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Abstract: Global warming and climate change are significantly impacting local climates, causing
more intense heat during the summer season, which poses risks to individuals with pre-existing
health conditions and negatively affects overall human health. While various studies have examined
the Surface Urban Heat Island (SUHI) phenomenon, these studies often focus on small to large
geographic regions using low-to-moderate-resolution data, highlighting general thermal trends
across large administrative areas. However, there is a growing need for methods that can detect
microscale thermal patterns in environments familiar to urban residents, such as streets and alleys.
The temperature-humidity index (THI), which incorporates both temperature and humidity data,
serves as a critical measure of human-perceived heat. However, few studies have explored microscale
THI variations within urban settings and identified potential THI hotspots at a local level where
SUHI effects are pronounced. This research aims to address this gap by estimating THI at a finer
resolution scale using data from multiple sensor platforms. We developed a model with the random
forest algorithm to assess THI trends at a resolution of 0.5 m, utilizing various variables from different
sources, including Landsat 8 land surface temperature (LST), unmanned aerial system (UAS)-derived
LST, Sentinel-2 NDVI and NDMI, a wind exposure index, solar radiation modeled from aircraft and
UAS-derived Digital Surface Models, and vehicle density and building floor area from social big data.
Two models were constructed with different variables: Modelnatural, which includes variables related
to only natural factors, and Modelmix, which includes all variables, including anthropogenic factors.
The two models were compared to reveal how each source contributes to the model development and
SUHI effects. The results show significant improvements, as Modelnatural had a fitting R2 = 0.5846,
a root mean square error (RMSE) = 0.5936 and a mean absolute error (MAE) = 0.4294. Moreover,
when anthropogenic factors were introduced, Modelmix performed even better, with R2 = 0.9638,
RMSE = 0.1751, and MAE = 0.1065 (n = 923). This study contributes to the future of microscale SUHI
analysis and offers important insights into urban planning and smart city development.

Keywords: surface urban heat island; temperature-humidity index; unmanned aerial system; land
surface temperature; random forest

1. Introduction

The large concern related to surface urban heat islands (SUHIs) has been well doc-
umented in numerous remote sensing studies over the past few decades. These studies
consistently demonstrate that urbanization leads to significantly higher thermal condi-
tions in densely populated urban centers compared to surrounding suburban areas [1].
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Following urbanization, the SUHI phenomenon has become prominent in various cities
worldwide [2]. It induces problematic environmental issues that can cause various hazards,
such as increased high-temperature nights and their associated health hazards (e.g., heat
strokes), changes in ecosystems allowing mosquitoes, which carry infectious diseases, to
expand their habitat, and increasing the frequency of intense rainfall events [3]. The UHI
phenomenon is a severe problem that significantly affects urban space environments and
leads to associated health issues [4–6]. For example, the United Nations projects that by
2050, 68% of the global population will live in urban areas [7], meaning that more people
will surely be exposed to higher risks in the future. Devising mitigation plans for such
issues is an urgent task.

Depending on the objective and the scale of observations, the UHI phenomenon can
be categorized into different layers based on altitude: the boundary layer UHI, the canopy
layer UHI (CUHI), the surface UHI (SUHI), and even subsurfaces [3,8–10]. The boundary
layer UHI extends from the rooftop level upwards into the atmosphere, where it influences
broader meteorological conditions. The UHI canopy layer is found within the urban canopy,
which includes the space from ground level up to the average rooftop height, where most
human activities occur. Lastly, the SUHI is observed directly at the land surface level and is
commonly assessed using remote sensing technologies, such as satellite imagery, to measure
land surface temperature (LST) trends. Traditionally, the term UHI has referred to the
phenomenon where urban areas exhibit higher temperatures than their surrounding rural
areas, particularly at night, due to the heat retention properties of urban infrastructure [9].
This nocturnal temperature differential has been the subject of extensive studies, providing
valuable insights into the broader impacts of urbanization on local climates. However,
our study specifically focuses on the daytime SUHI, primarily examining LST variations
within urban areas using multiplatform remote sensing techniques. By concentrating
on SUHI during daylight hours, we aim to capture the spatial heterogeneity of thermal
conditions across the urban landscape, particularly in areas where the effects of SUHI are
most pronounced. This approach is critical for identifying microscale thermal patterns that
are essential for effective urban planning and public health interventions, as these patterns
directly influence human comfort and exposure to heat during the day, when outdoor
activities are most common.

Detecting LST trends through remote sensing techniques has been widely applied
in various geographical regions worldwide. Estoque and Murayama [11] focused on the
mountainous region and the surrounding environment in Baguio City, Philippines, through
a temporal set of LANDSAT satellite series for monitoring thermal trends. The loss of
green space and rapid urbanization increased the mean LST by over 3 ◦C above impervious
surfaces from 1987 to 2015. Ranagalage et al. [12] analyzed the temporal changes in LST
over the Colombo Metropolitan Area, Sri Lanka, using LANDSAT data from 1997 to 2017
and identified the critical areas that are highly exposed to thermal threats. Depending
on the spatial extent and the temporal scale, the data used for analysis have mostly been
derived from the LANDSAT series or MODIS satellites [13,14]. However, other options
exist, such as the ASTER datasets [15] and, more recently, the ECOsystem Spaceborne
Thermal Radiometer Experiment on Space Station (ECOSTRESS) LST dataset, which offers
high temporal resolution [16]. While LANDSAT and MODIS are often preferred due to their
widespread availability, ECOSTRESS may outperform these other spaceborne products due
to its capability to capture the LST with greater frequency. Nevertheless, all the data can
provide promising results in detecting the thermal condition and are valuable for observing
general trends at low-to-moderate resolutions. Recent advancements in modern technology,
such as unmanned aerial systems (UAS), now offer the ability to observe surface heat trends
at much lower altitudes, allowing for observing the thermal distribution heterogeneity in
complex urban landscapes at much finer resolutions [17,18].

The contributions to the SUHI effect can be discussed from the perspective of multiple
driving factors [11–14,19–25]. In general, it is known that various LULC types can reduce or
enhance the SUHI effect, such as impervious surfaces, which are most common in built-up
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urban areas, and these types of surfaces have a higher potential for surface heat storage
and absorption of more solar radiation, which contributes to heating [11,19]. Conversely,
vegetation, such as shrubs and trees, can reduce the heating effects through evapotran-
spiration [11,12,20]. The SUHI effect can also be influenced by the climate’s wet or dry
conditions. For example, due to convective heat loss, dry built-up areas can act as a cooling
source compared to surrounding rural lands, which tend to have wetter conditions because
of vegetation [21]. Rain events and increased cloud cover diminish the overall thermal
load in urban areas, temporarily alleviating SUHI intensity during daytime, particularly in
warmer and wetter climates where precipitation is more frequent [13]. When investigating
the phenomenon at a microscale, the shadowing effects from vertical structures, such as
large buildings or trees, can directly block radiation from heating surfaces [20,22], thus
working as a cooling source. Anthropogenic sources can also contribute to SUHIs, such as
energy consumption [14,23] or heat emissions from buildings and vehicles [24]. Multiple
factors control the SUHI, and determining how such factors are intercorrelated is often diffi-
cult. Although studies have typically relied on low-to-moderate-resolution data to capture
general trends, recent research emphasizes the importance of finer-resolution analyses to
detect critical microscale variations in urban environments [20,25,26].

Japan has been developing, and similar significant changes in thermal conditions are
evident in urban areas (Figure 1). Due to global warming and the associated environmental
issues, unusual climatic conditions have been reported [27]. Not only is the issue of heat
critical, but with the geographical characteristics of Japan, which is located in a moist
climatic zone, there are more chances that high temperatures can negatively impact human
health. Human sensations associated with various climatic conditions can be considered
using indices reflecting both temperature and humidity information. The temperature-
humidity index (THI) represents the discomfort humans (or animals) feel depending on the
combination of low to high temperatures and relative humidity. Temperature and humidity
levels affect our health care [4,5], and extreme exposure to such high-risk conditions can
even lead to death. The aging issues of the increasingly elderly population in Japan present
concerns regarding the vulnerability of specific age groups to exposure to critical climatic
situations [28], and it is necessary to understand where high-risk areas exist.
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Therefore, determining high-temperature hotspots and the distribution of high-discomfort
(high-THI) areas in urban areas has become an issue. Numerous examinations have been
conducted on the heat in metropolitan spaces [29]. Nonetheless, the outcomes are arranged
to determine the pattern for an entire city or area. Such work appraises the heat trends
over a moderately large administrative unit [13,30]. However, microscale studies have
demonstrated the significant impact of urban geometry on microclimatic conditions. For
instance, diverse urban forms and heterogeneous building heights can generate more favor-
able microclimate conditions, creating shaded areas, and promoting better ventilation [31].
Similarly, it is highlighted that the sky view factor (SKV) correlates to thermal comfort,
which varies in seasons, where areas with higher SVF are warmer and less comfortable
in the summer, while areas with high SVF in the winter tend to show higher comfort
(at F26<PET<30 condition) [32]. It implies the importance of incorporating complex urban
geometries into city planning to optimize outdoor thermal environments [31,32]. These
findings reinforce the need to analyze urban environments at a finer scale, including specific
buildings, streets, and roads, to develop targeted interventions that can effectively mitigate
the adverse effects of SUHIs. However, it is equally important to maintain a broader spatial
perspective that encompasses the entire city to understand how these localized conditions
fit into the larger urban landscape. Achieving this balance is essential for comprehensive
urban climate assessments, especially when considering the variability of conditions across
different urban areas. To this end, employing cost-effective, remotely sensed approaches
allows for efficient monitoring and analysis of microscale and macroscale thermal envi-
ronments, providing a geographical overview critical for informed urban planning and
decision-making.

In this work, our objective is to develop a new method for observing and mapping
discomforts (i.e., THI) at the microscale while maintaining a broad spatial extent represent-
ing the urban landscape. The THI is chosen for its practicality, simplicity, and compatibility
with available data sources. The novel contribution of this work is twofold. First, mul-
tiplatform data are processed and modeled to develop a microscale estimate of the THI
distribution. The second involves determining how different driving factors contribute to
the model’s accuracy by categorizing them into two major types: natural factors and an-
thropogenic factors. Satellite and aircraft images are collected and processed as broad-scale
datasets, while an UAS is utilized to collect finer-resolution data in-situ. Two multires-
olution datasets are combined with the in situ ground truth data to enhance the model
estimation performance.

2. Equipment and Datasets
2.1. Unmanned Aerial System (UAS) and Camera Specification

A UAS is utilized to collect finer-resolution remote sensing data at a test site (Figure 2).
This work utilizes a DJI Matrice 210 multicopter UAS (DJI, Shenzhen, China) for the aerial
system, and the DJI Zenmuse-XT2 (DJI, Shenzhen, China) is the sensor that is equipped
aboard the UAS. The extensibility of the Matrice 210 is suitable for replacing various sensors
for the objective of the flight. In this case, the Zenmuse-XT2 can capture both optical and
thermal information at once, making it convenient for obtaining the data. The dual battery
system enhances the flight performance for its flight duration and safety features, which
makes it much safer to operate in urban areas.
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Figure 2. The UAS utilized in this work (Matrice 210 and Zenmuse-XT2).

2.2. GNSS and Thermohygrometer

Reach (Emlid, Hong Kong) and DG-PRO1RWS F9P (BizStation Corp., Matsumoto,
Japan) global navigation satellite system (GNSS) devices were utilized to record the geo-
graphical coordinates (Figure 3). The devices can record multiple L1 GNSS signals, e.g.,
GPS (Global Positioning System), QZSS (Quasi-Zenith Satellite System), GLONASS (Global
Navigation Satellite System), Galileo, BeiDou, etc., for the Reach and both L1 and L2 sig-
nals for the F9P device (dual-frequency GNSS). The equipment was used together with a
thermohygrometer to record the temperature and relative humidity at each geographical
location. The two GNSS devices were used in different situations: the Reach device was
utilized more in open areas, while the F9P device was used in densely built-up areas, where
the limited sky view can impact the GNSS signals. An MJ-UDL-20 thermohygrometer
logger (SATOTECH, Kawasaki, Japan) was used for logging the temperature and humidity
with a minimum interval of 2 s. The temperature and humidity measurement ranges are
−20 to 70 ◦C and 5 to 95%, respectively. The temperature resolution is 0.1 ◦C, and the
relative humidity (RH) resolution is 0.1%. The sensor accuracy is ±0.5 ◦C (within the range
of 10–60 ◦C) and ±3.0% for RH (within the range of 20–80% RH). The instrument has been
calibrated. However, it is not ventilated and does not include a conventional radiation
shield. The data is further utilized as the ground truth information of the area.
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2.3. Satellite and Aircraft Data

Two different satellites are utilized for each purpose. First, the Sentinel-2A Mul-
tispectral Instrument (MSI) Level 2A (L2A) product collected on 20 August 2020, was
obtained from the relevant webpage. The L2A product is atmospherically corrected and in a
ready-to-use form converted into the surface reflectance (bottom of atmosphere reflectance).
The original resolution of the data is 10 m, and Sentinel data are further used for the
modeling. Second, the Landsat 8 Operational Land Imager (OLI) and Thermal Infrared
Sensor (TIRS) Level 1 terrain-corrected product (L1TP) collected on 26 August 2020, was
obtained from the relevant webpage. The product is radiometrically corrected using the
cosine of the solar zenith angle correction (COST) model [33] for conversion into surface
reflectance. The data are further used for city-scale analysis. Both satellite data were
cloud-free for the range of the study area. Aircraft data were collected with the support of
Maebashi City Hall. The aerial survey was conducted on 10 November 2019, observing all
of Maebashi city (our study area). The data are utilized to develop a 3D model of the city,
and the original image resolution is approximately 16 cm.

2.4. Flight Design for UAS

On 25 August 2020, a flight campaign was conducted at a small study site (Figure 4)
from 11:00 AM to 11:10 AM. Due to an issue with a local resident, the flight was delayed by
one hour. An overview of the geographical location is shown in Figure 5. The UAS operated
at an altitude of 110 m following a single grid pattern (Figure 4), capturing multiple aerial
photographs. The ground sampling distance (GSD) at this altitude was approximately
2.6 cm for the visible sensor and 10 cm for the thermal sensor. The forward (side) overlap
for the thermal camera was set to about 84% (90%), which corresponds to roughly 89%
(>90%) for the visible sensor. This survey aimed to collect microscale data samples.
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Figure 5. Overview of the study area (Gunma Prefecture, Maebashi City, Japan). Site 1 refers to
the UAS survey site, while the whole scene shown on the right indicates the study region of the
broad-scale estimation.

2.5. Ground Truth Collection of the Reference THI
2.5.1. Ground Truth at Site 1

A GNSS device (Reach or F9P) was mounted on top of a safety helmet, with a GNSS
base station on a nearby tripod. The thermohygrometer was fixed to the end of a rod, held
horizontally with the sensor oriented perpendicularly to the ground, and maintained at
1.3 m above ground using a string. During the UAS aerial survey, three crew members,
equipped with helmets and thermohygrometer rods, walked around the study site to log
geographical position, temperature, and humidity. The GNSS devices observed signals from
GPS, QZSS, Galileo, and Beidou at a 1 Hz logging frequency, while the thermohygrometer
recorded data every 2 s. GNSS signal data from the base station were combined with rover
data for postprocessing kinematic (PPK) analysis [34] to enhance positioning accuracy
(only the Reach module required postprocessing, as the F9P was sufficiently accurate
without it). The GNSS and thermohygrometer timestamps were synchronized to create
point vector data for temperature and humidity at each location [22]. Using Equation
(1) [35], the THI was calculated for each point, representing the level of discomfort due to
temperature and humidity. According to Yoo and Chung [35], a THI below 68 indicates
comfort, 68–75 represents initial discomfort, 75–80 causes discomfort for 50% of people,
and above 80 results in distress for all individuals.

THI = 1.8T − 0.55
(

1 − RH
100

)
(1.8T − 26) + 32 (1)

where T is the temperature (◦C), and RH is the relative humidity (%).

2.5.2. Ground Truth Within the City

On 26 August 2020, the same procedure as site 1 was performed within multiple
areas of the city. From 10:00 AM to 10:30 AM, five crews walked across the city to collect
temperature and humidity data. Each crew was set to different starting locations from
a posteriori knowledge: a park (area with grass, shrub, and tree vegetation), an open
built-up area, a central station and the surroundings, residential houses, and the city’s main
tree-lined street with trees that cast shadows (Figure 6). Multiple areas were selected to
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provide various types of samples. The date and the time of the ground truthing coincided
with the Landsat observations, which were observed on the same day at approximately
10:20 A.M. local time. The sample points were converted to point vectors, and THI values
were computed as indicated in Section 2.5.1. Figure 6 shows the overview of the sampled
area and images of each location. Any samples collected at a location where the sky was
not visible were excluded from the analysis.
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2.6. Mobility and Building Floor Data

Mobility big data was collected from Agoop Corp. (Tokyo, Japan). The data is
structured in CSV format, containing unique IDs, coordinates, and logging times, which
allows for the analysis of mobility flow dynamics. To consider the anthropogenic effects,
the mobility information of Maebashi City was extracted for 7 August 2019. The date did
not coincide with the actual ground-truthing date; however, it was used considering the
same day of the week and climate conditions (clear day). The period of the field study
did not coincide with any lockdowns amidst COVID-19; therefore, it is assumed that a
significant traffic difference will not be seen. The building floor data were created using the
digital residential map of Zenrin Co., Ltd. (Kitakyushu, Japan). The residential map is a
large-scale map and covers almost all of Japan. Using this map, it is possible to evaluate
the location, shape, and number of floors of buildings. The building information on this
map is very reliable because it was created based on topographical maps and basic city
planning maps produced by the Geospatial Information Authority of Japan, and the results
of field surveys of all buildings are reflected in the map. Similar large-scale maps have
been developed in the United States, France, South Korea, and other countries, and in the
United Kingdom, as in Japan, large-scale maps have been published by private companies
(UKMap by G.I.group (Chesterfield, United Kingdom) [36]. In this study, we used the
digital data from this map created in 2019 to collect the total floor area of all buildings in
the target area.
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3. Methodology

The data introduced in this study include multiple types and are in the form of large
datasets. We have summarized the methodological flow of this work process in Figure 7.
The objective of this work is to map the distribution of the THI and analyze thermal
heterogeneity within SUHI-affected areas at a microscale resolution. Aircraft and satellite
data are used, which can cover larger spatial extents; however, UAS data are also included
to improve model accuracy. This is from the assumption in works by Iizuka et al. [37],
which discusses that model improvements can be achieved by integrating finer-resolution
information with coarser-resolution information. Aircraft data are used to develop a 3D
model of the whole scene. Satellite data are used to compute the LST for the scene or
compute the emissivity in order to adjust the UAS data. The GNSS and thermohygrometer
devices are utilized to collect the ground-truth THI values used as training data for model
development. Note that all the UAS sample data points are used for model development,
while the ground-truth data collected within the city is divided in half, creating a training
set and a validation set. Finally, with multiple variables, the random forest model is trained,
and two models are computed: Modelnatural, in which only variables related to natural
factors are used, and Modelmix, in which anthropogenic factors are included.
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3.1. Study Area

The study area, Maebashi City, Gunma Prefecture, is located in the northwestern area
of the Tokyo metropolitan region in Japan and is centered on the island, with the greatest
possible distance to the east and west coasts (Figure 5). The study area for the whole city
scale is focused on the central area of the city, where the main Maebashi station is located
in the scene center (densely urbanized area). To the south and north-east, there are sparser
built-up areas, and patches of agricultural land start to appear. The western side features
a river crossing from north to south through the city. The site length in the north-south
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direction is approximately 4.5 km, and that in the east-west direction is approximately
3.2 km. Site 1 in the figure indicates the area where the UAS survey was conducted.
Site 1 is a closed junior high school with variations in land cover, including bare soil,
grassy vegetation, trees, buildings, and asphalt, each exhibiting different thermal trends.
Microscale sampling was conducted in this area. The climatic conditions of Maebashi city
vary within a year. Our fieldwork was carried out on 25–26 August 2020. The daily average
maximum temperature in August 2020 was 35.1 ◦C, and the peak maximum reached
39.8 ◦C. Maebashi City is always given attention to the nation’s temperature observations
because this region is characterized by a hot summer climate. The total precipitation was
64.5 mm, and the average relative humidity was 68%, which indicates extremely hot and
moist conditions, leading to much higher discomfort.

3.2. Spatial Data and Variable Construction
3.2.1. Aerial Image and Digital Surface Model

Using the collected aircraft and UAS optical and thermal imagery, the structure from
motion (SfM) technique was applied with Metashape Pro ver. 1.6.0. (Agisoft, St. Petersburg,
Russia) for creating an ortho imagery. Specific parameter settings for the optical image
are follow: alignment = “high”, default ties and key points, dense point = “ultrahigh”,
depth filtering = “mild”. Digital surface model (DSM) is generated with a dense point
cloud, further used for orthorectifying the images. The DSM was generated using the
inverse distance weighting (IDW) interpolation algorithm. Thermal image uses the follow:
alignment = “highest”, default ties and key points, dense cloud = “ultrahigh”. Instead
of a DSM, mesh data were created to produce a mosaicked thermal image. The original
resolution of the processed aircraft data for the DSM and orthoimage was approximately
15 cm, resampled to 0.5 m using the bilinear method for further processing. The UAS data
had resolutions of 5 cm for RGB and 10 cm for thermal data, with the RGB data (DSM)
resampled to 10 cm using the bilinear method to match the thermal data.

3.2.2. Solar Radiation and Wind Exposure

The accumulated total, direct, and diffuse shortwave solar radiation were modeled
using the DSM, with ArcGIS Pro ver. 2.4. (ESRI, Redlands, CA, USA) for the same date and
time as the observations. For site 1, solar radiation was modeled from sunrise to 11:00 AM,
while the entire city was modeled from sunrise until 10:30 AM every 0.5 h. The System for
Automated Geoscientific Analyses (SAGA) GIS [38] ver. 7.7.1. is used to generate a wind
exposure index [39] to determine the degree of exposed areas. The search radius is set to
20 m. Depending on the location and surrounding objects, there are different degrees of
wind, which will influence the neighborhood heat exchange related to evaporation [40].
Modeling the magnitude of wind effects should work as an alternative to the actual wind
velocity, which would be complex to obtain for each area.

3.2.3. Satellite Indices

Landsat 8 data are utilized to compute the LST for the city. This approach proposes
both the mono-window algorithm (MWA) and split-window algorithm (SWA) integration.
MWA and SWA is guided by the work of Wang et al. [41]. The improved MWA for the
band 10 Landsat 8 data can be computed from the following equation [41]:

TMW = [a10(1 − C10 − D10) + (b10(1 − C10 − D10) + C10 + D10)× T10 − D10Ta]/C10 (2)

where TMW is the LST from the MWA method and a10 and b10 are constants (for this study:
a10 = −70.1775, b10 = 0.4581). C10 and D10 are emissivity functions (ε10) and atmospheric
transmittance (τ10). T10 is the brightness temperature of band 10. Ta is the effective mean
atmospheric temperature. C10 and D10 are calculated by:

C10 = ε10 × τ10 (3)
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D10 = (1 − τ10)× [1 + (1 − ε10)× τ10] (4)

Estimating emissivity (ε) values are considered from the NDVI-based emissivity
method [42]. The study area is divided into three categories based on the NDVI values:
pure vegetation, bare land, and mixed area. Each surface emissivity is calculated based on
the formula:

ελ =


εsλ, NDVI < NDVIs

εsλ + (εvλ − εsλ)Pv, NDVIs ≤ NDVI ≤ NDVIv
εvλ, NDVI > NDVIv

(5)

Pv =

[
NDVI − NDVIs

NDVIv − NDVIs

]2
(6)

where ελ is the emissivity and εvλ and εsλ are the vegetation and soil emissivity, respectively.
Pv is the proportion of vegetation. NDVIs and NDVIv refer to the bare land and pure
vegetation surfaces, respectively. The values are considered to be 0.991, 0.986, and 0.964
for NDVI ≤ 0, NDVI < NDVIs and NDVI > NDVIv pixels, respectively. The mixed pixels
between the bare lands and pure vegetation are determined from Equation (5). The transmit-
tance (τ) values were determined by the linear function simulated by Rozenstein et al. [43].
The values for band 10 and band 11 can be obtained as follows:

τ10 = −0.1134 × ω + 1.0335 (7)

τ11 = −0.1546 × ω + 1.0078 (8)

where ω is the atmospheric water vapor content, and this study utilizes the MODIS wa-
ter vapor data (MOD05_L2) product to determine the atmospheric water vapor content
necessary for the atmospheric correction of satellite derived LST. Finally, the effective
mean atmospheric temperature (Ta) is computed from the linear function provided by
Qin et al. [44]. T0 is the near-surface air temperature determined by the nearby meteorolog-
ical station:

Ta = 16.0110 + 0.9262 × T0 (9)

The improved SWA proposed by Rozenstein et al. [43] is used to calculate a second
type of LST data for a scene.

TSW = A0 + A1T10 − A2T11 (10)

where TSW is the LST from the SWA method, T11 is the brightness temperature of band 11
and A0, A1, and A2 are calculated with the following equations

A0 = E1a10 − E2a11 (11)

A1 = 1 + A + E1b10 (12)

A2 = A + E2b11 (13)

Ci = εiτi (14)

Di = (1 − τi)[1 + (1 − εi)τi] (15)

A = D10/E0 (16)

E1 = D11(1 − C10 − D10)/E0 (17)

E2 = D10(1 − C11 − D11)/E0 (18)

E0 = D11C10 − D10C11 (19)

where εi and τi are the emissivity and atmospheric transmittance of band i, respectively. The
constants of a10, b10, a11, and b11 are −62.8065, 0.4338, −67.1728, and 0.4694, respectively, in
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this study. Now that both TMW and TSW are computed, we perform a regression between
them to convert the TMW to the adjusted LST (mono-window regressed: TMWR). This
process was performed due to the known facts of the stray light issue of band 11. The use
of SWA involves a striping issue, even though it is known that SWA is more accurate than
MWA [41,45]. Therefore, the output from the TMW was adjusted to the values of TSW from
the linear regression to suppress this problem.

3.2.4. Mobility Data and Building Floor Area

Using the mobility big data that contains the volume of traffic and passengers, the
vehicle density was calculated by counting the total number of vehicles that are active from
sunrise (approximately 05:00 AM) to sunset (approximately 18:00). From the original CSV
file, each unique IDs were converted to point vector data within the considered time range.
The kernel density of vehicles within the range of 300 m was computed. This allows the
determination of the general vehicle volume on each street in Maebashi. The building floor
area was calculated by summing the total floor area of the buildings within the 250 m grid.
Because the building polygons that can be obtained from residential maps are complex in
shape, we first calculated the coordinates of the building centroid and distributed each
building on a 250 m grid based on those coordinates. Since each building polygon has
information on the building area and the number of floors, the building floor area of each
mesh was calculated using the following equation.

B f ai =
n

∑
j = 1

aj f j (20)

where aj is the area of building j, fj is the number of floors of building j in grid i, n is the
number of buildings in grid i, and Bfai is the building floor area of grid i.

3.3. Random Forest Modeling and Validation of THI

Nine different variables are proposed: LST, direct, diffuse, and total radiation, wind
exposure index, NDVI, NDMI, vehicle density, and building floor area. Two models were
computed and compared by implementing the random forest machine learning method to
model the THI of the study site. The latest version of R Studio (Integrated Development for
R. RStudio, Inc., Boston, MA, USA) and the random forest library (library “randomForest”)
were installed to perform the modeling. The models were differentiated by incorporating
different variables. Modelnatural refers to the model with seven variables, excluding vehicle
and building data. Modelmix combines all the natural and anthropogenic variables (i.e.,
including vehicle density and building floor data). The two models are compared to identify
the effects of each factor contributing to the SUHI phenomenon. A grid search method [46]
was employed to train various models with slightly different parameters: node size = 2 to
10, mtry = 1 to 10, and ntree = 500 to 1800. Bootstrap resampling was conducted with a
sample size of 90% and five iterations. The final tuned model, selected based on the lowest
errors, used parameters of node size = 3, mtry = 8, and ntree = 1500. The modeled THI was
validated against the reference set. Model accuracy was evaluated using the coefficient of
determination (R2), root mean square error (RMSE), and mean absolute error (MAE). Here,
R2 indicates how well the predicted model fits the 1:1 line and is denoted as the fitting R2

(Equation (21)).

R2 = 1 − ∑(y − ŷ)2

∑(y − y)2 (21)

where y is the reference value, ŷ is the predicted value, and y is the mean of the reference
value. This work follows the criteria proposed by Alexander et al. [47], who prescribe a
fitting R2 > 0.6 to demonstrate a high correlation and thus succeed in model development.
Also, the random forest model was additionally tested to compute the significance of every
factor and whether they contributed to the model’s prediction power. The rfPermute R
package [48] was used, which assesses a null distribution of the variable’s importance
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against the observed distribution. Each variable was shown if it was significantly different
from the null distribution, considering a 5% significance level. We set the number of
permutation replicates to 1000.

4. Results
4.1. Ortho, Thermal Mosaics, and DSM

Figure 8 shows the successfully developed orthomosaic imagery of the visible and
DSM for the city, orthoimage and thermal images for site 1. The ultrafine resolution of the
thermal image effectively captures the trends at site 1. As expected, bare soils, asphalt, and
concrete roads are much hotter than vegetated areas (e.g., trees and grassy spaces). Each
building roof shows substantial heating due to direct solar radiation, with the difference
in albedo clearly influencing heat absorption characteristics. Specifically, darker rooftops
demonstrate higher temperatures than lighter-colored areas, such as the white rooftop on
the northern building. However, despite its lighter color, the large southern building’s roof,
constructed from corrugated metal (characteristic of a gymnasium hall), exhibits elevated
temperatures, likely due to the material’s high heat absorption properties. Some areas
on the north side behind the building show lower temperatures even though the surface
material is asphalt because they lie in the shadow cast by the adjacent structures. The
observation highlights the critical role of urban geometry in modulating microclimates
within cities, and it is shown that detailed thermal conditions can be effectively captured
through UAS remote sensing. The orthoimage of the city is also successfully generated from
the aircraft data. The reconstructed 3D model (DSM) shows promising results, showing the
overall elevation together with the heights of each house and building. It can be concluded
that the SfM method can be applied to conventional aircraft imagery with no problems.
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4.2. Explanatory Variables

Figure 9 shows all the variables generated for the spatial modeling of the city. Solar
radiation and wind exposure were computed using the 3D model (DSM) of the city. Using
aircraft data made it possible to magnify the scale to what people commonly encounter
during daily life while also maintaining the spatial extent. The resolution is 0.5 m, and every
street and road is visible, allowing modeling of the complex conditions of the surface. It is
also evident that large buildings cast shadows and block direct solar radiation. Adjusting
the solar radiation time accumulation, the area can be interpreted as higher radiation or
shadow areas. The NDVI and NDMI from Sentinel-2 data show a good overall trend in the
study area, even when the original resolution is 10 m. Building floor data can distinguish
the concentrated urbanized area within the city. Taller and larger buildings result in a
greater floor area, which can be interpreted in two ways: emitting a large amount of
anthropogenic heat or a source of shadows. Vehicle density was also successfully used to
characterize congested areas, which can be interpreted as sources of anthropogenic heat,
such as from exhaust pipes. Finally, the LST of the city is shown for comparison with
the proposed LSTMWR and the LSTSW. As expected, the stray light issue from band 11
is unseen, but the values remain similar to LSTSW. Figure 10 indicates the relationship
between LSTMWR and LSTSW; they match well (R2 = 0.9796 and standard error = 0.352 ◦C).

4.3. THI Modeling and Validation

Figure 11 shows the result of mapping the THI at a microscale resolution while main-
taining a large spatial extent (Modelnatural). The visual interpretation seems to represent the
trends of the city effectively. For example, the tree-lined streets in the scene’s center feature
lower THI values than most of the surroundings. On the other hand, the open space in front
of the Maebashi station (to the north) results in a much higher THI value. This was indeed
observed during the ground truthing. Small patches of parks can also be seen throughout
the city, showing lower THI values. A large park with a more open grassy area was initially
expected also to show similar lower THI values; however, the values of this park are higher
than those of the small, patchy parks, which provides some suggestion that the lowering
of the THI values is due to the existence of shadows. Therefore, the cooling effects on the
SUHI are affected by LULC and the vegetation structure (i.e., trees and not grasslands).
The THI distribution on the surface seems complex. For example, some areas are highly
built-up areas but show lower THI values; this pattern is assumed to be caused by shadows
cast by tall buildings. Such variation in the effect of the SUHI is remarkable. Nevertheless,
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the modeling has shown that each area has unique thermal condition characteristics, and
the results can be further utilized for better urban planning. Notably, visual interpretation
shows relative differences in THI values across the city; however, the values are all over 80,
and the whole area features extreme conditions. This implies that we truly need to take
care during the summer, even in areas that might feel relatively comfortable.
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Figure 9. Explanatory variables for the city modeling. (a) diffuse shortwave solar radiation (Wh/m2),
(b) direct shortwave solar radiation (Wh/m2), (c) total shortwave solar radiation (Wh/m2), (d) nor-
malized difference vegetation index (NDVI), (e) normalized difference moisture index (NDMI),
(f) wind exposure index (g) building floor area (m2), (h) vehicle density (points/m2), (i) land surface
temperature (LST) from monowindow regression (◦C) and (j) LST from the split-window algo-
rithm (◦C). LSTSW is shown for comparison with the proposed LSTMWR. The stray light effects are
suppressed, but the LST values are maintained as in the LSTSW.

Figure 12 shows the validation results between the two developed models: Modelnatural
and Modelmix. For the Modelnatural, the fitting R2 showed a moderate fit of 0.5846, the
RMSE = 0.5936, and the MAE = 0.4294, slightly lower than the required R2. The larger
residuals around THI < 84 are assumed to be associated with sensor lag (low response time)
during ground surveying. The sensor is necessary to settle to the actual temperature and
humidity; therefore, if sampling were conducted for a more limited time frame in shadow
areas than entering exposed zones or vice versa, then the reference values would be slightly
off from the actual values, and this was also presented by Iizuka and Akiyama [22]. The
samples were collected along tree-lined streets and then in higher radiation-exposed areas.
Thus, the reference would show a lower value than the modeled value. Two segments
with large model errors are relevant to the following issues. First, the high residuals of
THI > 85 explain why the reference set features higher THI values than the model. With
natural factors only, the modeled values would be expressed as a lower THI area; however,
this is not true. This is expected to be the limitation of using only natural factors that may
not express the true thermal condition. It is understood that SUHIs are also affected by
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anthropogenic factors [23,24] along with both buildings and vehicles [10]. In fact, the works
by Husni et al. [49] indicate the increase in SUHI effects with increasing traffic ques on
urban streets, and Chen et al. [50] also find that vehicle heat affects significantly in areas
mainly low urbanized regions with large traffic flows and highly urbanized regions with
tall buildings. Therefore, the vehicles and buildings that emit heat in the city might be the
remaining source for correctly modeling the THI. Second, the high residuals of the THI
range of 84–85 could be from a similar issue, but in this case, the high THI model result
may be suppressed by cooling effects in the city. This can be due to shadows from trees
or buildings that may act as a cooling source [20]. The second model, which included
anthropogenic factors, was also developed to better understand this hypothesis using
vehicle density and building floor area (Modelmix). The result was remarkable, and the
validation between the model and reference set showed that the residuals became much
smaller. The fitting R2 = 0.9638, RMSE = 0.1751, and MAE = 0.1065. This implies that it
was true that such anthropogenic factors can act as sources of both heating and cooling,
depending on the area structure and the surrounding environment.
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Figure 12. Evaluation between the reference set and the modeled result. (a) Modelnatural is the
developed model using only natural factors, and (b) Modelmix includes anthropogenic factors. The
R2 here indicates how well the model fits the 1:1 line.

Figure 13 shows the contribution of the variables to the developed model. The two
figures indicate the mean increase in node purity (Gini Index) and the percent increase in
the mean squared error (%incMSE). The Gini index measures how well the variable can split
a node, while the %incMSE provides an estimate of how much the accuracy will decrease
when the variable is excluded. Regarding %incMSE, vehicle density has the greatest effect,
followed by building floor, NDVI, LST, NDMI, diffuse radiation, direct radiation, wind
exposure, and total radiation, which are all significant in terms of variable importance. For
splitting the nodes, the Gini index shows higher importance for vehicle density, building
floor, and LST, which are the significant variables, followed by the other variables, although
these variables still provide some degree of contribution to the model. Note that the trend
is checked for the SUHI and might differ for different boundary layers [20].
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5. Discussion
5.1. Improving THI Modeling through Multiplatform Data Integration

This study uses multiplatform data, including satellite, UAS, and social big data,
to differentiate between natural and anthropogenic factors influencing the THI in urban
environments. A key contribution of our work is the ability to map the spatial heterogeneity
of THI at a fine resolution, incorporating both temperature and humidity. This reflects
human discomfort more accurately than LST alone.

Our findings show that integrating social data, particularly vehicle density, signifi-
cantly improves the model’s accuracy in predicting THI, addressing the over- and under-
estimations observed when only natural factors were considered. This result aligns with
findings from other studies, such as Husni et al. [49], who used IoT-based weather stations
and vehicle detection systems to explore how high vehicular traffic contributes to localized
temperature increases. Similarly, Chen et al. [50] demonstrated that vehicle heat (VH)
critically impacts urban thermal environments, particularly in densely trafficked areas,
contributing significantly to the SUHI effect.

The vehicle data, which is collected via GNSS positioning provides a more accurate
representation of traffic patterns compared to Chen et al. [50], who used annual traffic cen-
sus data and simulated vehicle flow with a cell-transmission model. While Husni et al. [49]
employed the deep learning YOLO framework to count vehicles on specific streets, their
approach was limited in spatial extent to areas where the equipment was installed. In
contrast, our approach provided vehicle data with precise location and timing, expanding
identification across a larger urban area.

5.2. Urban Geometry and Its Impact on Thermal Discomfort

Building floor area also significantly influenced our model predictions, aligning with
existing research on microscale variations of the SUHI effect. Such variations are increas-
ingly recognized as crucial for understanding urban microclimates at the level of individual
streets and buildings. For example, Hu et al. [51] found that building height is inversely re-
lated to LST, with taller buildings likely suppressing LST due to shading. Hwang et al. [32]
observed greater discomfort in less shaded urban streets in central Taiwan, using the sky
view factor (SVF) as a response variable. Sharmin et al. [31] showed that air temperature
was positively correlated with the surface-to-volume ratio of surrounding buildings in
residential areas but negatively correlated when commercial and educational areas were
included. This suggests that residential areas might experience higher temperatures due
to greater solar exposure, while commercial areas, with more heat retention and less ven-
tilation, could also have higher temperatures, likely due to the urban canyon effect and
increased anthropogenic heat. Mughal et al. [52], although not at the microscale level,
conducted a Multilayer Urban Canopy Model to simulate Singapore’s urban climate, in-
corporating local climate zones (LCZs) for a detailed understanding of UHI effects. They
found that compact high-rise buildings intensify UHI due to trapped heat and reduced
ventilation. Their study emphasized the role of anthropogenic heat, particularly from air
conditioning systems, in contributing to UHI. However, their work did not incorporate
vehicle data, limiting their ability to distinguish the specific impacts of different sources of
anthropogenic heat.

To seek in-depth of our findings, we additionally analyzed how each variable in-
fluenced the model predictions by computing SHapley Additive exPlanations (SHAP), a
game-theoretic approach used to explain the output of machine learning models [53]. The
variables are listed in Figure 14 in order of their influence on the model, with the color scale
indicating the value of each variable and the SHAP values corresponding to the dependent
variable (i.e., THI).
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SHAP values (influence on THI), with each dot indicating the contribution of a variable at a specific
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vertical axis lists the variables used in the model, ordered from the most to the least influential at
the top.

The analysis shows that vehicle density clearly impacts THI: higher vehicle density
is associated with higher THI, and vice versa. The building floor area generally shows
that a larger area reduces THI. However, there is a nuance where slightly larger building
floor areas are associated with higher THI. This could align with other studies that suggest
the possibility of heating influences, particularly during the daytime, from anthropogenic
sources such as air conditioning [31,50]. These detailed findings are typically challenging
to capture in large-scale, regional analyses of SUHIs, which often focus on broader thermal
trends across wide areas. For instance, studies by Estoque and Murayama [11] and Rana-
galage et al. [12] used satellite data to monitor thermal trends over large urban settings.
However, as Parlow et al. [26] have noted, the thermal conditions of the urban landscape at
coarser resolutions might be heavily influenced by building roofs, potentially overlooking
the finer-scale variations crucial for understanding the complexities of urban microclimates.

Regarding the role of vegetation in suppressing SUHI, numerous studies have high-
lighted its cooling effects. However, our modeling results indicate that higher NDVI is
associated with higher THI. Hofierka et al. [54] suggest that urban greenery, particularly
high vegetation, significantly cools urban areas through several mechanisms, including
intercepting solar radiation, providing shading, and consuming latent heat via evapo-
transpiration. This is a generally observed trend and is intuitively understandable. It’s
important to note that THI is modeled to reflect human discomfort, incorporating both
temperature and humidity. While some instances of higher NDVI are associated with lower
THI due to shading effects from taller trees, we believe the relationship is more complex
and may vary according to different vegetation structures. For example, while shading
can reduce THI and contribute to a more comfortable environment, land use types like
open grassy parks may reduce LST through evapotranspiration but increase local humidity,
thus leading to higher THI. Additionally, our findings show that areas with lower diffuse
radiation tend to have higher THI. This could be similar to the effects of a low SVF, where
closed environments may restrict air ventilation and increase discomfort [31,32].
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5.3. Microscale Urban Climate Analysis

Microscale research in SUHI studies is gaining attention, with a growing interest in de-
tailed analysis. Cases can be seen from studies utilizing UAS and onboard thermal cameras
for specific sites [18,22], as well as in the work of Lee et al. [55] and Chui et al. [56], who
used handheld thermal cameras to measure street-level thermal conditions and estimate air
temperature. However, our study advances this field by integrating high-resolution data
from multiple platforms while maintaining a broader spatial perspective that encompasses
the entire city. Recent advancements suggest that broader spatial coverage can be achieved
using fixed-wing UAS [17]. However, a significant limitation of fixed-wing UAS is the ex-
tended flight time required to cover large areas, which can introduce variations in thermal
conditions due to changing shortwave radiation and heat absorption during the day or
longwave radiation cooling at night. Achieving a balance between high resolution and
broad spatial coverage is essential for a comprehensive understanding of urban thermal
environments, as it allows us to account for the variability of conditions across different
urban areas. Our method addresses this challenge by employing a multi-platform ap-
proach that captures detailed information, thereby reducing the potential for time-induced
discrepancies and ensuring more accurate thermal mapping.

5.4. Methodological Considerations

It is important to note that this study did not incorporate more complex indices, such
as the Universal Thermal Climate Index (UTCI) [57]. While these indices provide com-
prehensive assessments and are better suited for capturing human bioclimatic responses,
our primary objective was to map thermal indices at an extremely fine resolution using
conventional satellite data and newly integrated UAS sensing data. The THI was chosen for
its practicality, simplicity, and compatibility with the data sources used in our research, as
it only requires temperature and relative humidity for computation. Although THI proved
effective in this study, which focused on relatively low-elevation areas like Maebashi City,
different outcomes may occur when applied to regions with varying elevations. Higher
elevations could either overestimate or underestimate thermal discomfort in such scenarios
due to different climatological conditions. The UTCI, unlike the THI, can be applied across
diverse climates, seasons, and spatial scales, offering a more comprehensive assessment of
thermal comfort. However, its effective application is challenging, particularly due to the
difficulty and cost of accurately modeling wind velocity and mean radiant temperature,
both of which are crucial for UTCI calculations. Considering the remote sensing approach,
adopting absolute humidity as an alternative measure could further improve the THI
model. Updating it to a more universally applicable model could significantly aid urban
planners and policymakers in making informed decisions to enhance urban resilience and
improve public health outcomes.

Iizuka et al. [37] discussed how finer-resolution data can significantly enhance model
development at the local scale. In their forestry research, they combined UAS data with
satellite imagery, which effectively boosted prediction accuracy. Our study similarly
considers the benefits of integrating finer-resolution data to overcome the limitations
of moderate-resolution satellite thermal data. By incorporating fine-resolution information,
such as 3D city models derived from UAS or aircraft data, we can produce more precise
samples to determine SUHI trends within specific urban areas, as demonstrated in our
research. While the thermal data captured at larger spatial extents often limits the in-
depth application of microscale SUHI analysis, our work shows that microscale trends can
still be identified with moderate-resolution data. However, the results are more realistic
and accurate when using finer-resolution thermal imagery. This approach offers a cost-
effective alternative to more computationally intensive methods, such as supercomputing
high-resolution climate simulations for urban areas [58].

UAS thermal imagery is increasingly used in environmental studies [17,18,22,59,60];
however, these platforms are often limited in spatial extent, making them challenging to
apply across megacities due to local and aviation constraints. Alternatives include high-
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resolution thermal imaging collected by manned aircraft, as utilized by Sobrino et al. [61],
but such operations can be prohibitively expensive. According to Sobrino et al. [61], a
resolution greater than 50 m is necessary at the district level to accurately estimate the
SUHI effect. Finer resolutions tend to exhibit higher standard deviations, likely due to
anthropogenic factors, as demonstrated in our study. Acquiring thermal data at such fine
resolutions citywide would be exciting and challenging, offering a valuable comparison
with moderate-resolution models. Our random forest model has provided a reliable
estimate of THI, demonstrating its effectiveness in this context. Additionally, random forest
models are useful for downscaling LST data to finer resolutions [25]. Looking ahead, we
aim to further explore past THI trends across the city and predict how they might evolve.

6. Conclusions and Future Work

This study focused on modeling the temperature-humidity index (THI) at a mi-croscale
level using various remote sensing data from unmanned aerial systems (UASs), satellites,
and aircraft. High-resolution aerial imagery and mosaic imagery were pro-duced from
UAS and aircraft data, including both visible and thermal data. The structure from motion
(SfM) method was employed to develop a 3D model of the area, from which a digital
surface model (DSM) was extracted. The DSM was used to model solar radiation and
wind exposure, while the normalized difference vegetation index (NDVI) and normalized
difference moisture index (NDMI) were derived from Sentinel-2A satellite data. Land
surface temperature (LST) was computed using Landsat 8 thermal bands. Anthropogenic
factors such as vehicle density and building floor area were extracted from social big data.
The random forest machine learning method utilized all these data as explanatory variables
for THI modeling.

Our findings demonstrate that microscale THI trends can effectively identify potential
hotspots within a city, providing critical insights for urban planning and public health
interventions. The influence of anthropogenic factors on both heating and cooling effects
further highlights the need to incorporate these elements into models for more accurate
assessments. This approach enables the precise identification of areas at risk of high ther-
mal discomfort, facilitating targeted interventions to mitigate SUHI effects and enhance
urban resilience. The results successfully identified microscale THI trends, which are not
discernible with conventional low- to moderate-resolution data, revealing potential discom-
fort and risk areas that could lead to health issues. This research supports environmental
monitoring for smart cities and contributes to the sustainable development goals set by the
United Nations. Vehicle density emerged as the most influential variable in the random
forest model.

The novelty of this study lies in the integration of multiplatform remote sensing data at
different resolutions and acquisition times. The mixed model showed significant accuracy
with R2 = 0.9638, RMSE = 0.1751, and MAE = 0.1065 (n = 923). Future work should expand
the spatial extent and consider multiple cities to reveal thermal trends contributing to SUHI.
Historical trends and future possibilities will be examined, together with the consideration
of state-of-the-art biometeorological indices (such as UTCI), and findings will be shared
with city planners to support the development of smart cities.

Author Contributions: Conceptualization, K.I. and Y.A.; methodology, K.I.; software, K.I. and Y.A.;
validation, K.I., Y.A., M.T. and T.F.; formal analysis, K.I.; investigation, K.I., Y.A., M.T., T.F. and O.Y.;
resources, K.I. and O.Y.; data curation, K.I., Y.A., M.T. and T.F.; writing—original draft preparation,
K.I.; writing—review and editing, K.I., Y.A., M.T., T.F. and O.Y.; visualization, K.I.; supervision, K.I.;
project administration, Y.A. and O.Y.; funding acquisition, Y.A. All authors have read and agreed to
the published version of the manuscript.

Funding: This research is funded by The Sumitomo Foundation Fiscal 2019 Grant (No. 184024) for
Environmental Research Projects.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author due to data usage restrictions.



Remote Sens. 2024, 16, 3164 23 of 25

Acknowledgments: We thank the Policy Department, Creating New Value Division of Maebashi City
for supporting the UAS flights in the city area.

Conflicts of Interest: Author Minaho Takase is employed by the company PASCO CORPORATION.
The remaining authors declare that the research was conducted in the absence of any commercial or
financial relationships that could be construed as a potential conflict of interest.

References
1. Zhou, D.; Xiao, J.; Bonafoni, S.; Berger, C.; Deilami, K.; Zhou, Y.; Frolking, S.; Yao, R.; Qiao, Z.; Sobrino, J.A. Satellite remote

sensing of surface urban heat Islands: Progress, challenges, and perspectives. Remote Sens. 2019, 11, 48. [CrossRef]
2. Taubenböck, H.; Esch, T.; Felbier, A.; Wiesner, M.; Roth, A.; Dech, S. Monitoring urbanization in mega cities from space. Remote

Sens. Environ. 2012, 117, 162–176. [CrossRef]
3. Deilami, K.; Kamruzzaman, M.; Liu, Y. Urban heat island effect: A systematic review of spatio-temporal factors, data, methods,

and mitigation measures. Int. J. Appl. Earth Obs. Geoinf. 2018, 67, 30–42. [CrossRef]
4. Fujibe, F.; Matsumoto, J.; Suzuki, H. Regional features of the relationship between daily heat-stroke mortality and temperature in

different climate zones in Japan. Sci. Online Lett. Atmos. 2018, 14, 144–147. [CrossRef]
5. Ito, Y.; Akahane, M.; Imamura, T. Impact of temperature in summer on emergency transportation for heat-related diseases in

Japan. Chin. Med. J. 2018, 131, 574–582. [CrossRef]
6. Royé, D. The effects of hot nights on mortality in Barcelona, Spain. Int. J. Biometeorol. 2017, 61, 2127–2140. [CrossRef]
7. United Nations, Department of Economic and Social Affairs, Population Division. World Urbanization Prospects: The 2018 Revision,

Key Facts; Department of Economic and Social Affairs: New York, NY, USA, 2019.
8. Bahi, H.; Mastouri, H.; Radoine, H. Review of methods for retrieving urban heat islands. Mater. Today Proc. 2020, 27, 3004–3009.

[CrossRef]
9. Voogt, J.A.; Oke, T.R. Thermal Remote Sensing of Urban Climates. Remote Sens. Environ. 2003, 86, 370–384. [CrossRef]
10. Oke, T.R.; Mills, G.; Christen, A.; Voogt, J.A. Urban Heat Island. In Urban Climates; Cambridge University Press: Cambridge, UK,

2017; pp. 197–237.
11. Estoque, R.C.; Murayama, Y. Monitoring surface urban heat Island formation in a tropical mountain city using Landsat data

(1987–2015). ISPRS J. Photogramm. Remote Sens. 2017, 133, 18–29. [CrossRef]
12. Ranagalage, M.; Estoque, R.C.; Murayama, Y. An Urban Heat Island Study of the Colombo Metropolitan Area, Sri Lanka, Based

on Landsat Data (1997–2017). ISPRS Int. J. Geo-Inf. 2017, 6, 189. [CrossRef]
13. Hu, Y.; Hou, M.; Jia, G.; Zhao, C.; Zhen, X.; Xu, Y. Comparison of surface and canopy urban heat Islands within megacities of

eastern China. ISPRS J. Photogramm. Remote Sens. 2019, 156, 160–168. [CrossRef]
14. Varentsov, M.; Konstantinov, P.; Baklanov, A.; Esau, I.; Miles, V.; Davy, R. Anthropogenic and natural drivers of a strong winter

urban heat island in a typical Arctic city. Atmos. Chem. Phys. 2018, 18, 17573–17587. [CrossRef]
15. Tiangco, M.; Lagmay, A.M.F.; Argete, J. ASTER-based study of the night-time urban heat island effect in Metro Manila. Int. J.

Remote Sens. 2008, 29, 2799–2818. [CrossRef]
16. Chang, Y.; Xiao, J.; Li, X.; Weng, Q. Monitoring Diurnal Dynamics of Surface Urban Heat Island for Urban Agglomerations Using

ECOSTRESS Land Surface Temperature Observations. Sustain. Cities Soc. 2023, 98, 104833. [CrossRef]
17. Dimitrov, S.; Iliev, M.; Borisova, B.; Semerdzhieva, L.; Petrov, S. UAS-Based Thermal Photogrammetry for Microscale Surface

Urban Heat Island Intensity Assessment in Support of Sustainable Urban Development (A Case Study of Lyulin Housing
Complex, Sofia City, Bulgaria). Sustainability 2024, 16, 1766. [CrossRef]

18. Song, B.; Park, K. Verification of Accuracy of Unmanned Aerial Vehicle (UAV) Land Surface Temperature Images Using In-Situ
Data. Remote Sens. 2020, 12, 288. [CrossRef]

19. Aflaki, A.; Mirnezhad, M.; Ghaffarianhoseini, A.; Ghaffarianhoseini, A.; Omrany, H.; Wang, Z.H.; Akbari, H. Urban heat island
mitigation strategies: A state-of-the-art review on Kuala Lumpur, Singapore and Hong Kong. Cities 2017, 62, 131–145. [CrossRef]

20. Huang, X.; Wang, Y. Investigating the effects of 3D urban morphology on the surface urban heat island effect in urban functional
zones by using high-resolution remote sensing data: A case study of Wuhan, Central China. ISPRS J. Photogramm. Remote Sens.
2019, 152, 119–131. [CrossRef]

21. Zhao, L.; Lee, X.; Smith, R.; Oleson, K. Strong contributions of local background climate to urban heat islands. Nature 2014, 511,
216–219. [CrossRef]

22. Iizuka, K.; Akiyama, Y. Assessing the micro-scale temperature-humidity index (thi) estimated from unmanned aerial systems and
satellite data. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, 3, 745–750. [CrossRef]

23. Ichinose, T.; Shimodozono, K.; Hanaki, K. Impact of anthropogenic heat on urban climate in Tokyo. Atmos. Environ. 1999, 33,
3897–3909. [CrossRef]

24. Sailor, D.J.; Lu, L. A top–down methodology for developing diurnal and seasonal anthropogenic heating profiles for urban area.
Atmos. Environ. 2004, 38, 2737–2748. [CrossRef]

25. Yao, Y.; Chang, C.; Ndayisaba, F.; Wang, S. A new approach for surface urban heat Island monitoring based on machine learning
algorithm and spatiotemporal fusion model. IEEE Access 2020, 8, 164268–164281. [CrossRef]

https://doi.org/10.3390/rs11010048
https://doi.org/10.1016/j.rse.2011.09.015
https://doi.org/10.1016/j.jag.2017.12.009
https://doi.org/10.2151/sola.2018-025
https://doi.org/10.4103/0366-6999.226061
https://doi.org/10.1007/s00484-017-1416-z
https://doi.org/10.1016/j.matpr.2020.03.272
https://doi.org/10.1016/S0034-4257(03)00079-8
https://doi.org/10.1016/j.isprsjprs.2017.09.008
https://doi.org/10.3390/ijgi6070189
https://doi.org/10.1016/j.isprsjprs.2019.08.012
https://doi.org/10.5194/acp-18-17573-2018
https://doi.org/10.1080/01431160701408360
https://doi.org/10.1016/j.scs.2023.104833
https://doi.org/10.3390/su16051766
https://doi.org/10.3390/rs12020288
https://doi.org/10.1016/j.cities.2016.09.003
https://doi.org/10.1016/j.isprsjprs.2019.04.010
https://doi.org/10.1038/nature13462
https://doi.org/10.5194/isprs-annals-V-3-2020-745-2020
https://doi.org/10.1016/S1352-2310(99)00132-6
https://doi.org/10.1016/j.atmosenv.2004.01.034
https://doi.org/10.1109/ACCESS.2020.3022047


Remote Sens. 2024, 16, 3164 24 of 25

26. Parlow, E.; Vogt, R.; Feigenwinter, C. The urban heat island of Basel—Seen from different perspectives. DIE ERDE J. Geogr. Soc.
Berl. 2014, 145, 96–110.

27. Imada, Y.; Watanabe, M.; Kawase, H.; Shiogama, H.; Arai, M. The July 2018 high temperature event in Japan could not have
happened without human-induced global warming. Sci. Online Lett. Atmos. 2019, 15A, 8–12. [CrossRef]

28. Nakai, S.; Itoh, T.; Morimoto, T. Deaths from heat-stroke in Japan: 1968–1994. Int. J. Biometeorol. 1999, 43, 124–127. [CrossRef]
29. Kolokotroni, M.; Ren, X.; Davies, M.; Mavrogianni, A. London ‘s urban heat Island: Impact on current and future energy

consumption in office buildings. Energy Build. 2012, 47, 302–311. [CrossRef]
30. Imhoff, M.L.; Zhang, P.; Wolfe, R.E.; Bounoua, L. Remote sensing of the urban heat island effect across biomes in the continental

USA. Remote Sens. Environ. 2010, 114, 504–513. [CrossRef]
31. Sharmin, T.; Steemers, K.; Matzarakis, A. Analysis of Microclimatic Diversity and Outdoor Thermal Comfort Perceptions in the

Tropical Megacity Dhaka, Bangladesh. Build. Environ. 2015, 94, 734–750. [CrossRef]
32. Hwang, R.-L.; Lin, T.-P.; Matzarakis, A. Seasonal Effects of Urban Street Shading on Long-Term Outdoor Thermal Comfort. Build.

Environ. 2011, 46, 863–870. [CrossRef]
33. Chavez, P.S. Image-based atmospheric corrections-revisited and improved. Photogramm. Eng. Remote Sens. 1996, 62, 1025–1035.
34. Iizuka, K.; Ogura, T.; Akiyama, Y.; Yamauchi, H.; Hashimoto, T.; Yamada, Y. Improving the 3D model accuracy with a post-

processing kinematic (PPK) method for UAS surveys. Geocarto Int. 2021, 37, 4234–4254. [CrossRef]
35. Yoo, H.; Chung, K. Heart rate variability based stress index service model using bio-sensor. Clust. Comput. 2018, 21, 1139–1149.

[CrossRef]
36. Morohashi, T.; Tanaka, H.; Kadowaki, T. Investigation for the ideal method of map information etc. in various foreign countries. J.

Geospat. Inf. Auth. Jpn. 2010, 120, 131–147.
37. Iizuka, K.; Hayakawa, Y.S.; Ogura, T.; Nakata, Y.; Kosugi, Y.; Yonehara, T. Integration of multi-sensor data to estimate plot-level

stem volume using machine learning algorithms–case study of evergreen conifer planted forests in Japan. Remote Sens. 2020,
12, 1649. [CrossRef]

38. Conrad, O.; Bechtel, B.; Bock, M.; Dietrich, H.; Fischer, E.; Gerlitz, L.; Wehberg, J.; Wichmann, V.; Böhner, J. System for automated
geoscientific analyses (SAGA) v. 2.1. 4. Geosci. Model Dev. 2015, 8, 1991–2007. [CrossRef]

39. Boehner, J.; Antonic, O. Land-surface parameters specific to topo-climatology. In Geomorphometry—Concepts, Software, Applications;
Hengl, T., Reuter, H., Eds.; Developments in Soil Science; Elsevier: Amsterdam, The Netherlands, 2009; Volume 33, pp. 195–226.

40. Zhang, L.; Pan, Z.; Zhang, Y.; Meng, Q. Impact of climatic factors on evaporative cooling of porous building materials. Energy
Build. 2018, 173, 601–612. [CrossRef]

41. Wang, L.; Lu, Y.; Yao, Y. Comparison of Three Algorithms for the Retrieval of Land Surface Temperature from Landsat 8 Images.
Sensors 2019, 19, 5049. [CrossRef]

42. Sobrino, J.A.; Jiménez-Muñoz, J.C.; Sòria, G.; Romaguera, M.; Guanter, L.; Moreno, J.; Plaza, A.; Martínez, P. Land surface
emissivity retrieval from different VNIR and TIR sensors. IEEE Trans. Geosci. Remote Sens. 2008, 46, 316–327. [CrossRef]

43. Rozenstein, O.; Qin, Z.; Derimian, Y.; Karnieli, A. Derivation of land surface temperature for Landsat-8 TIRS using a split window
algorithm. Sensors 2014, 14, 5768–5780, Corrected in Sensors 2014, 14, 11277. [CrossRef]

44. Qin, Z.; Karnieli, A.; Berliner, P. A mono-window algorithm for retrieving land surface temperature from Landsat TM data and its
application to the Israel-Egypt border region. Int. J. Remote Sens. 2001, 22, 3719–3746. [CrossRef]

45. Gerace, A.; Montanaro, M. Derivation and validation of the stray light correction algorithm for the thermal infrared sensor
onboard Landsat 8. Remote Sens. Environ. 2017, 191, 246–257. [CrossRef]

46. García, M.; Riaño, D.; Chuvieco, E.; Salas, J.; Danson, F.M. Multispectral and LiDAR data fusion for fuel type mapping using
support vector machine and decision rules. Remote Sens. Environ. 2011, 115, 1369–1379. [CrossRef]

47. Alexander, D.L.J.; Tropsha, A.; Winkler, D.A. Beware of R2: Simple, unambiguous assessment of the prediction accuracy of QSAR
and QSPR models. J. Chem. Inf. Model. 2015, 55, 1316–1322. [CrossRef]

48. Archer, E. rfPermute: Estimate Permutation p-Values for Random Forest Importance Metrics. R Package Version 2.1.81. Available
online: https://CRAN.R-project.org/package=rfPermute (accessed on 20 May 2020).

49. Husni, E.; Prayoga, G.A.; Tamba, J.D.; Retnowati, Y.; Fauzandi, F.I.; Yusuf, R.; Yahya, B.N. Microclimate Investigation of Vehicular
Traffic on the Urban Heat Island through IoT-Based Device. Heliyon 2022, 8, e11739. [CrossRef]

50. Chen, X.; Yang, J.; Zhu, R.; Wong, M.S.; Ren, C. Spatiotemporal Impact of Vehicle Heat on Urban Thermal Environment: A Case
Study in Hong Kong. Build. Environ. 2021, 205, 108224. [CrossRef]

51. Hu, Y.; Dai, Z.; Guldmann, J.-M. Modeling the Impact of 2D/3D Urban Indicators on the Urban Heat Island Over Different
Seasons: A Boosted Regression Tree Approach. J. Environ. Manag. 2020, 266, 110424. [CrossRef]

52. Mughal, M.O.; Li, X.-X.; Yin, T.; Martilli, A.; Brousse, O.; Dissegna, M.A.; Norford, L.K. High-Resolution, Multilayer Modeling of
Singapore ‘s Urban Climate Incorporating Local Climate Zones. J. Geophys. Res. Atmos. 2019, 124, 7764–7785. [CrossRef]

53. Lundberg, S.; Lee, S.-I. A Unified Approach to Interpreting Model Predictions. Adv. Neural Inf. Process. Syst. 2017, 30, 4765–4773.
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