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Abstract: In recent years, object detection in unmanned aerial vehicle (UAV) imagery has been a
prominent and crucial task, with advancements in drone and remote sensing technologies. However,
detecting targets in UAV images pose challenges such as complex background, severe occlusion, dense
small targets, and lighting conditions. Despite the notable progress of object detection algorithms
based on deep learning, they still struggle with missed detections and false alarms. In this work, we
introduce an MCG-RTDETR approach based on the real-time detection transformer (RT-DETR) with
dual and deformable convolution modules, a cascaded group attention module, a context-guided
feature fusion structure with context-guided downsampling, and a more flexible prediction head
for precise object detection in UAV imagery. Experimental outcomes on the VisDrone2019 dataset
illustrate that our approach achieves the highest AP of 29.7% and AP50 of 58.2%, surpassing several
cutting-edge algorithms. Visual results further validate the model’s robustness and capability in
complex environments.
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1. Introduction

The rapid development of electronic information engineering and communication
technologies have propelled unmanned aerial vehicles (UAV) systems to the forefront of
international research in remote sensing [1]. Combining drones, the global positioning
system (GPS), and remote sensing techniques, researchers can obtain high-quality, low-
altitude images through UAV platforms, thereby reducing information loss due to climate
and day–night conditions. These drone images are crucial for subsequent military and
civil missions, including natural disaster rescue, the Internet of Things (IoT), smart cities,
and traffic monitoring. Nonetheless, owing to factors like lighting conditions, shooting
angles, and background complexities, the intelligent interpretation of drone data is more
comparative and challenging.

Deep learning (DL) is a branch of machine learning methods that simulates the neural
network structure of the human brain, employing multi-layer neural networks to auto-
matically learn features and patterns from massive data. Convolutional neural networks
(CNNs), a representative algorithm of deep learning, employ feedforward neural network
architecture with deep structures and convolution operations, inspired by the visual per-
ception mechanism of biological systems. With the further improvement of computing
devices and theory, CNNs have seen rapidly development and are now extensively applied
in fields such as computer vision and natural language processing. Taking UAV-based
images as an example, computer vision can be subdivided into main tasks such as image
classification retrieval [2], object detection [3], image segmentation, image recognition,
tracking [4], etc. Among them, object detection plays a connecting role between raw data
processing and practical applications, aiming to precisely locate and categorize specific
objects within images or videos.
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Over recent decades, a multitude of object detection methods have emerged, spanning
template-based, feature-based, and DL-based approaches. These DL-based methods not
only overcome the inherent limitations of traditional approaches but also leverage rich
features and advanced scene understanding, leading to enhanced accuracy and reliability
in object positioning. In general, DL-based algorithms typically fall into two categories:
two-stage approaches like the faster region-based CNN (Faster R-CNN) [5] and one-stage
methods such as the RetinaNet [6] and You Only Look Once (YOLO) series [7,8]. The Faster
R-CNN [5] serves as the foundational model upon which many two-stage detectors have
been built. In contrast, one-stage detectors directly predict object class probabilities and
position coordinates, omitting a separate region proposal stage. In addition to the structural
differences, the RetinaNet [6] attempt to introduces focal loss to tackle the imbalance of
categories and special emphasize hard examples. YOLO [7], representing a prominent
one-stage detection algorithm, excels in speed, especially for small object detection, making
it highly impactful and enjoys widespread adoption. Two-stage detectors deliver higher
accuracy at the expense of real-time responsiveness, whereas one-stage detectors, despite
their advantages in end-to-end performance, tend to exhibit lower accuracy in localizing
and recognizing small targets.

The detection transformer (DETR) is a novel algorithm introduced in 2020 by re-
searchers at Facebook AI Research [9]. Unlike the traditional two-stage pipeline, the DETR
replaces it with a transformer, providing the advantages of an end-to-end architecture and
global context modeling. Leveraging the self-attention mechanisms, transformer-based
methods can understand contextual features and their interrelationships well, which has be-
come a recent breakthrough compared to CNN-based detectors. However, the unaddressed
challenge of high computational costs associated with the DETR hampers their practical
utility, hindering the full exploitation of benefits such as eliminating the non-maximum
suppression (NMS) process and other post-processing steps. In addition, the real-time
detection transformer (RT-DETR) was proposed to eliminate the inference delay caused
by NMS, and it outperforms YOLO-based detection methods of the equivalent scale with
regard to accuracy and speed [10]. The creators introduce a newly devised hybrid encoder
efficiently to process multi-scale features. Additionally, they propose an intersection over
union (IoU)-aware query selection strategy to initialize object or position queries from the
encoder. This detector is conducive to practical deployment while satisfying the real-time
requirements, because it eliminates unnecessary retraining process and can effectively
reduce inference cost.

In recent years, a multitude of diverse models and structures have surfaced to ad-
vance performance in semantic segmentation and object detection, focusing on different
perspective like lightweight and attention mechanism. The innovation of DualConv, pro-
posed by [11], introduces dual convolutional kernels designed to create a slim and efficient
deep neural network. This approach can be integrated into a wide range of CNN ar-
chitectures through adjustments to their design, resulting in noteworthy reductions in
computational costs and parameter counts. Deformable convolutional networks version 2
(DCNv2) enhances object detection and semantic segmentation by introducing deformable
convolutions, which dynamically adjust kernel shapes and positions [12]. DCNv2 expands
its capability by integrating offset learning across multiple convolutional layers, enabling
precise control over feature-level sampling. Within its deformable convolution blocks
or modules, every instance undergoes personalized offset adjustments and modulation,
adapting to feature characteristics. This flexibility enables the architecture to dynamically
reshape spatial distributions and modulate the influence of individual instances. The
context-guided network (CGNet) is a lightweight neural network tailored for efficient
semantic segmentation tasks, particularly in resource-constrained environments. The
context-guided (CG) block, introduced in [13], emulates the human visual system by lever-
aging contextual relationships to interpret scenes for semantic segmentation. The CG block
plays a crucial role in capturing local features, surrounding context, and global context, en-
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abling precise boundary detection through refined feature extraction and seamless context
fusion, which integrates the information to enhance accuracy.

CNN architectures typically demand significant memory and computational resources,
rendering them impractical for embedded systems constrained by hardware limitations.
We introduce a new method called MCG-RTDETR built upon RT-DETR, which collaborates
multi-convolution and context-guided downsampling with a cascaded group attention
module to achieve precise object detection in UAV images, all while maintaining a balance
between detection accuracy and computational efficiency. Firstly, we introduce the dual
convolutional filter and deformable convolution into the backbone to extract features.
This advancement empowers the model to proficiently identify and dissect the intricate
details present in small targets. It facilitates the integration of intricate local elements with
broader contextual information, thereby seamlessly incorporating detailed local aspects
with overarching global structures, thus understanding the image more accurately and
comprehensively. Unlike previous research, we adjust the structure of the neck by using
context-guided downsampling blocks instead of the traditional neck and detection head
for small object detecting, aiming to alleviate the effects of varying target scales. The
applicability of our proposed scheme is validated using the VisDrone2019 dataset [14]. Our
enhanced model MCG-RTDETR exhibited robust performance in UAV imagery despite
the complex remote sensing environment. Meanwhile, ours illustrates an improvement of
average precision (AP) of approximately 4.7% to 6.8% with the original RT-DETR model.

The main contributions of this work are as follows:

• We integrated dual convolution and deformable convolutions into the backbone part
of original RT-DETR. These convolution operations better capture complex feature
information and geometric deformations in various scenarios and object sizes.

• We incorporated a cascaded group attention module into the encoder part to focus on
critical feature regions while suppressing non-relevant background information. We
replaced the traditional downsampling operation with context-guided downsampling
to preserve contextual information of the targets.

• To tackle challenges posed by varying scales and dense scenes, we specifically opti-
mized the structure of the neck to fuse features better, and the detection heads include
adjusting output layers suitable for small objects.

• Through the aforementioned enhancements, we conducted rigorous experimental
validations on the VisDrone2019 dataset. The results demonstrate significant improve-
ments in both quantitative and qualitative evaluation metrics. These performance
improvements not only affirm the efficacy of our method but also showcase its poten-
tial in practical scenarios.

The remaining structure of this work is as follows: Related work in the existing
literature is summarized in Section 2. In Section 3, we describe our approach’s architecture
and working mechanism comprehensively. Section 4 outlines the experimental setup
and implementation details and provides ablation and comparison experiments using
the VisDrone2019 dataset to verify our approach. Section 5 address a discussion of our
proposed scheme and explores future avenues for research. Finally, Section 6 offers this
study’s conclusion.

2. Related Work
2.1. General Object Detection

Recently, notable advancements have emerged in object recognition and detection algo-
rithms, which are driven by the swift progress in artificial intelligence techniques. Considering
the detection and recognition processes, detectors can be broadly categorized into two main
types: two-stage and one-stage detectors. Classical examples of two-stages include the Faster
R-CNN [5] and Cascade R-CNN [15], while the SSD [16] and the YOLO [7] series exemplify
one-stages algorithms. Two-stage detection algorithms handle the object’s classification
and predicted bounding boxes’ regression as separate steps, whereas one-stage detectors
execute these tasks simultaneously, offering higher efficiency and lower computational
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requirements. The architecture of an object detector generally comprises three key compo-
nents: the Backbone network for capturing features, the Neck for fusing features, and the
Head for managing classification and regression tasks. For instance, in the Faster R-CNN,
the residual neural network (ResNet) [17] and the visual geometry group (VGG) [18] net-
work are usually used as backbone networks for initial feature extraction. Faster R-CNN
then utilizes the region proposal network (RPN) to generate region of interest (ROI) propos-
als using predefined bounding boxes or anchors. These feature maps are resized, classified,
and normalized, and detection is ultimately performed via the NMS operation. Despite
their high detection accuracy, two-stage detectors are burdened with significant compu-
tational overhead and operation latency, which can hinder their applications in scenarios
requiring immediate responsiveness. The training process demands substantial memory,
especially with high-resolution images, and the accuracy of region proposals from the
RPN directly impacts performance. These limitations have spurred the development of
faster, more efficient one-stage detectors such as YOLOv5 [19] and YOLOv8 [20]. The
neck structure bridges the backbone and head parts, refining and fusing features through
well-established pathways, including bottom-up and top-down approaches like the feature
pyramid network (FPN) [21] and path aggregation network (PANet) [22]. Yu et al. [23] in-
troduced the weighted bidirectional FPN (BiFPN) [24] into the YOLOv5 model, enhancing
feature fusion and effectively addressing the problem of varying ship scales in synthetic
aperture radar (SAR) datasets. In addition, deformable ConvNets v2 [12] introduced de-
formable operations to convolutional neural networks, including deformable ROI pooling
and deformable receptive fields, to better adapt to irregular object shapes and poses. These
advancements have significantly boosted capabilities in domains like object localization
and semantic segmentation.

2.2. Object Detection in UAV Images

When developing DL-based object detection approaches tailored for UAV scenarios,
traditional computer vision techniques are predominantly utilized. However, small UAV
platforms and specific imaging conditions present unique challenges, including diverse
perspectives, complex backgrounds, varying scales and orientations, and difficulties in
detecting small objects. Researchers have focused on addressing these challenges through
sub-tasks such as static or dynamic object detection, detection in images or videos, and
single or multiple object. Due to varying altitudes and sizes of objects on the ground in UAV
imagery, some approaches have tackled scale diversity by employing multi-scale features,
as seen in [16,25,26]. Others utilized dilated or deformable convolution kernels to handle
this issue, such as those described in [27–29]. The flight altitude of drones inevitably results
in diverse scales, small target sizes, and dense object arrangements, limiting the extractable
feature information. Various approaches have emerged to optimize small object detection,
encompassing the Cascade network [28], FSSSD [30], UAV-YOLO [31], depthwise-separable
attention-guided network (DAGN) [32], and HRDNet [33]. In the realm of UAV remote
sensing, achieving real-time processing and the interpretation of high-quality images is
crucial. YOLO-based models generally meet the needs of detecting objects immediately.
SlimYOLOv3 [34] is a streamlined version of YOLOv3 that achieves real-time object detection
by optimizing the trade-off among parameters, memory consumption, and inference speed.
Furthermore, an enhanced YOLOv8-based UAV object detection method proposed by Wang
et al. [35], introducing a small target detection structure (STC) to enable the integration of
deep and shallow features and obtaining better semantic capture and detection accuracy.

3. Proposed Method
3.1. Overall Framework

Figure 1 illustrates the framework of the MCG-RTDETR algorithm proposed in this
study. Our approach builds upon the RT-DETR, one of cutting-edge end-to-end object
detectors recognized for balancing speed and accuracy in various tasks. We selected the RT-
DETR-r18 as the baseline to develop our network. Additionally, there are several versions
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of the RT-DETR model, including the RT-DETR-r34, RT-DETR-r50, and RT-DETR-x. As
depicted in Figure 1, the architecture comprises a backbone part, an efficient hybrid encoder,
a decoder, and prediction heads.

Figure 1. The architecture of the proposed MCG-RTDETR.

Firstly, the backbone network captures key information from input UAV images, pro-
ducing multi-scale feature maps from the last four stages {P2, P3, P4, P5}. Secondly, these
feature maps are fused through the efficient hybrid encoder that combines intra-scale feature
interaction with cross-scale feature fusion modules. Subsequently, a fixed number of image
features is selected by the IoU-aware query selection mechanism to act as starting queries
for this mentioned decoder. Utilizing auxiliary heads, the decoder progressively refines
these queries, producing bounding boxes with confidence scores. The central innovations of
our approach include the cascaded group attention module and context-guided downsam-
pling, which are designed to enhance detection precision and maintain contextual integrity,
respectively. The innovative improvements will be detailed in the following sections.

3.2. Improvement of Feature Extractor

We employ the dual convolutional filter in the backbone instead the original opera-
tion. The DualConv integrates convolution kernels of 3 × 3 and 1 × 1, allowing for the
concurrent processing of input channels and efficient filter arrangement using grouped
convolution, as shown in Figure 2. In this setup, M represents the input channel count,
N denotes the output channels and convolution filters, and G represents the group count
within dual convolution. Next, we consider dividing the N filters into G groups, where
each group processes this complete feature map. The 3 × 3 and 1 × 1 convolutional kernels
concurrently handle M

G input channels, while the remaining (M − M
G ) channels exclusively

by a convolution kernel of 1 × 1. The summed results, as represented by the
⊕

sign in
Figure 2, integrate the outputs of these processes. The grouped architecture can enhance
the sparsity of the block diagonal, facilitating the structured learning of a highly correlated
filter without requiring a shifted arrangement. The DualConv method reduces parameters
within the backbone by utilizing grouped convolutions, fostering information exchange
between different layers. It preserves input data and enables optimal cross-channel trans-
mission using M times 1 × 1 convolution. Consequently, the channel shuffle operations are
unnecessary for constructing the DualConv filter.
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Figure 2. The structure of the dual convolutional filter. M is the input channel count, N denotes the
number of output channels and convolution filters, and G is the group count within dual convolution.

The inclusion of deformable convolution layers from DCNv2 [12] at the backbone’s
final stage enables better semantic representation and localization as shown in Figure 3.
Conventional convolution-based networks struggle with geometric transformations, as
their convolution and pooling layers are too rigid, which hinders their ability to perform
well in various viewpoint and object sizes from drone images. To enhance the adaptability
of extracted features, we incorporated a deformable convolution layer into ResNet18, as
it dynamically adjusts the receptive field. The original convolutional kernel has a regular
rectangular shape, and the deformable convolutional kernel adds offset to each sample
point to make an irregular arrangement. The offsets are generated by applying another
convolutional layer to the consistent input map.

Figure 3. The structure of the 3 × 3 deformable convolution.

3.3. Improvement of Efficient Hybrid Encoder

In this proposed MCG-RTDETR, P2, P3, P4, and P5 from the backbone part are fed
into the modified encoder. According to the [10], the attention-based intra-scale feature
interaction (AIFI) and CNN-based cross-scale feature fusion (CCFF) are two essential blocks
of the original encoder. AIFI employs a multi-head attention structure [36], which increases
computational complexity and model parameters, potentially degrading performance. To
address this, we integrated a cascaded group attention module (CGAM) instead of an AIFI
module, and we applied it to P5. The CGAM is a pivotal component to focus on relevant
feature regions while filtering out irrelevant background noise, which is particularly benefi-
cial for UAV imagery, where objects are often small and located in cluttered environments.
The CGAM dynamically adjusts weights for feature maps by evaluating the relevance of
various locations in the input images, thereby enhancing the model’s understand of image
features and improving detection performance [37]. In the CGAM, the input image is
segmented into groups, with each potentially encapsulating distinct semantic information
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and neighboring pixels. The input sequence first undergoes linear mappings to generate
queries (Q), keys (K), and values (V). The CGAM applies grouped attention and computes
attention weights within every set using Q, K, and V to produce the group’s attention
output. This process can be cascaded by concatenating or weight summing the outputs
from multiple groups. The cascaded outputs are further linearly transformed to yield the
final output of the CGAM. This progressive focusing process enhances features’ refinement
across various levels, thereby boosting the model’s capability to perceive and accurately
depict features, as illustrated in Figure 4. Moreover, we proposed a context-guided feature
fusion (CGFF) module as an extension of the CCFF fusion block, replacing traditional
downsampling with context-guided downsampling to preserve the contextual information
of targets. The original RT-DETR uses a 3 × 3 convolution operation with a stride of 2,
followed by batch normalization (BN) and a sigmoid linear unit activation function. The
CGFF block effectively harmonizes the incorporation of global contextual information with
local details. The context-guided downsampling block is another essential innovation in
our approach and preserves critical contextual information, enabling the model to maintain
a high level of detection accuracy even in the presence of scale variations and dense object
scenes. The block comprises four main components, as shown in Figure 5: one local feature
extractor, one surrounding feature extractor, one joint feature extractor, and one global
feature extractor. Among these, the local feature extractor employs 3 × 3 convolution layer
to capture local features from neighboring pixels. The surrounding context feature extractor
uses dilated convolution with a 3 × 3 kernel and a dilation rate of 2 to enlarge the receptive
field and capture contextual features. The joint feature extractor concatenates outputs from
the previous stages, applying a pair of BN and parametric rectified linear unit (PReLU)
operations. At the end of this module, there is a global feature extractor comprising a
global average pooling layer with two fully connected layers, focusing on both spatial and
channel aspects.

Figure 4. Diagram of the cascaded group attention module.

Figure 5. Diagram of the context-guided downsampling block.
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The following formulas express the overall steps of the neck part of the proposed
MCG-RTDETR:

Q = K = V = Flatten(P5), (1)

F5 = Reshape(CGAM(Q, K, V)), (2)

Output = CGFF(P2, P3, P4, F5)), (3)

where CGAM represents the cascaded group attention module, and Reshape denotes the
operation of restoring flatten features to the identical shape as P5.

3.4. Predict Head

To tackle the difficulties presented by diversity scales and dense or complex scenes,
we optimized the detection head by adjusting output layers suitable for small objects and
tweaking relevant parameters, as depicted in Figure 6. Compared to the basic detection head,
the P2 detection head adds a head for small target detecting. Combining the advantages
of both the original head and P2 head of the RT-DETR method, we devised our detection
head to better integrate high-resolution and low-level feature maps, resulting in improved
sensitivity to targets, as shown in the Figure 6c. We effectively captured the multi-scale
attributes of the objects through the combination of these feature maps with different scales
from the previous extractor and utilizing semantic information.

Figure 6. The diagram of prediction heads.

Our goal in modifying the prediction head is to enhance the precision and resilience
of detecting targets. This approach has demonstrated its effectiveness in boosting detection
performance, enabling the model to perceive objects spanning various scales, categories,
and shapes.

3.5. IoU-Aware Query Selection

In detection task, objects or targets are localized by predicting bounding boxes. The
intersection over union (IoU) measures the ratio of the intersection area to the union area
between the ground truth and the predicted bounding boxes [8], and it can be calculated
as follows:
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IoU =

∣∣∣∣B ∩ Bgt

B ∪ Bgt

∣∣∣∣, (4)

where B and Bgt are the predicted and the ground truth bounding boxes, respectively.
The IoU-aware query selection mechanism involves training the model to assign

low classification scores to features with low IoU values and high classification scores to
features with high IoU values [10]. Consequently, these predicted bounding boxes that
correspond to the encoder features, as determined by the model based on classification
scores, exhibit both high IoU and classification scores. The incorporation of the IoU score
into the classification branch’s objective function ensures that both the classification and
localization of positive samples are consistent. We redefine the detector’s optimization
function as follows:

L(ŷ, y) = Lbbox(b̂, b) + Lcls(ĉ, b̂, y, b) = Lbbox(b̂, b) + Lcls(ĉ, c, IoU), (5)

where ŷ and y represent the predicted and ground truth, respectively. Specifically, ŷ = {ĉ, b̂},
and y = {c, b}, where c and b denote the categories and bounding boxes.

4. Experiments and Results
4.1. Dataset and Implementation Details

The VisDrone2019 dataset is an authoritative resource in the international drone vi-
sion community, and it features diverse multi-scene and multi-task shooting captured by
various drones across 14 cities in China, environments (urban and rural), sparse or dense
scenes, weather conditions (cloudy and sunny), and lighting conditions (day and night).
The dataset contains 10 classes, including pedestrians, people, bicycles, cars, vans, trucks,
tricycles, awning tricycles, buses, and motors [14]. For our experiments, we partitioned the
images into three sets: a training set with 6471 samples, a validation set with 548 samples,
and a test set with 1610 samples, following the original division protocol within the Vis-
Drone 2019 challenge [14]. We considered multiple IoU thresholds by using the COCO
metrics [38] to evaluate at diverse levels of positioning accuracy. Illustrative samples from
the VisDrone2019 dataset are depicted in Figure 7.

Figure 7. Illustrative samples of the VisDrone2019 dataset.

Our proposed MCG-RTDETR was implemented on the Pytorch 2.1.0 platform. During
both the training and inference phases, the size of the inputs was fixed as 640 × 640. The
training epoch was set to 300 using the Adam with decoupled weight decay (AdamW)
optimizer, with a weight decay of 0.0001 and momentum of 0.9. The batch size remained
constant at four, and the initial learning rate was 0.0001. Each experimental trial was
performed using an NVIDIA RTX 4080 graphics processing unit (GPU). In addition, the
state-of-the-art methods were trained and validated under the same settings as each original
paper using MMDetection [39].
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4.2. Evaluation Metrics

The precision, recall, and mean average precision (mAP) can gauge the performance
of detectors. Quantitatively assessing the effectiveness of algorithms involves using the
frames per second (FPS) rate to evaluate its speed. Precision quantifies the proportion of
correctly identified positive among all samples predicted as positive. Meanwhile, recall
measures the ratio of actual number of positive samples in the predict sample to the number
of samples predicted. Here are the definitions of precision and recall:

Precision =
TP

TP + FP
, (6)

Recall =
TP

TP + FN
, (7)

where TP represents the detector correctly detecting annotated objects, FP represents the
detector incorrectly predicting background regions as annotated object, and FN represents
the detector incorrectly predicting annotated as background regions.

The average precision quantifies the model’s accuracy in correctly detecting targets by
averaging across various confidence thresholds. The mAP offer a holistic evaluation of the
precision–recall trade-off by averaging the AP scores across all classes. The definition of AP is
given as follows:

AP =
∫ 1

0
P(R)dR, (8)

Here is the definition of the mAP:

mAP =
1
N

N

∑
n=1

APn, (9)

where N denotes the categories number, and APn denotes the AP of class n.
The FPS is given by

FPS =
s
T

, (10)

where s is the count of samples, and T is the required processing time.

4.3. Ablation Experiments

The ablation experiments evaluated the MCG-RTDETR framework on the VisDrone2019
dataset, with RT-DETR-r18 serving as the baseline network. Several modifications were
implemented to enhance the model’s effectiveness. Backbone improvements: The original
BasicBlock in the backbone part was replaced with the DualConv (BasicBlock with dual
convolution filter), and deformable convolution was used to enhance feature representation.
Neck modification: The cascaded group attention module (CGAM) was utilized in place
of the AIFI module in the latest stage of the backbone. And the neck part was further
modified with the introduction of the the context-guided downsampling(CGD) replacing
the traditional convolution downsampling operation. Redesigned prediction head: The
prediction head was redesigned as P3 to bolster the target perception across diverse scales,
complex scenes, shapes, and categories by comparing with the original head and P2.

Tables 1 and 2 present detailed performance metrics, showcasing improvements across
different model configurations. Notably, the outcomes highlight that every modification led
to ameliorated evaluation metrics. The baseline RT-DETR-r18 achieved 25.0% AP, while the
proposed MCG-RTDETR configuration (RT-DETR-DualConv-DeConv-CGD-P3-CGAM)
reached 29.7% AP, demonstrating systematic improvements through each enhancement
stage. According to the COCO metric evaluation criteria, the proposed MCG-RTDETR
showed marked improvements across the AP50 (58.2%), AP75 (26.3%), and AP for small
objects (26.2%), medium objects (51.0%), and large objects (73.5%). The baseline RT-DETR-
r18 achieved 34.4% AR100, while ours reached 39.2% AR100, indicating enhanced recall
capabilities. Our method improved the AR across AR1 (3.7%), AR10 (21.7%), and AR for
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small (36.3%), medium (59.4%), and large objects (80.4%). For instance, the overall AP
improved by 4.7% and the AR100 by 4.8%. Compared to the baseline, the APs increased
by 4.5% and the ARs increased by 4.8% in the MCG-RTDETR approach. These changes
particularly enhanced the capabilities to identify small and complex targets in UAV images.
A 6.8% increase in the APl and a 7.8% increase in the ARl highlight detection improvements
in large objects. By enhancing the backbone, feature extraction modules, fusion method,
and prediction heads, the MCG-RTDETR approach significantly boosted the AP and AR
metrics on the VisDrone2019 dataset, proving its effectiveness in real scenarios. In
addition, Tables 1 and 2 list the giga floating point operations per second (GFLOPs) and the
number of model parameters (M) of different methods, which help to better understand the
contribution of each module. We found that DualConv played a significant role in reducing
the computational complexity.

Table 1. Performance comparison on VisDrone2019 dataset according to average precision (%).

Methods AP AP50 AP75 APs APm APl GFLOPs

RT-DETR-r18 25.0 52.4 20.2 21.7 46.1 66.7 57.0
RT-DETR-DualConv 24.8 52.4 19.7 21.8 44.8 69.5 47.3
RT-DETR-DualConv-CGD 24.6 51.5 19.8 21.2 46.0 70.6 52.1
RT-DETR-DualConv-P2 27.7 55.1 23.9 24.5 47.9 64.5 68.6
RT-DETR-DualConv-CGD-P2 28.1 55.7 24.4 24.9 48.7 69.5 75.1
RT-DETR-DualConv-CGD-P3 28.9 57.1 25.3 25.7 49.3 69.0 90.8
RT-DETR-DualConv-DeConv-CGD-P2 28.0 55.5 24.4 24.7 48.0 66.2 73.9
RT-DETR-DualConv-DeConv-CGD-P2-CGAM 28.8 57.1 25.0 25.3 50.4 68.3 74.0
RT-DETR-DualConv-DeConv-CGD-P3 29.1 57.5 25.4 25.8 49.8 70.3 89.6
RT-DETR-DualConv-DeConv-CGD-P3-CGAM 29.7 58.2 26.3 26.2 51.0 73.5 89.7

Table 2. Performance comparison on VisDrone2019 dataset according to average recall (%).

Methods AR1 AR10 AR100 ARs ARm ARl Params

RT-DETR-r18 3.5 19.4 34.4 31.5 54.5 72.6 19.88
RT-DETR-DualConv 3.4 19.2 34.4 31.6 53.5 77.8 15.88
RT-DETR-DualConv-CGD 3.5 19.3 33.9 31.0 54.4 78.3 18.33
RT-DETR-DualConv-P2 3.7 20.7 37.9 35.2 56.3 72.6 14.60
RT-DETR-DualConv-CGD-P2 3.6 20.9 38.2 35.5 56.9 77.4 17.20
RT-DETR-DualConv-CGD-P3 3.7 21.4 38.8 36.0 57.7 75.7 19.55
RT-DETR-DualConv-DeConv-CGD-P2 3.6 20.8 38.2 35.7 55.8 73.5 20.46
RT-DETR-DualConv-DeConv-CGD-P2-CGAM 3.6 21.1 39.1 36.3 58.8 73.9 20.29
RT-DETR-DualConv-DeConv-CGD-P3 3.7 21.5 38.6 35.8 58.0 77.0 22.81
RT-DETR-DualConv-DeConv-CGD-P3-CGAM 3.7 21.7 39.2 36.3 59.4 80.4 22.64

4.4. Comparisons of Performance

The capability of our MCG-RTDETR was compared with several state-of-the-art ob-
ject detectors on the VisDrone2019 dataset. Table 3 lists the qualitative results of the
MCG-RTDETR with Faster R-CNN [5], RetinaNet [6], Cascade R-CNN [15], GFL [40],
ATSS-dyhead [41,42], TOOD [43], RTMDET-tiny [44], YOLOX-tiny [45], YOLOv5 [19],
YOLOv8 [20], RT-DETR-r18 [10], and RT-DETR-r50 [10]. As shown in Table 3, the MCG-
RTDETR achieved the highest AP (29.7%) among all comparison models, significantly
outperforming the baseline RT-DETR by 4.7% and the next best model, TOOD (26.3%), by
3.4%. This demonstrates the effectiveness of our enhancements in improving the overall
detection accuracy. The MCG-RTDETR showed substantial improvements in the AP50
(58.2%) and AP75 (26.3%) compared to the baseline RT-DETR-r18, with increases of 5.8%
and 6.1%, respectively. These gains indicate better precision at higher IoU thresholds,
reflecting improved localization accuracy. The substantial increase in AP50 highlights the
model’s robust efficiency in correct target detection with a 50% IoU threshold.
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Table 3. Comparison with state-of-the-art models on the VisDrone2019 dataset.

Methods AP AP50 AP75 APs APm APl GFLOPs Params(M) FPS(s)

Faster R-CNN [5] 24.3 39.6 25.9 15.4 36.4 45.0 208 41.39 38.2

RetinaNet [6] 17.3 29.1 17.9 8.1 29.4 35.2 210 36.52 36.1

Cascade R-CNN [15] 25.1 39.8 26.7 15.7 37.6 46.3 236 69.29 13.7

GFL [40] 24.7 39.8 25.6 15.0 37.1 47.4 206 32.28 36.7

ATSS-dyhead [41,42] 26.3 41.5 27.7 16.2 40.1 55.7 110 38.91 24.7

TOOD [43] 26.3 41.9 27.5 16.8 38.5 49.0 199 32.04 34.7

RTMDET-tiny [44] 19.9 33.2 20.2 10.0 31.7 42.9 8.03 4.88 90.5

YOLOX-tiny [45] 18.9 34.5 18.3 11.9 27.7 29.6 7.58 5.04 235.7

YOLOv5 [19] 19.1 32.9 19.0 9.9 30.4 38.6 7.1 2.50 235.5

YOLOv8 [20] 19.7 33.7 19.6 10.3 31.1 38.7 8.1 3.01 223.0

RT-DETR-r18 [10] 25.0 52.4 20.2 21.7 46.1 66.7 57.0 19.88 125.3

RT-DETR-r50 [10] 25.6 54.6 19.7 22.6 45.5 67.0 129.6 41.97 75.3

MCG-RTDETR 29.7 58.2 26.3 26.2 51.0 73.5 89.7 22.64 84.1

The MCG-RTDETR excelled across all object scales, with significant improvements: an
APs of 26.2%, which is 4.5 percentage points higher than RT-DETR-r18; an APm of 51.0%,
showing an improvement of 4.9 percentage points; and an APl of 73.5%, marking an increase
of 6.8 percentage points. These improvements demonstrate the MCG-RTDETR’s enhanced
capability to detect objects of varying sizes, especially large objects, where it showed the
most significant gain. Moreover, MCG-RTDETR balanced the performance and efficiency
well. The GFLOPs of ours came out to 89.7 M, which is higher than some lightweight
models but lower than more computationally intensive models like the Cascade R-CNN
(236 GFLOPs). This indicates that a moderate computational overhead for the performance
was achieved. And the parameters count came out to 22.64 M, which is a moderate
model size that supports efficient training and deployment. The FPS came out to 84.1,
providing a good trade-off between accuracy and speed, rendering it well-suited in real-
time scenarios. It offers a competitive inference speed compared to other high-performance
models, ensuring that it can be used effectively in practical scenarios. The RT-DETR-r50
and RT-DETR-r18 yielded lower AP scores (25.6% and 25.0%, respectively) compared to
the MCG-RTDETR, demonstrating that the proposed enhancements significantly boost
detection performance. The improvements in the AP, AP50, and AP75 for the MCG-RTDETR
indicate that our modifications to the backbone, feature extraction modules, and prediction
heads contributed to superior detection capabilities.

Our study on the VisDrone2019 dataset includes both quantitative metrics and qualita-
tive assessments, enriching our analysis with visual samples. Figure 8 illustrates exemplary
results visualizing the detection capability of ours, MCG-RTDETR, alongside these state-of-
the-art detectors. These comparisons highlight MCG-RTDETR’s effectiveness in challenging
scenarios such as scenes with occlusion and complex environmental factors, vertical shoot-
ing angle during daylight, cloudy with intricate background, very small targets, low-light
and night scenes, and dynamic objects like vehicles at night (labeled (a–f) in Figure 8). To
accommodate the detail and clarity required, these images are presented across multiple
pages. The first column is the name of each method, including Ground Truth, Faster R-
CNN [5], RetinaNet [6], Cascade R-CNN [15], GFL [40], ATSS-dyhead [41,42], TOOD [43],
RTMDET-tiny [44], YOLOX-tiny [45], YOLOv5 [19], YOLOv8 [20], RT-DETR-r18 [10], RT-
DETR-r50 [10], and our proposed MCG-RTDETR.
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RTMDET-tiny

YOLOX-tiny

YOLOv5

YOLOv8

RT-DETR-r18

RT-DETR-r50

MCG-RTDETR

Figure 8. Visible object detection results of the proposed MCG-RTDETR and some state-of-the-art
detectors on complex detection scenes of VisDrone2019 dataset. (a) depicts scenes with occlusion
and complex environmental factors, (b) depicts vertical shooting angle during daylight, (c) depicts
cloudy with intricate background. (d) depicts very small targets, (e) depicts low-light and night scene,
(f) depicts dynamic objects like vehicles at night.
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Across these diverse conditions, the MCG-RTDETR exhibited robust performance.
Unlike baseline YOLO-based models and the original RT-DETR, which prioritize speed
but may falter in accuracy under adverse conditions, the MCG-RTDETR excelled in both
detection accuracy and efficiency. Its ability to accurately recognize and localize targets of
different sizes, regardless of environmental challenges, underscores its practical applica-
bility for real-time deployment. The experimental results underscore the MCG-RTDETR’s
superiority, validating its effectiveness through rigorous quantitative metrics and quali-
tative evaluations. This approach contributes significantly to advancing object detection
technology, providing reliable solutions for complex real-world scenarios.

5. Discussion

The experimental findings in Section 4 validate that our MCG-RTDETR model substantially
improves both the efficiency and precision of identifying objects in UAV imagery. Ablation
experiments confirm the effectiveness of these enhanced modules, which include the dual con-
volution module, deformable convolution module, cascaded guided attention module (CGAM),
and the context-guided feature fusion (CGFF) structure with context guided downsampling.

Integrating the dual convolution and deformable convolution modules into the back-
bone for feature extraction reduces computational costs and the parameter quantity while
increasing detection accuracy. This improvement is due to the capability of grouped and
deformable convolutions to extract features by prioritizing global information regions
and attenuating unrelated background details. Moreover, a CGAM strengthens feature
representation in feature maps through a group attention mechanism. Within the neck, a
CGFF structure boosts cross-scale feature fusion and representation abilities effectively. The
context-guided downsampling operation captures local details and global dependencies,
allowing the structure to concentrate more on targets while minimizing interference from
the background. Furthermore, we adjusted the detection head, which reduced the com-
putational complexity and parameter count. Ablation experiments show that integrating
the CGFF with P3 outperformed the P2 prediction head, highlighting the complementary
nature of these approaches.

Comprehensive analysis of the MCG-RTDETR reveals improved object detection capa-
bilities even under challenging scenarios with various weather conditions and complex
backgrounds. Our proposed method, MCG-RTDETR, stands out across both the quantita-
tive metrics and qualitative evaluations with high accuracy and recall values. Comparisons
with other famous object detectors, including the Faster R-CNN, RetinaNet, Cascade R-CNN,
GFL, ATSS-dyhead, TOOD, RTMDET-tiny, YOLOX-tiny, YOLOv5, YOLOv8, and original RT-
DETR with a r18 and r50 backbone network, show that MCG-RTDETR excels in both precision
and speed efficiency. Our model’s resilience in addressing challenges like object occlusion, low
visibility, and dynamic targets has been demonstrated through visual analysis across different
environmental conditions. In future applications, the proposed algorithm is anticipated to offer
practicality and efficiency in detecting small targets in complex environments for UAV-based
tasks. This enhancement has potential benefits for military reconnaissance, ecological protection,
natural disaster monitoring, and rescue operations.

6. Conclusions

In this study, we present the MCG-RTDETR method, which is RT-DETR-based and
augmented with multi-convolution (dual convolution and deformable convolution mod-
ules), a cascaded group attention module, a context-guided feature fusion structure with
context-guided downsampling operation, and a more flexible prediction head for precise
object detection in UAV images. Following an extensive analysis of current state-of-the-art
algorithms, our method was shown to effectively learn joint features from local details
and surrounding context, enhancing global feature connection and feature fusion. The
dual convolution and deformable convolution resulted in a reduction in computational
costs and memory usage compared to the original RT-DETR method, meeting requirements
for real-time detection. In comparisons with benchmarks like Faster R-CNN, RetinaNet,
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Cascade R-CNN, and some YOLO series (YOLOX, YOLOv5, YOLOv8), the MCG-RTDETR
consistently delivered competitive results in both quantitative metrics and qualitative
assessments on the VisDrone2019 dataset. Therefore, our approach serves as a valuable
theoretical reference for addressing similar difficulties of object detection in UAV imagery.
Experimental outcomes demonstrate our proposed method’s scalability and robust perfor-
mance, with significant potential for practical applications such as smart city surveillance
and autonomous driving.
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