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Abstract: The availability of multichannel ground-penetrating radar systems capable of gathering
multiview, multistatic, multifrequency data provides novel chances to improve subsurface imaging
results. However, customized data processing techniques and smart choices of the measurement
setup are needed to find a trade-off between image quality and acquisition time. In this paper,
we adopt a Born Approximation-based full 3D approach, which can manage multiview-multistatic,
multifrequency data and faces the imaging as a linear inverse scattering problem. The inverse problem
is solved by exploiting the truncated singular value decomposition as a regularization scheme. The
paper presents a theoretical study aimed at assessing how the reconstruction capabilities of the
imaging approach depend on the adopted measurement configuration. In detail, the performance
achievable in the standard case of multimonostatic, multifrequency data is compared with that
provided by a multiview-multistatic, multifrequency configuration, where the data are gathered
by considering a progressively increasing number of transmitting antennas. The comparison of the
achievable imaging performance is carried out by exploiting the spectral content and the point spread
function, which are general tools to foresee the achievable reconstruction capabilities. Reconstruction
results related to a numerical experiment based on full-wave data are also provided.

Keywords: radar imaging; inverse scattering; microwave tomography; MIMO GPR

1. Introduction

The Earth’s subsurface exploration has intrigued scientists and professionals for years,
offering insights into hidden landscapes, buried structures, and ancient artifacts. Ground-
penetrating radar (GPR) plays a crucial role in this endeavor, offering a non-invasive and
detailed view of subsurface features [1,2] and, indeed, it finds wide application in various
contexts, ranging from environmental monitoring and civil engineering projects [3–5] to
archaeological surveys and geological investigations [6,7].

Thanks to its recognized usefulness, GPR technology is the subject of continuous
technological advancements aimed at improving both data collection and data processing
aspects. In this frame, multichannel systems are today standard tools to collect data along
multiple profiles simultaneously, and thus speed up the measurement stage. On the other
hand, the use of Multiple Input Multiple Output GPR (MIMO GPR) is receiving attention
because, compared with multimonostatic systems, it collects an increased amount of data,
resulting in an improved target detection and reconstruction accuracy [8–11]. Indeed, in the
case of MIMO GPR, the data acquisition can be planned in such a way that two or more
antennas act as transmitters and, for each transmitting antenna, the scattered field data are
collected by different receiving antennas. Of course, several measurement configurations
made up of a different number of transmitting (Tx) and receiving (Rx) antennas can be
considered. For instance, the same number of Tx and Rx antennas can be adopted or fewer
Tx antennas than RX ones can be used. In addition, different imaging capabilities are
expected for different measurement setups.
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MIMO GPR systems have been considered for demining [12–14] and Moon explo-
ration [10,15–18] and require the design of data processing approaches capable of manag-
ing multiview-multistatic data and exploiting the increased amount of available informa-
tion [19–22]. In this frame, microwave tomography (MWT) is a flexible tool easily adaptable
to different measurement setups and reference scenarios [23,24].

Among MWT approaches, those based on the Born Approximation [25] have been
applied successfully in a large number of real scenarios [26–29] and have proven to be
effective whatever the measurement configuration and the scenario under test [23,30–40].

In this study, we consider a Born Approximation-based MWT approach able to perform
a full 3D imaging of the scenario under test by taking in input from both multimonos-
tatic and multiview-multistatic, multifrequency GPR data. Specifically, in the multiview-
multistatic case, a hybrid measurement configuration is realized because multiview- mul-
tistatic data are gathered along the direction parallel to the antenna array, the x-axis in
this paper, while multimonostatic data are collected along the array movement direction,
herein the y-axis. The adopted approach faces the imaging as a linear inverse scattering
problem, with models transmitting and receiving antennas as linearly polarized electric
dipoles, and adopts the truncated singular value decomposition (TSVD) of the involved
scattering operator as a regularized inversion scheme [41].

As a novel contribution, this paper investigates how the measurement setup impacts
the imaging performance of the MWT approach. The task is pursued by using the spec-
tral content and the point spread function as general tools to estimate the achievable
reconstruction capabilities [2].

It is worth pointing out that the proposed analysis is general, i.e., it does not depend
on the specific MIMO GPR system adopted to collect the data, and it provides theoretical
indications on the expected reconstruction capabilities of the adopted MWT approach in
real applications.

Results referring to full-wave synthetic data concerning an L-shaped buried cavity
are provided to validate the expected performance in the case of an extended target.
The proposed analysis accounts for an array made by a fixed number of evenly spaced
antennas, which can be configured in such a way as to collect multimonostatic or multiview-
multistatic multifrequency data. In the multiview-multistatic case, the number of Tx
antennas is changed, while all the antennas of the GPR array act as receivers.

The paper is organized as follows: Section 2 presents the mathematical formulation of
the problem. Section 3 analyzes the imaging capabilities in terms of spectral content and
point spread function. In this respect, it should be stressed that the optimal regularization
parameter of the TSVD is fixed by applying the L-curve technique [42,43]. Section 4
accounts for the achievable imaging capabilities through numerical results referring to an
extended buried target. Section 5 provides the conclusions and addresses possible future
research directions.

2. GPR Imaging Problem

Let us consider the reference scenario depicted in Figure 1, which shows the investiga-
tion domain D and a sketch of the GPR data collection configuration. This last is associated
to a multichannel system made up by an array of Nt transmitting (Tx) and Nr receiving (Rx)
antennas (Nt ≤ Nr) evenly distributed along the x-axis within the interval X = [xmin, xmax].
The GPR is located in free space, closely adjacent to the soil surface and moves along the
y-axis in the range Y = [ymin, ymax]. At each position along the y-axis, the system records
multimonostatic or multiview-multistatic, multifrequency data.

Let us recall that multimonostatic data are collected when the probing electromag-
netic pulse is radiated by a transmitting antenna Txi and the backscattered field is mea-
sured only by the corresponding co-located receiving antenna Rxi. Conversely, multiview-
multistatic data are gathered when, for each transmitting antenna Txi with i = 1, . . . , Nt,
the backscattered field is measured by all the receiving antennas Rxj with j = 1, . . . , Nr.
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The backscattered field is collected in the frequency band B = [ fmin fmax] for all the
considered configurations. 
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Figure 1. Geometry of the imaging problem.

It is also worth pointing out that, if a multiview-multistatic data acquisition is planned,
by moving the GPR along the y-axis, a hybrid measurement configuration is achieved
where data are multiview multistatic along x and multimonostatic along y.

The imaging is formulated as an inverse scattering problem by assuming that the unknown
targets are located in a lossless homogeneous and non-magnetic (µ = µ0 = 1.25× 106 H/m) soil
characterized by the dielectric permittivity εs = εrsε0, with εrs being the soil relative permittivity
and ε0 = 8.85 × 10−12 F/m the free-space permittivity. The targets are located in D and are
modeled as dielectric anomalies with respect to the background soil. Accordingly, at the generic
point r = (x, y, z) in D, the presence of a target is described by the unknown contrast function:

χ(r) =
ε(r)− εs

εs
(1)

where ε(r) is the target permittivity.
According to the Born Approximation and modeling the Tx and Rx antennas as

Hertzian dipoles linearly polarized along the direction uTx and uRx, the data-unknown
relationship to be solved is given in the frequency domain by:

Es(rt, ro, ω) = uRx ·
∫ ∫ ∫

D
G(r, ro, ω) · Einc(rt, r, ω)χ(r)dr = Aχ (2)

where A is a linear projection operator, Es is the measured component of the backscattered
field along uRx, rt = (xt, yt, zt), and ro = (xo, yo, zo) denote the position of the Tx and
Rx antennas, respectively, G(r, ro, ω) is the dyadic Green’s function accounting for the
radiation from r to ro at the angular frequency ω, and Einc(rt, r, ω) is the incident field at r
due to the antenna located at rt :

Einc(rt, r, ω) = −jωµ0G(r, rt, ω) · uTx (3)
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Under the far-field approximation and by taking into account that, being the antenna
close to the air–soil interface, the signal propagation occurs into the soil mainly, the dyadic
Green’s function G(r, rt,o, ω) can be written as [44]:

G(r, rt,o, ω) =
exp(−jkRt,o)

4πRt,o


1 − (x−xt,o)

2

R2
t,o

− (x−xt,o)(y−yt,o)

R2
t,o
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t,o
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R2
t,o

1 − (z−zt,o)
2

R2
t,o

 (4)

where k = ω
√

µ0εs is the propagation constant in the soil at the angular frequency ω and
Rt,o = |r − rt,o| =

√
(x − xt,o)2 + (y − yt,o)2 + (z − zt,o)2.

The linear integral equation, Equation (2), is solved by using the truncated singular
value decomposition (TVSD) as a regularized inversion scheme. Accordingly, its solution is
expressed in a closed form as:

χ =
Nδ

∑
n=0

⟨Es, un⟩
σn

vn. (5)

where un and vn represent the left and right singular functions of the operator A (see
Equation (2)), respectively, σn are the singular values arranged in descending order, and ⟨·, ·⟩
denotes the scalar product in data space. In Equation (5), the truncation threshold Nδ is the
regularization parameter that should assure a suitable trade-off between the accuracy of
the solution and the robustness to the noise. The magnitude of the retrieved contrast χ is a
spatial map referred to as tomographic image.

The determination of the optimal value of Nδ is a challenge that is here effectively
faced using the L-curve method [42,43]. The essence of the L-curve lies in its graphical
representation of the trade-off between the norm of the solution ||χ||2 and the norm of
the residue ||Es −Aχ||2, as the regularization parameter varies. On a logarithmic scale,
the L-curve typically exhibits an “L” shape, wherein the knee or corner of the curve provides
the optimal regularization parameter, i.e., the value allowing the desired balance between
accuracy and stability of the solution. In this work, a MATLAB package for the analysis
and the solution of discrete ill-posed problems developed by Hansen [45] is exploited to
determine the optimal truncation index.

3. Resolution Analysis
3.1. Theoretical Background

The spectral content (SC) [2] and the point spread function (PSF) are the tools to
analyze the filtering effects introduced by the linear integral operator A in Equation (2)
and estimate the spatial resolution limits. As is well-known, SC represents the retrievable
global (average) harmonic content of the unknown obtained by accounting for all possible
positions of the point target in D. Conversely, the PSF embodies the reconstructed image of
a point-like target and allows us to estimate the spatial resolution and how it changes with
the target position.

Based on the SVD of A, the spectral content is defined as:

SC(kx, ky, kz) =

Nδ

∑
n=1

|v̂n(kx, ky, kz)|2 =
Nδ

∑
n=1

∣∣∣ ∫ ∫ ∫
D

vn(x, y, z)e−j(kx x+kyy+kzz)dxdydz
∣∣∣2 (6)

where kx, ky, kz are the spectral variables corresponding to x, y, z, respectively, and v̂n(kx, ky, kz)
is the 3D Fourier transform of the singular function vn(x, y, z).

In addition, under the TSVD regularization scheme, the point spread function is
given by:

PSF(x, y, z) =
Nδ

∑
n=1

v∗n(x′, y′, z′)vn(x, y, z) (7)
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where (x′, y′, z′) denotes the position of the point-like target and ∗ the conjugation
operation [41].

It is worth pointing out that SC and PSF in Equations (6) and (7) are general mathe-
matical tools for forecasting the imaging performance of the TSVD-based linear microwave
tomography approach, even in unconventional scenarios with different measurement do-
mains and antenna setups (e.g., see [46–48]. However, since A depends on the scenario
under test as well as on the adopted measurement configuration, SC and PSF must be
computed numerically for the specific case at hand.

In the following, SC and PSF are considered to compare the imaging performance
referring to the commonly adopted multimonostatic measurement configuration and those
achievable with a multiview-multistatic data acquisition. Moreover, for a given antenna
array system, they are exploited to establish the suitable number of transmitting antennas
to be considered in the multiview-multistatic acquisition, provided that all the antennas in
the GPR array act as receivers.

For the sake of comparison, we recall that for a multimonostatic, multifrequency
configuration, the theoretical resolution limits are approximated by [26]:

∆x =
c0

4 fc
√

εs sin θx

∆y =
c0

4 fc
√

εs sin θy

∆z =
c0

2B
√

εs

(8)

Here, ∆x, ∆y, and ∆z represent the resolutions along the x, y, and z axes, respectively;
fc denotes the central frequency in Hz, while θx and θy indicate the maximum illumination
angles subtended by the measurement aperture with respect to the x and y axes, respectively
(see Figure 2). Additionally, B stands for the radar bandwidth in Hz.

It must be stressed that closed resolution formulas are not available for the multiview-
multistatic configuration addressed in this work, and then a numerical analysis is per-
formed to assess the resolution limits as described in the following Subsection.
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y 
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Figure 2. Two-dimensional representation of the considered geometry highlighting the maximum
angular illumination.

3.2. Resolution Analysis

SC and PSF are evaluated to investigate how the measurement configuration affects
the imaging capabilities. The numerical analysis is carried out for a fixed investigation
domain and multichannel GPR system. As shown in Figure 1, the GPR antenna array is
made by eight Tx/Rx radiating elements evenly spaced by 7.5 cm and collects data in the
frequency band B = [1.6, 2.2] GHz (the central frequency is fc = 1.9 GHz and the uniform
frequency step is δ f = 68 MHz). The antenna array is parallel to the x-axis and is moved
with a 2 cm spatial offset along the y-axis, according to the coordinate reference system
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in Figure 1. The investigation domain has size [0.2, 0.8]× [0.1, 0.4]× [0, 0.6] m3. The soil
relative permittivity is εrs = 4, reflecting typical soil conditions [1].

Beyond the multimonostatic configuration (here referred to as MM/MF), three multiview-
multistatic setups, differing for the number of Tx antennas Nt, are considered (see Figure 3):

case 1 : Nt = 2,
case 2 : Nt = 4,
case 3 : Nt = 8,

(9)

while the number of receiving antennas Nr does not change (Nr = 8).

Figure 3. Antenna array configuration for the considered cases.

The curves in Figure 4 show the singular values of the operator A relevant to the
four considered measurement configurations. As expected, the curves exhibit a rapid
decay as the truncation index grows, and the curve referred to the MM/MF configuration
experiences a faster decay than Case 2 and 3. On the other hand, the curve related to Case
1 shows a slightly faster decay than MM/MF in the interval Nδ < 327, after which an
opposite trend is observed. In general, the curves of the multiview-multistatic setup suggest
that, for a fixed TSVD threshold, the number of the singular values above the threshold
increases with the number of Tx antennas and, accordingly, better imaging capabilities
are expected.

The following analysis is carried out for different noise levels on the scattered field
data. In particular, the data are corrupted by Additive White Gaussian Noise (AWGN) with
a fixed signal-to-noise ratio (SNR). The TSVD regularization parameter Nδ is found using
the L-curve method, as said in Section 2, and its values for SNRs ranging from 0 to 50 dB
are listed in Table 1.

Based on the results in Table 1, it can be concluded that, for a fixed configuration,
the SNR increases with the number of singular functions, thus reducing the filtering effect
of the TSVD. Additionally, for a given SNR, increasing the number of Tx antennas in the
MIMO configurations also increases the number of singular values. Finally, the MM/MF
configuration consistently exhibits a lower truncation index compared to the MIMO config-
urations. As an example, Figure 5 shows the behavior of the L-curves for each considered
measurement configuration when SNR = 15 dB. Such an SNR value is considered for the
following computation of the SC and PSF.
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Figure 4. Singular values of the operator A relevant to the considered measurement configurations
represented over a dB scale.

Figure 5. The L-Curves relevant to each configuration.

Table 1. Optimal TSVD truncation index provided by L-Curve method for each configuration
and SNR.

SNR [dB] 0 5 10 15 20 25 30 35 40 50

Case 1 Nδ 605 714 866 994 1095 1194 1306 1404 1476 1648

Case 2 Nδ 929 1077 1317 1488 1655 1844 1999 2169 2333 2600

Case 3 Nδ 1008 1138 1474 1741 1963 2176 2415 2570 2797 3157

MM/MF Nδ 338 530 567 723 756 796 847 887 916 973

Figure 6 shows the cuts in the kx − kz and ky − kz planes of SC obtained through
Equation (6) for the considered measurement configurations. In agreement with the results



Remote Sens. 2024, 16, 3163 8 of 15

of linear inverse scattering (e.g., see [2,35]), the scattering operator A acts as a low pass filter
along the x and y directions, i.e., along the directions defining the measurement plane, while
it operates as a bandpass filtering along the z-axis for every measurement configuration.

Figure 6. Cuts of the normalized spectral content relevant to the considered cases. The panels in the
first row (a1–d1) represent the cuts in the kx − kz plane, while the panels in the second row (a2–d2)
are the cuts in the ky − kz plane.

To estimate the achievable spatial resolution, we evaluate the PSF for a point tar-
get located at the center of the investigation domain, i.e., at (0.5, 0.25, 0.3) m. The cuts
along x, y, and z of the PSF amplitude normalized to the maximum are compared in
Figure 7a, Figure 7b, Figure 7c, respectively. The figures reveal comparable spatial resolu-
tions (i.e., main lobe width) along x and y with all configurations; however, the MM/MF
configuration is characterized by a notable increase in the sidelobes along the array direc-
tion (x-axis). This outcome is an effect of the chosen spacing among the antenna of the array
(i.e., 7.5 cm), which is nearly equal to the wavelength in the considered soil at the center
frequency. On the other hand, all the MIMO configurations at hand allow mitigating this
problem by suppressing the sidelobes. As regards the PSF cut along depth (see Figure 7c),
similar resolutions are achieved with all configurations, save for Case 1 showing a slight
broadening of the PSF main lobe. The spatial resolution values evaluated according to the
half-power (i.e., −3 dB) criterion and reported in Table 2 confirm the former statements.

It is also stressed that since resolution limits in Case 2 and Case 3 look very similar to
each other, it is reasonable to consider Nt = 4 Tx antennas as a suitable trade-off between
the imaging improvement and the measurement time.

Table 2. Resolution results for a point-like target placed at (0.2, 0.25, 0.1) m related to the
considered cases.

Resolution Theoretical
(MM/MF) [m] Case 1 [m] Case 2 [m] Case 3 [m] MM/MF [m]

∆x 0.02 0.02 0.02 0.02 0.02

∆y 0.04 0.04 0.04 0.04 0.04

∆z 0.1 0.1 0.08 0.08 0.08



Remote Sens. 2024, 16, 3163 9 of 15

Figure 7. Comparison of the PSF cuts related to a point-like target placed at (0.5, 0.25, 0.3) m. Panels
(a–c) show the PSF cuts along x, y and z, respectively.

4. Reconstruction Results

This section investigates how the measurement configuration impacts the imaging
capabilities in the case of extended targets. To perform this task, full-wave synthetic data
are generated by using the electromagnetic simulator GPRMax [49]. In the simulated
scenario, the GPR antenna array is in air and made up of x-oriented Hertzian dipoles
emitting a Ricker pulse centered at the frequency of 2 GHz. As in Section 3, the GPR
antennas are 7.5 cm evenly spaced, act as Tx and Rx, and are moved with a spatial offset
of 2 cm along the y-axis. The soil permittivity is εs = 4 and the investigation domain
has size [0.2, 0.8]× [0.1, 0.4]× [0, 0.6] m3. We consider a buried L-shaped cavity (εt = 1)
whose position and dimensions in the x − y plane are shown in Figure 8, while its thickness
along z is equal to 0.03 m. The target upper surface is located 0.37 m below the air–soil
interface. The antennas are placed at a height of 2 cm above the air–soil interface, which
is small enough in terms of wavelength to neglect the propagation in air and assume a
homogeneous scenario.

GPR raw data (radargrams) are generated over a fast-time window of 20 ns and
processed according to the pipeline depicted in Figure 9. Specifically, the raw data are
pre-processed in the time domain by means of the zero time and the time gating procedures.
Firstly, a zero time setting is applied at 0.8 ns to establish the reference point for the depth.
Subsequently, the time gating is implemented by setting to zero the signal reflections up to
3.0 ns. This gating procedure effectively eliminates artifacts arising from direct coupling
between the Tx and Rx antennas, as well as reflections from the air–soil interface. A time
window of 15 ns is considered for further processing. Following pre-processing, time
domain data are transformed into the frequency domain using the Fast Fourier Transform
(FFT) over the band [1.6, 2.2] GHz, with a step of 68 MHz. At this point, to simulate the real
measurement process and assess the robustness of the imaging approach under realistic
conditions, the data are corrupted by AWGN with SNR = 15 dB.

The frequency domain data are the input of the MWT imaging approach, which
provides a qualitative 3D reconstruction of the scenario under test, referred to as tomo-
graphic image. As performed for the resolution analysis, the TSVD truncation index Nδ is
determined by the L-curve method.
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Figure 8. Geometry of the simulated scenario.

 
Raw radargram (B-scan) 

Zero timing Time gating 

Pre processing (TD) 

FFT 

         Tomographic image 

MWT  Imaging (FD) 

Figure 9. Data processing flow chart.

The constant-depth slices of the 3D tomographic reconstruction normalized to the
maximum into the investigation volume are plotted for each configuration in Figures 10–13.

These figures corroborate that the MM/MF data do not allow a satisfactory target re-
construction because various artifacts appear in the horizontal plane along the x-axis due to
the antenna spacing that is nearly equal to one wavelength in the soil at the center frequency.

On the other hand, Figures 11–13 confirm that the availability of multiview-multistatic,
multifrequency data allows the identification of the target’s position and shape. Indeed,
the reconstructions peak at z = 0.37 m, which corresponds to the upper target surface. How-
ever, the result referring to Case 1, i.e., when only two transmitters are employed, exhibits
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a slightly inferior depth resolution compared to Cases 2 and 3, although it still maintains
an acceptable reconstruction quality. Conversely, all the considered multiview, multistatic,
multifrequency reconstructions achieve nearly identical transverse resolution along the x-
and y-axes. Notably, in agreement with the analysis in Section 3, the multiview-multistatic
configuration denoted as Case 3, although its increased number of transmitters, provides a
similar imaging performance to Case 2, which uses the half number of transmitters.

Figure 10. Depth slices of the full-3D tomographic reconstruction of the L-shaped target referring to
MM/MF configuration. Color scale [0, 1].

Figure 11. Depth slices of the full-3D tomographic reconstruction of the L-shaped target referring to
Case 1. Color scale [0, 1].
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Figure 12. Depth slices of the full-3D tomographic reconstruction of the L-shaped target referring to
Case 2. Color scale [0, 1].

Figure 13. Depth slices of the full-3D tomographic reconstruction of the L-shaped target referring to
Case 3. Color scale [0, 1].

5. Conclusions

This paper investigated the advantages offered by MIMO GPR systems in terms of
imaging reconstruction capabilities, starting from the observation that multichannel GPR
systems currently available on the market not only allow the simultaneous collection of
multimonostatic data along more parallel traces but also make possible the acquisition
of multiview-multistatic data. Specifically, a theoretical study aimed at assessing how
the availability of multiview, multistatic, and multifrequency data impact on the 3D GPR
imaging, when it is faced using a microwave tomographic (MWT) approach, has been
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presented. The adopted MWT approach models the GPR antennas as linearly polarized
electric dipoles; it faces the imaging as an inverse scattering problem by using the Born Ap-
proximation and the far-field one to describe the scattering phenomenon, and it can process
both multimonostatic, multifrequency data and multiview, multistatic, multifrequency data
collected by MIMO GPR systems equipped with M transmitting and N receiving antennas,
with M and N arbitrary integer numbers.

The imaging capabilities of the MWT approach have been investigated by taking
into account the spectral content and the point spread function as well as by processing
synthetic data referring to an extended target.

The performed analysis has corroborated that the exploitation of multiview, multistatic,
multifrequency data mitigates the occurrence of artifacts due to an unsuitable spacing
among the antennas of the GPR arrays. Furthermore, the use of a number of Tx antennas
equal to half of the total number of available antennas appears as a suitable choice for
improving imaging performance by taking into account the increased measurement time
required by the acquisition of multiview-multistatic data.

It is worth remarking that the presented analysis can be exploited to foresee the ex-
pected imaging capabilities in real scenarios, and future activities will regard the collection
and the processing of multiview, multistatic, multifrequency experimental data to assess
the achievable performances in realistic scenarios. Furthermore, since the adopted MWT
approach provides a qualitative reconstruction, i.e, it provides information on the geomet-
rical features of the targets but not on their electromagnetic properties, future research will
tackle the design and validation of approaches devoted to exploiting multiview, multistatic,
multifrequency data to perform the quantitative imaging of the investigated scenarios.
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