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Abstract: Accurate estimation of soil moisture content (SMC) in the field is a critical aspect of precise
irrigation management. The development of unmanned aerial vehicle (UAV) platforms has provided
an economically efficient means for field-scale SMC measurements. However, previous studies have
mostly focused on single-sensor estimates of SMC. Additionally, the lack of differentiation between
various crops and their growth stages has resulted in an unclear understanding of how crop types
and growth stages affect the accuracy of SMC estimation at different soil depths. Therefore, the
purpose of this paper was to use UAV multimodal remote sensing and a machine learning algorithm
to estimate the SMC in agricultural fields and investigate estimation’s effectiveness under different
scenarios. The results indicated the following: (1) The multispectral remote sensing method provided
higher accuracy in SMC estimation compared to thermal infrared remote sensing. Moreover, the
integration of multimodal data improved the accuracy of SMC estimation, enhancing the coefficient
of determination (R2) by approximately 14% over that achieved through the use of multispectral
data alone and 39% over that of thermal infrared data alone. (2) Across the entire growth period, the
optimal soil depths of SMC estimation for soybean were 10 cm and 20 cm (average R2 were 0.81 and
0.82, respectively), while for corn, they were 10 cm, 20 cm, and 40 cm (average R2 were 0.59, 0.60, and
0.55, respectively). (3) The SMC estimation model performed better for both crops during the first
three growth stages, with accuracy declining in the maturity stage. These results demonstrate that
this approach can provide relatively accurate root zone SMC estimates for different crops throughout
their main growth periods. Thus, it can be employed for SMC monitoring and precision irrigation
system design.

Keywords: soil moisture content; UAV; multimodal remote sensing; machine learning

1. Introduction

Water resources are among the most critical assets on Earth. With the rapid develop-
ment of economies and societies, water scarcity has emerged as a limiting factor hindering
sustainable growth. Addressing the shortage of water resources and promoting water con-
servation is crucial [1]. According to China’s water resource reports over the past decade,
agricultural water consumption accounts for 62.5% of annual water usage, making it the
sector with the greatest potential for water conservation. The Shiyang River Basin is located
in the inland region of Northwest China and experiences a continental arid temperate
climate characterized by limited precipitation and high evaporation rates. Consequently,
water scarcity is severe in this region [2,3]. Maintaining high and stable crop yields under
such arid conditions is of paramount importance for local agricultural development. This
necessitates an enhanced focus on research in water-efficient agriculture [4]. Soil moisture
content (SMC) is a key variable in a climate system [5]. It represents the primary source of
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water uptake for plants and forms the foundational material basis for plant growth and
survival [6,7]. Efficient measurement of SMC facilitates the implementation of planting
and irrigation plans and holds significant implications for optimizing water resource allo-
cation [8,9]. Current research on soil moisture has witnessed substantial advancements,
spanning from observational methods to modeling techniques. Particularly noteworthy
is the rapid progress in unmanned aerial vehicle (UAV) remote sensing, which offers
high temporal and spatial resolution, thereby presenting possibilities for remote sensing
monitoring of soil moisture at the field scale [10,11].

In the context of remote sensing for soil moisture, the divisions based on the spectral
bands used can be categorized into visible-near-infrared remote sensing [12], thermal
infrared remote sensing [13], and microwave remote sensing [14]. Regarding the principles
of inversion, there are two main methods: the direct method and the indirect method [15].

The direct approach involves observing the soil directly and inferring its moisture
content. It encompasses both the reflectance-based approach [16] and the thermal inertia
method [17]. The reflectance-based approach operates on the premise that alterations in
surface moisture content lead to changes in surface reflectance. Liu et al. [16] conducted
sampling on ten types of soil to explore the relationship between soil reflectance in the
solar domain (400~2500 nm) and SMC. Their findings indicate that under low humidity
conditions, soil reflectance decreases as humidity increases, with an inverse relationship
beyond a critical point, which correlates with the soil’s hydraulic properties. The thermal
inertia method, based on ground temperature and thermal inertia, uses the strong linear
relationship between soil moisture and thermal inertia for SMC estimation [17]. This
method offers good repeatability, accuracy, and consistency. However, the thermal inertia
approach is susceptible to interference from weather clouds, resulting in suboptimal soil
moisture estimation outcomes in regions with dense vegetation cover or crop fields [18].
Furthermore, due to the limited penetration capability of surface radiation detected by
remote sensing instruments, the soil moisture inverted using these direct methods generally
represents the moisture content of the surface soil layer, typically between 5 cm and 10 cm
deep, rather than the SMC in the 20–80 cm root zone [17,19,20].

The indirect method estimates soil moisture indirectly by constructing vegetation
indices. It primarily relies on changes in plant physiological processes induced by drought,
leading to alterations in leaf spectral properties, which significantly impact the spectral
reflectance and the temperature of the vegetation canopy [21–23]. Yang et al. [24] extracted
the temperature information for corn canopies from thermal infrared images captured by a
UAV and calculated the crop water stress index (CWSI) to estimate the SMC at different
depths of the cornfield. The method demonstrated effective performance, particularly
at the 0–30 cm soil layer. Zhang et al. [25] extracted corn vegetation cover and canopy
temperature depression (CTD) to analyze their relationship with SMC. They estimated the
SMC at a depth of 0–30 cm in the corn root zone using a total of 60 data points. The results
revealed high R2 values, particularly exceeding 0.71 at the 10–20 cm depth range.

Compared to the soil moisture estimation based on single remote sensing information,
the joint estimation of soil moisture based on multisource remote sensing information
has become a research hotspot [26–28]. Wigmore et al. [29] used drones equipped with
visible, near-infrared, and thermal infrared sensors to obtain the temperature vegetation
dryness index (TVDI). Through on-site measurements for calibration, they inferred the
surface soil moisture. The R2 for the two study areas, with 13 and 15 observation points,
respectively, were 0.55 and 0.76, achieving sub-meter resolution mapping of partial surface
soil moisture in two former glacier valleys within Rio de Janeiro, Brazil. Cheng et al. [30]
employed Landsat 8 data and the random forest regression (RFR) algorithm for multisensor
combination to estimate soil moisture. The study was based on 13 remote sensing images
and soil moisture data from 72 sample points corresponding to each image. The results
indicate that the R2 based on the combined use of multispectral and thermal infrared
indices at different soil depths ranged from 0.73 to 0.81. This was superior to the 0.69–0.73
achieved by a single multispectral sensor and the 0.67–0.74 obtained from a single thermal
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infrared sensor, with the differences reaching a significant level. The RFR algorithm has
been successfully applied in spectral index-based soil moisture retrieval, demonstrating
better accuracy and stability compared to other methods [30,31].

Most existing methods of soil moisture inversion focus on the shallow layers (0–30 cm),
especially the direct methods, which can only estimate soil moisture at depths of 0–10 cm.
Research on deep soil moisture is relatively limited [32]. Additionally, there is a scarcity
of studies examining the differences in SMC inversion depths among different crops,
and few comparisons of inversion accuracy for the same crop at different growth stages.
However, the soil moisture in the crop root zone is the primary factor closely related to
crop growth [33,34]. As the growth stages progress, the primary root water absorption
zone of the crop may slightly shift [35,36]. Monitoring the SMC in the primary root water
absorption zone at different growth stages is crucial for enhancing agricultural production
efficiency and optimizing water resource management.

Therefore, the aims of this study are to (1) employ machine learning algorithms to
estimate soil moisture using vegetation indices obtained from multispectral and thermal
infrared remote sensing images and compare the accuracy of the SMC estimation from
multimodal data, (2) use the indirect method to invert soil moisture in deeper soil layers
and explore the variation pattern of SMC estimation with soil depths, and (3) analyze the
impact of crop type and growth stage changes on the accuracy of soil moisture estimation.

2. Materials and Methods
2.1. Experimental Site and Setup

The experiments were conducted at the Shiyang River Experimental Station of China
Agricultural University from April to September 2022. The experimental station is located in
Wangjingzhai Village, Donghe Township, Liangzhou District, Wuwei City, Gansu Province,
China, at a latitude of 37◦52′N and a longitude of 102◦50′E. The station’s elevation is
approximately 1581 m above sea level, as depicted in Figure 1. The region is characterized
by an inland arid desert climate, with an average annual precipitation of 164.4 mm and
potential evaporation exceeding 2000 mm. The area experiences intense solar radiation,
long hours of sunshine, and a persistent lack of rainfall throughout the year, resulting in
arid conditions with limited water resources. The groundwater level is approximately
40–50 m deep, further exacerbating the severe water scarcity in the area.
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The field experiment covered an area of approximately 1776 square meters and was
divided into 28 plots, with each plot measuring 7 m × 5 m. Isolation zones with a width
of 1 m were established between the plots to prevent lateral seepage effects. The crops
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cultivated in the experiment were corn and soybean (Figure 1). For the corn (variety
“Xianyu 335”), the rows were spaced 40 cm apart and the plants were spaced 26 cm
apart. Four irrigation treatments were applied, providing 100% of the crop’s water re-
quirement (CW1), 80% (CW2), 60% (CW3), and 40% (CW4). As for the soybean (variety
“Zhonghuang 30”), the rows were spaced 50 cm apart and the plants were spaced 15 cm
apart. Three irrigation treatments were implemented, corresponding to 100% of the crop’s
water requirement (SW1), 75% (SW2), and 50% (SW3). Both crops were sown in early May
and irrigated using the drip irrigation method with mulching. Fertilization was carried out
following conventional local practices.

2.2. Data Acquisition
2.2.1. UAV Data

The remote sensing observations in this experiment were conducted using a six-axis
aerial vehicle platform (DJI Matrice 600 Pro, Shenzhen, China) equipped with a thermal
infrared sensor (FLIR Vue Pro R64, Wilsonville, OR, USA), a multispectral sensor (Micasense
RedEdge-MX, Seattle, WA, USA), and a visible light sensor (DJI Zenmuse Z3, Shenzhen,
China), as shown in Figure 2. The Matrice 600 Pro UAV has vertical and horizontal hovering
accuracies of ±0.5 m and ±1.5 m, respectively. With the camera payload, the UAV has a
flight time of approximately 30 min. The multispectral camera includes five spectral bands:
blue (B), green (G), red (R), red edge (RE), and near-infrared (NIR). The detailed parameters
of each lens are provided in Table 1.
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Table 1. Parameters of sensors mounted on the UAV.

Sensor Name Sensor Type Spectral Region (µm) Resolution (Pixels) Field of View
(H◦ × V◦)

RGB camera DJI Zenmuse Z3 N/A 1240 92◦ (wide-angle)–35◦ (tele)

Multispectral camera Micasense
RedEdge-MX

0.475, 0.560, 0.668,
0.717, 0.842 1280 × 960 47.2◦ × 35.4◦

Thermal camera Flir Vue Pro R64 7.5–13.5 640 × 512 32.0◦ × 26◦

Note: N/A—Not Applicable.

To obtain high-resolution and full-coverage remote sensing images of the experimental
field, a total of 16 UAV flight missions were conducted from 1 July to 9 September 2022.
The specific dates are as follows: 1 July, 10 July, 13 July, 20 July, 22 July, 24 July, 25 July,
27 July, 31 July, 5 August, 8 August, 16 August, 19 August, 20 August, 1 September, and
6 September. The UAV flew at a height of 60 m, with a flight speed of 2 m/s, and the
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camera was oriented parallel to the flight path. Images were captured at regular intervals
of 2 s, resulting in a longitudinal overlap rate of 92% and a lateral overlap rate of 90%.
The observations were carried out on sunny and cloudless days at noon. Prior to each
flight, the multispectral camera captured images of the radiometric calibration panel for
radiometric correction. The emissivity of the thermal infrared camera was set to 0.98, and
the background temperature was set to 22 ◦C.

2.2.2. In Situ Soil Moisture

The soil moisture variations in different soil layers were measured using soil moisture
sensors at fixed locations. In each designated plot, SMC measurements were conducted
in situ. Seven 80 cm deep soil profiles were excavated in 7 small plots, and EC-5 probes
(Decagon, Pullman, WA, USA) were installed at depths of 10 cm, 20 cm, 40 cm, 60 cm,
and 80 cm in each profile. Data was collected at 10 min intervals by HOBO H21-USB data
loggers (Onset, Cape Cod, MA, USA) and periodically downloaded for storage. Figure 3
presents the actual SMC of soybean (a) and corn (b) during the UAV flights under sufficient
irrigation (SMC distribution maps for all water treatments of soybean and corn in the
vertical profiles throughout the entire growth period are shown in Figures S1 and S2). In the
figures, the line chart above the profile represents the variation of soil moisture at different
depths over time, with the horizontal lines in the profile indicating the corresponding
depths of the line chart. The line chart to the right of the profile shows the distribution
of soil moisture at different depths at various times, with the vertical lines in the profile
indicating the corresponding times of the line chart. For soybean, the SMC at depths of
10–40 cm exhibited significant fluctuations before and after irrigation and rainfall. After
water replenishment, the SMC gradually decreased over time due to plant uptake and slow
surface evaporation, while the soil moisture at depths of 60–80 cm remained relatively
stable and unchanged. For corn, variations in soil moisture were observed in all soil layers,
with more pronounced fluctuations at depths of 10–40 cm compared to depths of 60–80 cm.

2.3. Methods
2.3.1. Regression Model Building

The soil moisture estimation model was developed using the random forest regression
(RFR) algorithm, which is based on classification trees [37]. At present, the RFR algorithm
has gained widespread adoption in estimating remote sensing data and has exhibited
remarkable performance [38–40]. The core of the RFR methodology involves employing a
vast array of regression trees to explore the correlation between independent variables and
the dependent variable. Each tree encapsulates a set of criteria to establish the input–output
correspondence. In this study, to simulate the relationship between remote sensing indices
and the SMC, a set of training input–output pairs, that is, remote sensing indices–SMC,
was provided. Thus, 75% of the sample points were selected as the training set for the RFR
model, and the remaining 25% were used as the testing set.

A total of 23 input variables were extracted from the multispectral and thermal infrared
UAV remote sensing data (Table 2). The extracted vegetation indices were matched with the
corresponding in situ SMC data for each plot. Throughout the 16-day UAV flight campaign,
a total of 7 plots with 5 soil depths each were surveyed, resulting in 560 sample sets, which
were used to train and validate the model developed in this study.

The normalized difference vegetation index (NDVI) images acquired from the multi-
spectral sensor and the surface temperature (Ts) images obtained from the thermal infrared
sensor were resampled and georeferenced, and then the TVDI trapezoidal feature space
was constructed (Figure 4), ultimately yielding the TVDI values for each pixel. As shown
in Figure 4, the dry edge and wet edge represent the highest and lowest temperatures
corresponding to each NDVI, respectively, and linear fitting was performed. The R2 of the
linear fitting for the dry edge and wet edge were 0.67 and 0.71, respectively, indicating a
good fit.
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Figure 3. Distribution map of SMC in the vertical profiles of (a) soybean and (b) corn under sufficient
irrigation throughout the entire growth period.

Table 2. Definitions of indicators extracted from multimodal sensor data.

Sensor Spectral Index Formulation References

MS

Normalized difference vegetation index (NDVI) NDVI = (NIR − R)/(NIR + R) [41]
Normalized difference vegetation index 2 (NDVIgb) NDVIgb = (G − B)/(G + B) [42]

Ratio vegetation index (RVI) RVI = NIR/R [43]
Ratio vegetation index 2 (RVI2) RVI2 = NIR/G [44]

Triangular vegetation index (TVI) TVI = 60 (NIR − G) − 100(R − G) [45]
Enhanced vegetation index (EVI) EVI = 2.5 (NIR − R)/(NIR + 6 R − 7.5B + 1) [46]

Green index (GI) GI = G/R [47]
Soil-adjusted vegetation index (SAVI) SAVI = 1.5 (NIR − R) (NIR + R + 0.5) [48]

Optimized soil-adjusted vegetation index (OSAVI) OSAVI = 1.16 (NIR − R)/(NIR + R + 0.16) [49]
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Table 2. Cont.

Sensor Spectral Index Formulation References

Structure insensitive pigment index (SIPI) SIPI = (NIR − B)/(NIR + B) [50]
Transformed chlorophyll absorption in reflectance

index (TCARI) TCARI = 3[(RE − R) − 0.2(RE − G)(RE/R)] [51]

Modified chlorophyll absorption in reflectance
index (MCARI) MCARI = [(RE − R) − 0.2(RE − G)](RE/R) [51]

Modified simple ratio index (MSR) MSR = (NIR/R − 1)/(NIR/R + 1)1/2 [52]
Green normalized difference vegetation index (GNDVI) GNDVI = (NIR − G)/(NIR + G) [53]

Simple ratio pigment index (SRPI) SRPI = B/R [50]
Normalized pigment chlorophyll index (NPCI) NPCI = (R − B)/(R + B) [54]

Plant senescence reflectance index (PSRI) PSRI = (B − R)/G [55]
Visible Atmospheric Resistant Index (VARI) VARI = (G − R)/(G + R − B) [56]
Color Index of Vegetation Extraction (CIVE) CIVE = 0.44R − 0.81G + 0.39B + 18.79 [57]

TIR

Temperature vegetation dryness index (TVDI) TVDI = (Ts − Tsmin)/(Tsmax − Tsmin) [58]
Crop water stress index (CWSI) CWSI = (Tc − Tw)/(Td − Tw) [59]

Canopy temperature depression (CTD) CTD = Tc − Ta [60,61]
Vegetation transpiration coefficient (hac) hac = (Tc − Ta)/(Tcp − Ta) [62,63]

Note: B—Blue band; G—Green band; R—Red band; RE—Red edge band; and NIR—Near-infrared band;
Ts—Surface temperature; Tc—Canopy temperature; Tw—Wet reference surface temperature; Td—Dry refer-
ence surface temperature; Ta—Air temperature; Tcp—Reference canopy temperature.
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Figure 4. Depiction of the trapezoidal feature space of TVDI. The direction of the arrow indicates the
gradient trend of density from low to high.

2.3.2. Validation

The performance of the model was quantified using the coefficient of determination
(R2), root mean square error (RMSE), and mean absolute error (MAE). The calculation
methods for these three evaluation metrics are as follows:

R2 = 1 − ∑n
i=1(Pi − Oi)

2

∑n
i=1

(
Oi − Oi

)2 (1)

RMSE =

√
∑n

i=1(Pi − Oi)
2

n
(2)

MAE =
1
n

n

∑
i=1

|Pi − Oi| (3)

where n is the number of samples, Oi is the measured moisture, Pi is the estimated moisture,
and Oi is the mean value of Oi, respectively.
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3. Results
3.1. Modeling and Validation of Soil Moisture Content
3.1.1. The Relationship between Vegetation Indices and Soil Moisture

Using the NDVI-Ts derived TVDI trapezoidal feature space, the spatial distribution
map of the TVDI on July 31 and the frequency distribution histograms of each treatment
plot were obtained (Figure 5). Figure 5 shows that the red areas had higher TVDI values,
indicating drier soil, lower humidity, or more severe vegetation water stress. Conversely,
the blue areas represented lower TVDI values, indicating wetter soil, higher soil moisture,
or more abundant vegetation water supply. By comparing the frequency distribution
histograms under different treatments, it can be seen that the mean TVDI values for
corn followed the order CW1 = CW2 < CW3 < CW4, and for soybean, the order was
SW1 < SW2 < SW3. The TVDI values showed a negative correlation with irrigation amount
(Figures S1 and S2). This demonstrated the TVDI’s ability to effectively reflect crop water
stress. Furthermore, it could be used to estimate soil moisture in the root zone of crops.
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A correlation analysis was performed between 23 vegetation indices and in situ SMC
data for both soybean and corn across their entire growth periods. As shown in Table 3,
over half of the vegetation indices exhibited a highly significant correlation with in situ
soil moisture, particularly at depths of 10 cm and 20 cm. This indicates the considerable
potential of vegetation indices for soil moisture retrieval. Figure 6 shows the relative
importance of input variables for estimating soil moisture at a depth of 20 cm using
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the random forest regression (RFR) model. The figure indicates that all variables have
relatively high importance. Specifically, the modified chlorophyll absorption in reflectance
index (MCARI), canopy temperature difference (CTD), crop water stress index (CWSI),
and temperature vegetation drought index (TVDI) exhibit higher importance. However,
similar to what is shown in Table 3, the differences among the various vegetation indices
are not substantial.

Table 3. Pearson coefficient between vegetation index and soil moisture.

Sensor Spectral Index d10 cm d20 cm d40 cm d60 cm d80 cm

MS

CIVE −0.245 ** −0.240 ** −0.089 ** −0.155 ** −0.460 **
EVI 0.257 ** 0.225 ** 0.129 ** 0.074 * 0.281 **
GI 0.310 ** 0.136 ** 0.059 * 0.154 ** 0.499 **

GNDVI 0.084 ** −0.091 ** 0.032 −0.060 * −0.014
MCARI 0.339 ** 0.215 ** 0.067 * 0.185 ** 0.642 **

MSR 0.253 ** 0.142 ** 0.075 ** 0.043 0.225 **
NDVI 0.106 ** −0.047 0.037 0 0.116 **

NDVIgb 0.373 ** 0.199 ** −0.005 0.192 ** 0.631 **
NPCI −0.070 * 0.024 −0.081 ** −0.009 −0.081 **

OSAVI 0.219 ** 0.154 ** 0.100 ** 0.052 0.224 **
PSRI 0.084 ** −0.018 0.060 * 0.024 0.128 **
RVI 0.312 ** 0.112 ** 0.078 ** 0.090 ** 0.367 **
RVI2 0.137 ** −0.052 0.047 −0.049 0.02
SAVI 0.314 ** 0.297 ** 0.157 ** 0.101 ** 0.396 **
SIPI 0.212 ** −0.016 0.019 0.023 0.248 **
SRPI −0.356 ** −0.238 ** −0.01 −0.117 ** −0.471 **

TCARI −0.112 ** −0.105 ** −0.01 0.053 0.01
TVI 0.289 ** 0.266 ** 0.141 ** 0.093 ** 0.352 **

VARI 0.242 ** 0.073 * 0.052 0.104 ** 0.390 **

TIR

TVDI 0.044 0.217 ** 0.106 ** 0.063 * −0.01
CTD −0.211 ** −0.139 ** −0.054 0.029 −0.001
CWSI −0.170 ** 0.167 ** 0.097 ** −0.053 −0.454 **

ha −0.132 ** −0.145 ** 0.016 −0.05 −0.301 **
Note: * indicates correlation at a significance level of 0.05 and ** indicates correlation at a significance level of 0.01.
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Figure 6. The relative importance of input variables in the RFR model for estimating soil moisture at
a 20 cm depth.

3.1.2. Model Performance

The soil moisture at different depths across the entire growth periods of corn and
soybean was used as the dependent variable. Two types of variables, namely, multispectral
indices (MSs) and thermal infrared indices (TIRs), were used as the independent variables.
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They were separately and jointly employed for soil moisture estimation to compare the
differences in the results. As shown in Table 4, there was a small difference in the R2

between the model training set and testing set, with the R2 differing by less than 0.2,
indicating the stability of the model results.

Table 4. Comparison of soil moisture estimation accuracy of different crops at different depths.

Training Set Testing Set

10 cm 20 cm 40 cm 60 cm 80 cm 10 cm 20 cm 40 cm 60 cm 80 cm

soybean

MS
R2 0.82 0.88 0.47 0.36 0.42 0.74 0.78 0.38 0.28 0.34

RMSE (%) 0.011 0.133 0.094 0.408 0.22 2.669 0.225 1.049 0.015 1.1

TIR
R2 0.82 0.82 0.28 0.29 0.24 0.74 0.72 0.03 0.01 0.08

RMSE (%) 0.017 0.021 0.332 0.068 0.024 0.248 0.309 8.13 2.026 0.672

MS + TIR
R2 0.82 0.89 0.53 0.36 0.42 0.78 0.85 0.46 0.26 0.32

RMSE (%) 1.16 0.989 0.598 1.698 0.15 0.529 0.208 0.928 1.878 1.266

corn

MS
R2 0.53 0.81 0.82 0.32 0.32 0.33 0.67 0.68 0.15 0.14

RMSE (%) 0.481 0.223 0.057 0.504 0.82 2.58 2.897 1.637 1.037 3.687

TIR
R2 0.43 0.79 0.75 0.33 0.31 0.26 0.61 0.6 0.19 0.14

RMSE (%) 0.152 0.351 0.164 0.273 0.173 2.476 3.387 1.045 3.793 1.823

MS + TIR
R2 0.55 0.85 0.89 0.4 0.42 0.4 0.7 0.73 0.24 0.28

RMSE (%) 0.433 0.032 0.009 0.738 0.821 1.287 0.571 1.317 2.377 7.589

3.2. Contributions of Different Sensor Data

Crop growth stages were classified to further conduct soil moisture estimation, and the
differences in accuracy were obtained for three multimodal data combinations
(two individual indices and one combined index), as shown in Figure 7. Overall, for
soybean and corn, at depths of 10–80 cm, the average R2 for soil moisture estimation
using multispectral, thermal infrared, and multispectral + thermal infrared data were
0.50, 0.41, and 0.57, respectively. The corresponding RMSE values were 0.019, 0.018, and
0.015, and the MAE values were 0.025, 0.026, and 0.021. The results show that compared
to thermal infrared, remote sensing data from the multispectral sensor provided more
accurate SMC estimates with a higher R2 of approximately 0.09. The combined estima-
tion of multispectral and thermal infrared data yielded better results than the individual
estimations, with an improvement of approximately 0.07 (about 14%) compared to using
multispectral alone and an improvement of approximately 0.16 (about 39%) compared to
using thermal infrared alone.
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Figure 7. Accuracy of SMC estimates using different sensors: (a) R2, (b) RMSE, and (c) MAE.
Significance levels are indicated by different letters: sensors with the same letter are not significantly
different, while sensors with different letters are significantly different.

Figure 8 displays the comparison of estimated and true soil moisture data at a depth
of 20 cm for soybean using different sensors. It can be observed that both single-sensor
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and multisensor estimations tended to overestimate at low soil moisture levels and under-
estimate at high soil moisture levels. However, the joint use of multisensor data reduced
overestimation and underestimation, providing the most accurate SMC estimates.
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Figure 8. Comparison of estimated and true soil moisture data for soybean at a depth of 20 cm.
(a) MS, (b) TIR, and (c) MS + TIR.

3.3. Comparison of Estimation Accuracy at Different Soil Depths

In addition to studying the SMC estimation using different indices, the performance
of soil moisture estimation at different depths was also analyzed. Figure 9 displays the
variation in SMC with soil depth for the accuracy of estimates. From the figure, it can be
observed that the optimal estimation depths for soybean across the entire growth period
were 10 cm and 20 cm, with average R2 of 0.81 and 0.82, RMSEs of 0.009 and 0.008, and
MAEs of 0.008 and 0.006, respectively. The accuracy of estimates at depths of 10 cm and
20 cm were significantly correlated, while the accuracy for depths of 40 cm–80 cm was
lower, with R2 all below 0.4 and gradually decreasing with increasing depth. As for corn,
the optimal estimation depths were 10 cm, 20 cm, and 40 cm, with average R2 of 0.59, 0.60,
and 0.55; RMSEs of 0.018, 0.012, and 0.009; and MAEs of 0.02, 0.015, and 0.009, respectively.
The accuracy of the first three depths, especially at 20 cm and 40 cm, showed a significant
correlation and the models performed well. However, the performances at depths of 60 cm
and 80 cm were poorer, with R2 all below 0.3.
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Figure 9. Comparison of estimation accuracy at various soil depths. (a–c) Soybean and (d–f) Corn. Sig-
nificance levels are indicated by different letters: soil depths with the same letter are not significantly
different, while soil depths with different letters are significantly different.
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To further analyze the performance differences in soil moisture estimation at different
depths, a correlation analysis was conducted on the in situ SMC at various soil depths, as
shown in Figure 10. Overall, both soybean and corn exhibited lower correlations with the in
situ SMC between distant soil layers, while adjacent soil layers showed higher correlations.
For soybean, the correlation coefficient (r) between the SMC at 10 cm depth and 20 cm
depth reached 0.74 (Figure 10a), reflecting a highly significant level (p < 0.01). This indicates
that the SMC exhibited similar trends in response to irrigation and temporal changes at
these two soil depth levels, thereby resulting in comparable accuracy in soil moisture
estimation. As for corn, the r value between the SMC at depths of 20 cm and 40 cm was
0.647 (Figure 10b), reaching a highly significant level (p < 0.01), and the r value between the
SMC at depths of 60 cm and 80 cm was 0.829, also reflecting a highly significant level
(p < 0.01), which means that the SMC estimation accuracy was comparable in these
two sets of soil layer depths, as shown in Figure 9.
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Figure 10. Correlation between the in situ SMC of different soil layer depths. (a) Soybean and
(b) Corn. Note: * indicates the correlation reached significance level (p < 0.05), and ** indicates the
correlation reached highly significant level (p < 0.01).
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3.4. Accuracy Comparison and Optimal Estimation Depths for Different Growth Stages

Figure 11 illustrates the accuracy comparison for different soil depths for both crops across
different growth stages. From an accuracy perspective, both crops showed higher estimation
accuracy during the first three growth stages, with a decline in accuracy during the maturity
stage. The accuracy of upper soil moisture estimation for both crops (soybean 0–20 cm, corn
0–40 cm) shows significant differences between the maturity stage and other growth stages
(Table 5). For corn, the decline in accuracy was particularly evident, with an average decrease
in R2 of 0.35 and an increase in MAE of 0.009 compared to the first three growth stages. For
soybean, the average decrease in R2 was 0.26 and the increase in MAE was 0.003.
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Figure 11. Accuracy comparison at different soil depths across different growth stages. (a,c) Soybean
and (b,d) Corn. Significance levels are indicated by different letters: soil depths with the same letter
are not significantly different, while soil depths with different letters are significantly different.

Regarding the optimal estimation depths at different growth stages, for soybean
(Figure 11a,c), the best depths for estimation during the flowering stage, podding stage,
and filling stage were consistently 10 cm and 20 cm, with R2 all above 0.81. The R2 for
the other three depths were all below 0.52, indicating a difference in R2 of 0.46. For corn
(Figure 11b,d), the optimal estimation depths during the jointing stage, tasseling stage,
and filling stage were consistently 10–40 cm, with an average R2 of 0.69. Compared to the
60–80 cm depth, the accuracy difference was 0.37. Overall, the optimal estimation depths
for SMC in both crops remained relatively stable during the first three growth stages.
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Table 5. Comparison of soil moisture estimation accuracy of different crops at different
growth periods.

Growth Period R2 MAE

Soybean
(10–20 cm)

Flowering stage 0.92 ± 0.05 a 0.006 ± 0.002 ab
Podding stage 0.84 ± 0.12 a 0.005 ± 0.002 b
Filling stage 0.86 ± 0.04 a 0.008 ± 0.002 ab

Maturity stage 0.63 ± 0.11 b 0.01 ± 0.004 a

Corn
(10–40 cm)

Jointing stage 0.79 ± 0.07 a 0.011 ± 0.005 c
Tasseling stage 0.56 ± 0.13 b 0.012 ± 0.003 c

Filling stage 0.72 ± 0.09 a 0.014 ± 0.004 ab
Maturity stage 0.24 ± 0.09 c 0.022 ± 0.014 a

Note: Significance levels are indicated by different letters: growth periods with the same letter are not significantly
different, while growth periods with different letters are significantly different.

3.5. Spatial Distribution of Soil Moisture in the Field

Figure 12 shows the spatial distribution of SMC in the experimental field calculated
using the RFR algorithm with a combination of multispectral and thermal infrared data
as inputs. Typical days during the growth stages were selected: 13 July (soybean in the
flowering stage and corn in the jointing stage), 27 July (soybean in the podding stage and
corn in the tasseling stage), and 5 August (both soybean and corn in the filling stage). The
spatial distribution maps of soil moisture at depths of 10 cm, 20 cm, and 40 cm on these
three days were obtained. It can be observed that from 13 July to 27 July, the SMC at
depths of 10 cm and 20 cm decreased for both soybean and corn, while the SMC at a depth
of 40 cm decreased for corn as well. After irrigation on 1 August, the soil moisture at depths
of 10 cm and 20 cm notably rebounded by 5 August. Regarding the spatial distribution,
both corn and soybean, as well as different treatments of the same crop, exhibited strong
spatial heterogeneity in soil moisture. Areas with higher irrigation had higher SMC, con-
firming the good performance of the soil moisture estimation model based on multispectral
and thermal infrared remote sensing in spatial simulation.



Remote Sens. 2024, 16, 3166 15 of 20

Remote Sens. 2024, 16, x FOR PEER REVIEW 16 of 21 
 

 

depth, the accuracy difference was 0.37. Overall, the optimal estimation depths for SMC 
in both crops remained relatively stable during the first three growth stages. 

3.5. Spatial Distribution of Soil Moisture in the Field 
Figure 12 shows the spatial distribution of SMC in the experimental field calculated 

using the RFR algorithm with a combination of multispectral and thermal infrared data 
as inputs. Typical days during the growth stages were selected: 13 July (soybean in the 
flowering stage and corn in the jointing stage), 27 July (soybean in the podding stage and 
corn in the tasseling stage), and 5 August (both soybean and corn in the filling stage). The 
spatial distribution maps of soil moisture at depths of 10 cm, 20 cm, and 40 cm on these 
three days were obtained. It can be observed that from 13 July to 27 July, the SMC at depths 
of 10 cm and 20 cm decreased for both soybean and corn, while the SMC at a depth of 40 
cm decreased for corn as well. After irrigation on 1 August, the soil moisture at depths of 
10 cm and 20 cm notably rebounded by 5 August. Regarding the spatial distribution, both 
corn and soybean, as well as different treatments of the same crop, exhibited strong spatial 
heterogeneity in soil moisture. Areas with higher irrigation had higher SMC, confirming 
the good performance of the soil moisture estimation model based on multispectral and 
thermal infrared remote sensing in spatial simulation. 

10
cm

 d
ep

th
 S

M
C

(m
³/m

³) 

   

20
cm

 d
ep

th
 S

M
C

(m
³/m

³) 

   

40
cm

 d
ep

th
 S

M
C

(m
³/m

³) 

   

 13 July 2022 27 July 2022 5 August 2022 

Figure 12. Estimation of SMC using RFR with remote sensing data from three types of sensors. Figure 12. Estimation of SMC using RFR with remote sensing data from three types of sensors.

4. Discussion

In the construction of soil moisture estimation models using remote sensing, the
selection of input variables is crucial. Heavy rain reduces the differences in surface soil
moisture among different treatments, and the surface soil moisture continues to experience
significant temporal changes immediately after irrigation (Figure 3). Meanwhile, the
vegetation growth, due to its lagging response [64], does not yet provide sufficient feedback
on the soil moisture differences. Therefore, in order to reduce the impact of external
disturbances, it is necessary to perform remote sensing estimation after 1–2 days of rainfall
or irrigation when the soil moisture stabilizes. Moreover, images from multiple days
within the same growth stage should be used together for soil moisture estimation to
reduce the influence of different weather and surface conditions. Furthermore, numerous
studies have shown that vegetation indices calculated using data from multispectral or
thermal infrared sensors on UAVs have become the most commonly used indicators
for estimating SMC [65,66]. Compared to thermal infrared sensors, multispectral sensors
demonstrate superior performance in soil moisture estimation (Figure 7), while temperature
data from thermal imaging can overcome the asymptotic saturation of multispectral or
hyperspectral data [39] and improve the accuracy of remote sensing soil moisture estimation
(Figures 6 and 8). In general, joint estimation based on multispectral and thermal infrared
data yields better results than individual estimations, consistent with the findings of [30].

Figure 9 displays the variation in SMC accuracy with soil depth. Overall, across the
entire growth period, the optimal estimation depths for soybean were found to be 10–20 cm,
while for corn, the optimal estimation depths were 10–40 cm. The model performed poorly
at depths of 60–80 cm. This is because approximately 86% of soybean roots are distributed
within the 0–30 cm soil depth, with the maximum root length density observed in the



Remote Sens. 2024, 16, 3166 16 of 20

10–20 cm soil layer [67]. At the same time, corn’s primary root absorption zone is deeper
than that of soybean, mainly concentrated within the 0–40 cm soil depth [36]. The location
of the crop’s root zone is closely related to the plant’s water uptake, which in turn is related
to the plant’s growth status. Although there is a strong correlation between adjacent soil
depths, such as between 20 cm and 40 cm for soybean, and between 40 cm and 60 cm for
corn (Figure 10), this strong correlation is due to the water infiltration between adjacent
soil layers caused by precipitation and irrigation. It does not reflect the crop’s daily water
uptake from different soil layers. In reality, crops absorb less water from deeper soil layers
compared to the primary root zone (10–20 cm for soybean, 10–40 cm for corn) and the
moisture in deeper soil layers changes more slowly over time (Figures 3, S1 and S2). For
example, as shown in Supplementary Figure S1b,c, soil moisture at 40 cm, 60 cm, and 80
cm for soybean is minimally affected by external environmental conditions and thus has a
lesser relationship with plant growth.

This paper also compared the accuracy of soil moisture estimation at different soil
depths across different growth stages for both crops. From Figure 11 and Table 5, it can be
observed that, in terms of accuracy across different growth stages, the model performed
well for both crops during the first three growth stages, while it generally performed poorly
during the maturity stage. This is primarily attributed to the reduction in root density
during the maturity stage [68,69], as well as the yellowing and wilting of crop leaves, which
weakens the relationship between vegetation indices and soil moisture across different
treatment plots. Additionally, leaf shedding reduces vegetation cover, which can cause
interference from the ground soil background during the extraction of canopy spectral
information, thereby reducing the accuracy of the soil moisture estimation model [70].
Regarding the optimal estimation depths at different growth stages, for both soybean
(Figure 11a,c) and corn (Figure 11b,d), the optimal estimation depths during the first
three growth stages remain stable, with soybean at 10 cm and 20 cm, and corn at 10 cm,
20 cm, and 40 cm. This is attributed to the fact that although crop roots penetrate deeper as
growth stages advance, the main rooting zones remain relatively stable over time, except
during the seedling stage. Corn roots are primarily concentrated within the 0–40 cm soil
depth [36,68], while soybean roots are mainly distributed around 0–20 cm soil layers [67,68],
with variations depending on the crop variety and soil texture.

Sections 3.1–3.4 demonstrate that the SMC estimation model can be applied to monitor
soil moisture for different crops and their various growth stages, thereby characterizing
the spatial distribution of SMC (Figure 12). We can monitor crop water consumption by
observing changes in SMC. Moreover, SMC spatial distribution maps based on the model
can be used to design irrigation schemes, offering greater rationality and practicality [71].

5. Conclusions

This study is based on multispectral indices and thermal infrared indices obtained
through UAV remote sensing technology. These indices were applied individually and
in combination using the RFR algorithm for the estimation of SMC in the 10–80 cm soil
layers across different growth stages of soybean and corn. The main research findings are
as follows:

(1) For different crop growth stages and soil depths, multispectral remote sensing data
outperformed thermal infrared remote sensing in terms of SMC estimation accuracy.
Moreover, combining thermal infrared remote sensing data with multispectral data
improved the accuracy of SMC estimation. The combined approach achieved a
14% increase in R2 compared to using multispectral data alone and a 39% increase
compared to using thermal infrared data alone.

(2) Across the entire growth period, the optimal SMC estimation depths for soybean
were found to be 10 cm and 20 cm, with a significant correlation between them. The
average R2 for these depths were 0.81 and 0.82, respectively. In contrast, the accuracy
decreased for depths between 40 cm and 80 cm, with all R2 below 0.4. For corn, the
optimal SMC estimation depths were 10 cm, 20 cm, and 40 cm, with average R2 of
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0.59, 0.60, and 0.55, respectively. The performances at depths of 60 cm and 80 cm were
poorer, with all R2 below 0.3.

(3) From the perspective of different growth stages, the SMC estimation model performed
well for both crops during the first three growth stages and decreased in accuracy
during the maturity stage. On average, corn showed a decrease of 0.35 in R2, while
soybean showed a decrease of 0.26. In terms of the optimal estimation depth across
the first three growth stages, the optimal estimation depths for both soybean and corn
are relatively stable, with soybean at 10 cm and 20 cm, and corn at 10 cm, 20 cm, and
40 cm.

The results indicate that using UAV remote sensing data as an input for machine
learning algorithms holds promise for accurately estimating SMC in the crop root zone
during growth stages other than the maturity period. The results also confirm the good per-
formance of the model in spatial simulation, which will be valuable for guiding agricultural
irrigation and improving water resource utilization efficiency.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/rs16173166/s1, Figure S1: Distribution map of soil mois-
ture content (SMC) in vertical profiles of corn under different irrigation treatments throughout the
entire growth period. (a) SW1; (b) SW2; (c) SW3; Figure S2: Distribution map of soil moisture content
(SMC) in vertical profiles of corn under different irrigation treatments throughout the entire growth
period. (a) CW1; (b) CW2; (c) CW3; (d) CW4.
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