1) degrees of freedom. The
critical value of the F distribution, FN−1,N−1,α, is calculated using the given significance level
α and the degree of freedom (N − 1, N − 1). If F > FN−1,N−1,α, the selected source pair is
correlated and is considered the deformation source. If F < FN−1,N−1,α, the selected source
pair is not considered to be correlated. Then, the number of ICA sources should be added,
and the ICA and the spatio-temporal correlation analysis should be performed again.

2.3. Multi-Dimensional Small Baseline Subset

The east–west and vertical direction deformation time series VEW and VUD of the
common area of the multi-track observed data Φ can be used to generate two-dimensional
deformation time series using the MSBAS algorithm [31]. The set of linear equations of
MSBAS can be solved in the least-square sense by applying singular value decomposition
(SVD). The rank deficiency can be solved with λ-order Tikhonov regularization, where
λ = 0, 1, 2. [

A
λL

][
VEW
VUD

]
=

[
Φ
0

]
(6)

According to the azimuth angle θ, incident angle ϕ, and time baseline of the interfer-
ence pair, the east–west and vertical projection relations sE = −cosθsinϕ and sU = cosϕ are
obtained, constructing the coefficient matrix A. Equation (7), shown below, is the detailed
form of Equation (6).
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

sasc
E sasc

U sasc
E sasc

U 0 0 0 0 0 0
0 0 0 0 sasc

E sasc
U sasc

E sasc
U 0 0

0 0 0 0 0 0 0 0 sasc
E sasc

U
sdsc

E sdsc
U 0 0 0 0 0 0 0 0

0 0 sdsc
E sdsc

U sdsc
E sdsc

U 0 0 0 0
0 0 0 0 0 0 sdsc

E sdsc
U sdsc

E sdsc
U





VE
1

VU
1

VE
2

VU
2

VE
3

VU
3

VE
4

VU
4

VE
5

VU
5


=



Φasc
1

Φasc
2

Φasc
3

Φdsc
1

Φdsc
2

Φdsc
3


. (7)

The two-dimensional deformation results for all monitoring dates are calculated and,
finally, the two-dimensional deformation time series of the public area with a higher
monitoring temporal resolution is obtained based on MSBAS.

3. Study Area and Dataset
3.1. Study Area

On 6 February 2023, a Mw 7.8 earthquake struck Gaziantep Province, Turkey, with
a focal depth of 17.5 km. The earthquake’s epicenter was located at 37.226◦N, 37.014◦E,
close to the East Anatolia Fault Zone (EAFZ). After approximately 9 h, a Mw 7.6 after-
shock occurred in Kahramanmaras Province, Turkey, with a focal depth of 13.5 km. This
second earthquake was situated at 38.011◦N, 37.196◦E, close to the Cardak Fault (CF) [32].
These earthquakes resulted in over 50,000 fatalities, making them the deadliest earthquake
sequence in Turkey in more than a century [33].

The epicenter of the mainshock was located in the EAFZ fault zone at the boundary
of the Anatolian and Arabian plates (Figure 3). The Arabian block squeezes the North
Anatolian block northwest, and the Anatolian plate slips westward along the NAFZ [34,35].
Despite experiencing eight earthquakes of Mw 7.0 or higher since the 20th century [36],
the EAFZ had not witnessed any earthquakes above Mw 7.0 after being compressed by
the Arabian plate [37]. This accumulation of significant seismic stress likely contributed
to the occurrence of this earthquake [38]. The derived surface deformation fields of the
2023 Turkey–Syria earthquakes have been obtained based on Sentinel-1A ascending and
descending data, using POT technology by Dai et al. [39] and based on Sentinel-1 offset
tracking and Sentinel-2 optical image correlation carried out by Chen et al. [38]. The multi-
scale seismic and space-geodetic observations with multi-fault kinematic inversions and
dynamic rupture modeling have been integrated by Jia et al. [40] to unravel the area’s
complex rupture history and stress-mediated fault interactions. Kobayashi et al. conducted
a Coulomb force analysis, and the results showed that the subsequent 7.6 Mw aftershock
was likely triggered by the 7.8 Mw mainshock [41]. In a deformation time series study of
the earthquakes in Turkey, the deformation velocity fields of the block–fault structure were
constructed, and the main geodynamic processes in the area of the EAFZ were revealed
based on stacking-InSAR [42].

The earthquake-affected area has abundant water vapor and is subject to serious
atmospheric delay errors. For this research, we conducted a study on the earthquakes in
Turkey, employing spatio-temporal correlation analysis and ICA to remove the atmospheric
delay and other errors, as well as using MSBAS to obtain two-dimensional deformation
time series.
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3.2. Dataset

In this study, ascending and descending Sentinel-1 data covering the epicenters of
the Mw 7.8 and Mw 7.6 earthquakes were used to obtain two-dimensional deformation
time series. The observation period ranged from 4 January 2022 to 16 July 2023. There
are 46 scenes each of ascending and descending SLC images, which were obtained during
the monitoring period. Correspondingly, 376 scenes of ascending interferograms and
374 scenes of descending interferograms were generated (Table 1).

Table 1. The parameters of the SAR dataset used.

Path Pass
Direction Frame Date No. of

SLCs
No. of Inter-
ferograms

Incident
Angle

Azimuth
Angle

116 Ascending 119 20220104–
20230710 46 376 33.82◦ −13.23◦

21 Descending 465,471 20220110–
20230716 46 374 22.83◦ −166.72◦

There are a total of five GPS stations within the Sentinel-1 monitoring area. GPS data
from three stations within both ascending and descending data areas were used to verify
the MSBAS results after the removal of atmospheric effects (Figure 3).

4. Results and Discussion

The ascending and descending interferograms of co-seismic deformation were gen-
erated, and deformation was mainly distributed over the two sides of the fault zones
(Table 2, Figure 4a). The region north of the CF and on the northwest side of the EAZF
predominantly deformed forward along the LOS direction. Conversely, the area south of
the CF and southeast of the EAZF experienced deformation approaching the satellite, along
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the LOS direction. The deformation range in the descending map spans from −140.0 cm to
109.8 cm, and the maximum positive and negative deformations in the LOS direction are
in the southeast EAZF and north of the CF, respectively. The region north of the CF has
positive deformation in the LOS direction, and the rest of the areas are primarily dominated
by negative deformation (Figure 4b). The deformation range in the ascending map spans
from −134.7 cm to 57.6 cm, and the maximum positive and negative spatial distributions
are consistent with the descending map. However, compared with the descending data,
the spatial distribution of deformation between the CF and EAFZ is slightly different. This
may be due to the atmospheric delay and loss of satellite imagery, resulting in a longer
temporal baseline.

Table 2. Information of co-seismic image pairs.

Path Pass
Direction Master Slave Perpendicular

Baseline (m)
Temporal

Baseline (Days)

116 Ascending 20230204 20230229 113.54 24
21 Descending 20230129 20230210 111.19 12
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In this study, MSBAS was used to generate deformation time series of ascending and
descending SAR data, following which ICA was performed to remove the atmospheric
delay. The linear deformation velocity maps from descending and ascending paths are
probably contaminated with atmospheric delay (Figure 5). It is worth noting that the con-
tribution of co-seismic deformation to the accumulated displacement is consistently much
larger than all other contributions, which may result in errors in SVD fitting. Therefore, it is
necessary to apply a scale factor to the columns of the design matrix related to co-seismic
deformation, in order to enhance the stability of the solution [43].

The MSBAS time series cannot accurately represent the deformation characteristics
when it is affected by atmospheric delay and other errors. The sICA is used to separate
independent sources and extract deformation components, allowing for restoration of the
accurate deformation time series. As the order of the ICA results (Figures 6 and 7) does
not include correlation information, empirically identifying the corresponding sources
from multi-track data is often challenging and leads to inaccurate results. In this study,
a spatio-temporal correlation analysis is proposed, in order to match the corresponding
independent component source pairs.
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Figure 7. The ICA results of descending data. The left column contains the spatial patterns that
illustrate the spatial distributions of signals, and the right column shows the corresponding temporal
feature vectors, representing the temporal contribution of each source.

The spatial and temporal correlation matrices were generated, which indicate the spa-
tial and temporal correlation values between two different patterns, respectively (Figure 8).
The values of the elements in the matrices range from 0 to 1; the higher the value, the higher
the correlation. When the matrix element corresponding to a specific row and column is
the maximum value, it suggests that the two sources form a spatial or temporal source
pair. In the spatial correlation matrix (Figure 8a), three spatial correlation source pairs
were matched, including ascending IC source-1 and descending IC source-4, ascending
IC source-3 and descending IC source-3, and ascending IC source-4 and descending IC
source-1. In the temporal correlation matrix (Figure 8b), two temporal correlation source
pairs were matched, including ascending IC source-3 and descending IC source-2, and
ascending IC source-4 and descending IC source-1. However, many values in the matrix
were close to the maximum value, and are also worthy of attention. It is also worth noting
that the monitoring period and arrangement of the ascending and descending orbit time
series should be similar and matched. Otherwise, biases can be introduced during the
temporal correlation analysis.
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As proposed in Section 2.2, the source pair related to both the spatial and temporal
analyses can be considered as the deformation source pair. Therefore, ascending IC source-
4 and descending IC source-1 comprised the only pair identified as a spatio-temporal
correlation source pair.

After the spatial and temporal correlation analysis and the selection of the deformation
source pair, we performed an F-test to verify whether the two sources are well correlated.
Based on Equation (5), the calculated F-value was 2.4186, which exceeds the critical value at
a significance level of 0.95. Consequently, we concluded that ascending IC-4 and descending
IC-1 are fully correlated and can be regarded as a deformation source pair. In addition,
while the spatial and temporal correlation values of ascending IC source-1 and descending
IC source-2 were also high, the F-value did not exceed the critical value.

Compared with the distribution of the fault zone and seismic time series, the corre-
sponding spatial patterns (shown in Figures 6 and 7) of the identified deformation sources
were consistent, and the temporal feature vectors were consistent with the earthquake
deformation characteristics. Ascending IC source-1 and descending IC source-2 had similar
spatial distribution and temporal features; as such, they may be the pre- or post-seismic
deformation components.

Stratified atmospheric delay is terrain-dependent. Ascending IC source-5 and de-
scending IC source-4 have spatial distributions related to the terrain elevation and random
temporal features. Therefore, these two sources are thought to be attributed to the stratified
atmospheric delay. As shown in descending IC source-3, the Erzin region—which is in the
middle-west area—has a temporal feature vector with seasonality, which may be caused
by Mediterranean water vapor. Thus, descending IC source-3 may be a seasonal turbulent
atmospheric component. IC source-5 from the descending data demonstrates that there is a
subsidence area in the Antakya area of Turkey. The subsidence is in a farmland area, and
the temporal feature vector indicates that the component is not related to the earthquake
that occurred in Turkey in 2023. As such, it may be caused by the extraction of groundwater.
The remaining IC sources are suspected to be turbulent atmospheric sources.

A two-dimensional deformation time series was obtained after removing atmospheric
delay error, and it was used for comparison against the original time series results (Figure 9).
Compared with the ascending and descending LOS direction co-seismic deformation
(Figure 4), the two-dimensional results with ICA show details not captured in the single LOS
results. For example, in the middle-west region of the common area, the subsidence signal
is buried in the individual ascending LOS results, but revealed in the multi-track results.
Compared with the two-dimensional co-seismic deformation results (Figure 9a,b), the
signal caused by the atmospheric delay error is excluded, and the deformation component
signal becomes prominent. In the east–west direction (Figure 9a,c), the signal in the middle-
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west region of the common area and the southern area far away from the fault zone is
optimized, revealing the originally subtle subsidence signal and removing the redundant
subsidence signal. The displacement in the east–west direction ranges from −114.7 cm to
82.8 cm. In the up–down direction (Figure 9b,d), the deformation of the original result is
buried in the signal and challenging to identify; however, after removing the atmospheric
error, the deformation signal is dominated. The displacement in the vertical direction
ranges from −87.0 cm to 63.9 cm.
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In the east–west direction deformation velocity maps (Figure 10a,c), atmospheric
signals obscure the deformation signal north of the EAFZ, and it becomes less noticeable.
The southern area far away from the fault shows an erroneous subsidence signal due
to the influence of a long-term atmospheric trend signal. The deformation rate during
the monitoring period ranged from −137.9 cm/year to 123.3 cm/year in the east–west
direction. In the up–down direction (Figure 10b,d), the northern area suffered from a
stratified atmospheric signal. The removal of atmospheric errors makes the deformation
signal more obvious and improves the accuracy of monitoring. The deformation rate
during the monitoring period ranged from −51.8 cm/year to 45.7 cm/year in the up–
down direction.

The two-dimensional deformation time series in the east–west and up–down directions
for both the pre- and post-seismic periods were obtained using MSBAS (Figure 11). In the
pre-seismic velocity maps (Figure 11a,b), the deformation in the area north of the EAFZ is
mainly upward and eastward, while in the area south of the EAFZ, it is mainly downward
and westward. In the post-seismic results, the east–west deformation distribution closely
resembles the co-seismic pattern, indicating that similar deformation behavior continued
after the earthquake. In the vertical direction (Figure 11d), the uplift signal was distributed
between the EAFZ and the CF.
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Figure 11. Two-dimensional deformation velocity during pre-seismic period in (a) east–west and
(b) up–down directions, and during post-seismic period in (c) east–west and (d) up–down directions.

We then validated the effectiveness of the proposed method using the available GPS
data. There are three GPS stations in the ascending data area and five stations in the
descending area (Figure 3). The three-component GPS data were projected in the LOS
direction, and both the GPS and InSAR results were calibrated using the ANTP station—
which is relatively far from the epicenter—as a reference (Figure 12). In the ascending data,
the results of the proposed method were similar to the original MSBAS results in terms of
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deformation, but were closer to the GPS results. In the descending data, many errors were
removed using the proposed method, causing the results to become smoother and closer to
the GPS results than to the original MSBAS results.
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In addition, ICA can improve the accuracy of the deformation results from single-orbit
data. Based on our calculated standard deviations of MSBAS and ICA relative to the GPS
data (Table 3), the average error optimization efficiency increased to 24.14%.

Table 3. Standard deviation of the LOS displacement between GPS and InSAR.

Path Station Original MSBAS
STD (cm)

Proposed Method
STD (cm) Ratio

Asc ADY1 0.0022 0.0020 7.10%
Asc ANTP Ref Ref Ref
Asc KAHR 0.0177 0.0112 36.86%
Dsc ADY1 0.0137 0.0104 24.46%
Dsc ANTP Ref Ref Ref
Dsc FEEK 0.0127 0.0077 39.20%
Dsc KAHR 0.0274 0.0228 16.50%
Dsc ONIY 0.0175 0.0139 20.70%

The validation of the removal efficiency evaluation was conducted by comparing the
results obtained through the original MSBAS method, the traditional elevation-dependent
atmospheric phase trend fitting method, and the proposed method (Figure 13). In both
the east–west and vertical directions, the results of the proposed method had less noise
and more closely resembled the GPS time profile, outperforming the original MSBAS and
traditional fitting methods. The errors in the results generated using the traditional method
may be due to the fact that this method only removes the stratified atmosphere related to
the terrain and does not remove the influence of the turbulent atmosphere. The standard
deviation indicates a difference from the GPS data (Table 4). The average error optimization
ratio of the proposed method was 43.08%, which means that the method has a better
atmospheric error removal effect.
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Table 4. Standard deviation of the two-dimensional displacement between GPS and InSAR.

Station Direction
Original
MSBAS

STD (cm)

Traditional
Method

STD (cm)
Ratio

Proposed
Method

STD (cm)
Ratio

ADY1 East–West 0.0035 0.0031 10.94% 0.0012 66.83%
ANTP East–West Ref Ref Ref Ref Ref
KAHR East–West 0.0224 0.0224 5.20% 0.0172 23.29%
ADY1 Up–Down 0.0020 0.0019 4.95% 0.0016 20.94%
ANTP Up–Down Ref Ref Ref Ref Ref
KAHR Up–Down 0.0036 0.0035 1.29% 0.0013 61.25%

5. Conclusions

In this study, a spatio-temporal correlation analysis using the ICA method was pro-
posed to identify and extract deformation components from multi-track InSAR data. The
2023 earthquake sequences in Turkey were adopted to test the proposed method. Two-
dimensional deformation time series of the 2023 earthquake sequences in Turkey were
generated using Sentinel-1 data from ascending and descending tracks, which is benefi-
cial for analyzing pre-, co-, and post-seismic mechanisms. Specifically, in the pre-seismic
velocity maps, the deformation north of the EAFZ is mainly upward and eastward, while
south of the EAFZ, it is predominantly downward and westward. In the co-seismic de-
formation maps, the northern region of the CF and the northwestern part of the EAFZ
show primarily upward and eastward deformation, whereas the southern areas of CF
and EAFZ exhibit downward and westward deformation. In the post-seismic results, the
deformation distribution closely resembles the co-seismic pattern in the east-west direction,
while in the vertical direction, the uplift signal is concentrated between the EAFZ and
the CF. The two-dimensional deformation results obtained with the original, traditional
elevation-dependent atmospheric phase trend fitting method and proposed method were
compared with GPS data from three stations. The average error optimization ratio of the
proposed method was 43.08%, which is 38.49% higher than the traditional surface fitting
method and means a better atmospheric error removal effect.

Our study helps in obtaining accurate two-dimensional earthquake deformation time
series and providing reliable information for the study of pre-, co-, and post-earthquake
deformation mechanisms. Furthermore, this method can be applied to capture accu-
rate multi-dimensional deformation in other scenarios, such as volcanoes, landslides,
and glaciers.
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