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Abstract: Climate change increases the vulnerability of relict forests. To address this problem, regional
Forest Services require silvicultural and conservation actions to designate specific forest management
alternatives. In this context, the main objective of this study was to develop a methodology to map
complex Abies pinsapo forest typologies using multispectral and low-density airborne LiDAR data
and machine learning. Stand density, species composition and cover were used to identify seven
forest typologies. Random forest resulted as the more accurate model (OA = 0.62; Kappa = 0.43) to
classify those types based on multispectral and LiDAR data, although showing a moderate model
performance. Classification performance showed great differences between forest types with better
results for the uneven-aged stands compared to the even-aged and two-aged stands. The developed
typology was applied to supply local forest managers with more accurate forest maps that can
be used to improve forest management plans. The typology proposed is easy to apply in forest
management practices since it only uses as input the diameter at breast height, tree density and
specific composition. The study demonstrated the potential of low-density LiDAR data combined
with spectral information from high-resolution orthophotos to predict the structural characteristics of
complex forest typologies.

Keywords: climate change adaptation; forest management; forest typology; remote sensing;
machine learning

1. Introduction

Forest ecosystems provide critical and diverse productive and ecosystem services to
human society [1] such as wood, carbon storage and biodiversity [2,3]. However, the future
of forests is uncertain as a consequence of different factors such as illegal logging and, in
particular, climate change [4] due to increasing temperatures and extreme droughts in many
regions of the world [5], but especially in the Mediterranean regions [6]. Mediterranean
forest ecosystems face substantial climate risks that could trigger an increase in areas
affected by large fires and forest dieback events [7,8]. Mediterranean firs (Abies species)
constitute a relevant example of an endangered forest ecosystem highly vulnerable to
climate risks [9]. Abies pinsapo Boiss. is a climate-relict fir species, endemic to the south-west
of the Iberian Peninsula [10]. This species occupies a rather unique and limited ecological
habitat leading to higher extinction risk [11], and it is included in the International Union
for Conservation of Nature (IUCN) Red List of Threatened Species as an endangered
species [12]. In recent decades, its distribution range has been under climatic risks in
some areas, with climate change one of the main threats to its conservation [13–15]. For

Remote Sens. 2024, 16, 3182. https://doi.org/10.3390/rs16173182 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs16173182
https://doi.org/10.3390/rs16173182
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0001-6050-4284
https://orcid.org/0000-0001-9764-8927
https://orcid.org/0000-0003-3470-8640
https://doi.org/10.3390/rs16173182
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs16173182?type=check_update&version=2


Remote Sens. 2024, 16, 3182 2 of 14

example, in the protected areas of Sierra de las Nieves-Grazalema-Los Reales de Sierra
Bermeja (hereafter SN, SG and SB, respectively), pinsapo fir populations are declining [15].
Thus, there is an urgency to implement mitigation and adaptation measures that could
help pinsapo fir forests cope with the threats of climate change, habitat degradation and
invasive species [16].

In this sense, forest structure definitions (forest typologies) can assist in outlining
adaptation priority regions [17]. Description of forest typologies may include measures
of species composition, diversity, tree height, stem diameter, basal area, tree density and
the age class distributions and spatial distribution patterns of the component species in
the forest [18]. Their characterization is usually performed by direct in-field measurements
(traditional forest inventories) [19]. National and local forest inventories represent funda-
mental support for establishing forest management strategies due to their extent and the
large number of plots and variables that are sampled [20]. However, these forest inventories
are often limited in temporal scope and spatial scale.

In recent years, new approaches combining forest inventory field plots and remote
sensing data have emerged to improve forest characterization and mapping [21]. Advanced
remote sensing technologies provide data to support the subsequent development and pa-
rameterization of models for an even broader range of information needs. Several examples
can be found where field data and different sources of remote sensing were used to identify
forest typologies [17]. For instance, multispectral imagery has been successfully used
in forest type classification and mapping, commonly through supervised classifications
or decision rules [22]. However, measures of vertical forest structure, which define the
most important variables for predicting forest typologies, cannot be readily derived from
multispectral imagery. To overcome this limitation, methods have been sought to integrate
this information with other remote sensing data, particularly with LiDAR (Light Detection
and Ranging). LiDAR is an active remote sensing technology capable of measuring the
3D distribution of vegetation within forest canopies. For example, Aerial Laser Scanning
(ALS) data from the Spanish National Plan for Aerial Orthophotography (PNOA) have
yielded good results for monitoring attributes related to vertical and horizontal forest struc-
tures [23,24]. However, the ability to identity forest typologies with remote sensing data
is often limited due to physical constraints such as high canopy closure and the presence
of multiple vegetation layers. For this reason, although there is extensive literature con-
cerning the use of ALS data in forest science under different approaches and experimental
designs, there is a lack of studies that extend the use of ALS data to predict forest typologies
in complex environments (but see [17]). These issues call for new approaches based on
multisource remote sensing and advanced classification algorithms.

Motivated with the above limitations, we used pinsapo fir forests as study cases
to improve the applicability of relevant forest typologies based on remote sensing data.
Pinsapo fir forests exhibit complex structural forms, and they also show some affinity for
mixed and ecotonal forests, which results in horizontal and vertical heterogeneity [25] (see
Figure 1). Currently, several typologies have been proposed for this species according to
phytogeography [11,26–28], large chorological zones [10,29] and physiognomic aspects [30].
The lack of standardization of typologies for complex forest structures makes it difficult
to cross-reference map products and therefore to validate products and to monitor forest
stands for a long period. Also, the effectiveness of these typologies varies significantly
among methodologies and applications, leading to concerns about their general application
for both conservation and climate change adaptation objectives. These gaps often result
from a lack of data with enough temporal recurrence, as observed in studies such as [31].

Therefore, in this study, the main objective was to develop a forest typology for
pinsapo fir forests based on forest composition and structural attributes and mapping of
this typology using low-resolution LiDAR and multispectral data. The specific objectives
of this study were (i) to develop a forest typology classification based on traditional forest
inventory metrics and (ii) to use remote sensing data to spatialize the results at a large scale
and improve the applicability of the classification. Our approach considers species–area
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distribution and complex structures, and it aims to generate a map of existing pinsapo
fir forests while the identification of priority sites for conservation, restoration and legal
protection is currently lacking. This study serves as an application of a spatial robust remote
sensing-based approach to develop forest typologies of complex Mediterranean forests.

Remote Sens. 2024, 16, 3182 3 of 14 
 

 

inventory metrics and (ii) to use remote sensing data to spatialize the results at a large 
scale and improve the applicability of the classification. Our approach considers species–
area distribution and complex structures, and it aims to generate a map of existing 
pinsapo fir forests while the identification of priority sites for conservation, restoration 
and legal protection is currently lacking. This study serves as an application of a spatial 
robust remote sensing-based approach to develop forest typologies of complex Mediter-
ranean forests. 

 
Figure 1. Location of the study area and sampled plots (n = 694; red marks on bottom inserts). A 
map showing the natural distribution of Abies pinsapo Boiss. in Andalusia (upper insets) with red 
polygons (upper right inset) indicating the study area at (a) Sierra de las Nieves; (b) Sierra de Grazal-
ema; and (c) Los Reales de Sierra Bermeja. Photographs correspond to a mixed stand of A. pinsapo 
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in SB (c). Graphs were generated by QGIS 3.26.3 (https://www.qgis.org, accessed on 19 August 2024) 
with the global vector data from the GADM database (https://gadm.org, accessed on 19 August 
2024). 
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Figure 1. Location of the study area and sampled plots (n = 694; red marks on bottom inserts). A map
showing the natural distribution of Abies pinsapo Boiss. in Andalusia (upper insets) with red polygons
(upper right inset) indicating the study area at (a) Sierra de las Nieves; (b) Sierra de Grazalema; and
(c) Los Reales de Sierra Bermeja. Photographs correspond to a mixed stand of A. pinsapo with Pinus
species in SN (a); pure stand of A. pinsapo in SG (b); and pinsapo fir forests on peridotites in SB (c).
Graphs were generated by QGIS 3.26.3 (https://www.qgis.org, accessed on 19 August 2024) with the
global vector data from the GADM database (https://gadm.org, accessed on 19 August 2024).

2. Materials and Methods
2.1. Study Area

The study area is located in the southern part of Andalusia (Figure 1) within the
natural distribution of Abies pinsapo in the Iberian Peninsula according to the Spanish Forest
Map [32]. The pinsapo fir forests occur in three locations (SN, SG and SB), covering a total
area of 4973.9 ha. The climate in the study area is Mediterranean, with a summer drought
period that extends into the fall. Most of the precipitation occurs in winter and spring,
with a mean annual rainfall between 600 and 1600 mm. The mean annual temperature
ranges from 8 ◦C to 18 ◦C. The summer months are mild with an average maximum daily
temperature of the warmest month (August) between 29 ◦C and 33 ◦C, with infrequent
summer precipitation from thunderstorms. The soils are composed of limestone in SG and
SN and peridotites in SB [33].

2.2. Methodological Framework

Our study used several datasets and required the development of remote sensing
predictors and data analysis procedures. A flowchart outlining the steps and relationships
of each process is provided in Figure 2.

https://www.qgis.org
https://gadm.org
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Figure 2. Main workflow diagram for large-scale mapping of pinsapo fir forest typologies. Response
variables were extracted from the vegetation inventory data.

2.3. Proposed Typology of the Pinsapo Fir Forests

The proposed typology was elaborated partially based on previous proposals that
have been made for the species [11,26,28,30] and other silvicultural typologies proposed
for Abies alba Mill. forests [31]. The typification of the pinsapo fir forests aims to describe
forest types that (i) can be classified in a simple way on the basis of integrating previous
cartography and open remote sensing data; (ii) enable easy field interpretation; (iii) have an
ability for current and future silvicultural conditions and; (iv) are useful as decision-support
tools in forest management plans. Based on these criteria, eleven different types of pinsapo
fir forests were identified (Table 1).

Table 1. Summary table of the proposed forest typology for pinsapo fir forests.

Class Type Subtype Definition

I

0 Isolated trees of A. pinsapo

1 Open forests of A. pinsapo and isolated stands

2 Recent reforestations

II 0

a Even-aged pure stands of A. pinsapo

b Two-aged pure stands of A. pinsapo

c Uneven-aged pure stands of A. pinsapo

II 1

a Even-aged mixed stands with A. pinsapo

b Two-aged mixed stands with A. pinsapo

c Uneven-aged mixed stands with A. pinsapo

III

0
Stands of other species with dominance of A. pinsapo in the
stages of stand development * of pre-thicket and thicket.
(dbh < 7.5 cm).

1 Stands of other species with dominance of A. pinsapo in the stage
of stand development of polewood. (7.5 cm < dbh < 10 cm).

* Stage of stand development: each of the stages of development of a tree also apply to groups in which there is a
certain morphological and functional uniformity. The natural age classes established in Spanish forestry, in order,
are upgrowth, pre-thicket, thicket, low polewood, high polewood, low timber stage, middle timber stage and
high timber stage [34].
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To correctly classify pinsapo forest stands based on this forest typology, we developed
a robust hierarchical classification criterion based on forest inventory field plot information
(Figure 3). Specifically, we followed four main inventory metrics: (a) canopy cover, (b) pro-
portion of number of trees of pinsapo, (c) stage of stand development [34] and (d) age
class structure.
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of Abies pinsapo. Ntot: total number of trees. SSD: stage of stand development. Dbh: diameter at
breast height. * This type can only be identified through expert knowledge.

2.4. Data Collection
2.4.1. Field Data

The typology proposed was applicated on quantitative information supplied by local
forest inventories. A network of 694 circular plots was collated at the intersections of a
200 × 200 m UTM grid for Pinus spp. forests and 167 × 167 m for pinsapo fir forests with
radii of 13 m (Supplementary Material Table S1). On each plot, all trees with diameter at
breast height (dbh) > 2.5 cm were measured.

2.4.2. LiDAR Data

Airborne Laser Scanning (ALS) data were provided in .laz format, and each file com-
prised a square tile of 2 × 2 km (data are publicly available at: https://centrodedescargas.
cnig.es/CentroDescargas/, accessed on 15 May 2023). The study area was surveyed in
2020, with an average point density of 1.5 pulses m−2. The reference system employed
was the European Terrestrial Reference System 89 (ETRS89) and UTM coordinate system.
We assumed accurate georeferencing during postprocessing and carried out no further
co-registration.

2.4.3. Multispectral Information

We used orthophotos captured in 2020 by the National Plan of Aerial Orthophotogra-
phy (PNOA) of the Spanish National Geographic Institute (IGN) (data are publicly available
at: https://centrodedescargas.cnig.es/CentroDescargas/, accessed on 15 May 2023). The
four-band images (RGB + NIR) had a geometric resolution of 25 cm and a planimetric
RMSE ≤ 50 cm.

https://centrodedescargas.cnig.es/CentroDescargas/
https://centrodedescargas.cnig.es/CentroDescargas/
https://centrodedescargas.cnig.es/CentroDescargas/
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2.5. Forest Typology
2.5.1. Field Data Processing

In the first step, variables with a higher forest structural relevance were selected:
basal area (ba, m2 m−2), individual diameter at breast height (dbh, cm) and stand density
(N, trees ha−1). Then, all wood individuals of each plot were grouped according to the
stage of stand development (i.e., regeneration, sapling and adults). Next, the proportion of
trees of each species with respect to the total trees on the plot was calculated and related
to species composition for classification into pure and mixed stands. Based on these data,
each plot was assigned according to the forest typology criteria (Table 1, Figure 3).

2.5.2. LiDAR Data Processing

Once forest typologies were assigned for each plot according to field variables, predic-
tor variables based on remote sensing data were calculated at the plot scale. Two different
groups of variables were initially selected. First, variables reflecting stand vertical structures
based on their particular internal stratification were extracted from ALS data.

ALS data were processed using a combination of FUSION LDV 3.80 [35] and LAStools
v180520 software [36]. Raw ALS point clouds were converted into several intermediate
products: a DEM (Digital Elevation Model), normalized point clouds and a CHM (Canopy
Height Model). This was conducted by first cleaning the noise from the point clouds. ALS
points were classified as ground and non-ground (vegetation) returns using a morphologi-
cal filter. The metrics (e.g., mean, mode, standard deviation), interquartile distance (IQ) and
percentiles were then calculated from the height distribution of laser returns by employing
the lasheight tool. The CloudMetrics tool was used to derive a suite of ALS canopy metrics
(n = 47). A complete description of ALS-derived LiDAR metrics can be found in [35] and
the Supplementary Materials.

2.5.3. Spectral Data Processing

Second, predictive variables referring to stand species mixtures were obtained from
multispectral images. Visual bands (RGB; red, green and blue) and near-infrared (NIR)
were used to obtain these predictive variables (Table 2).

Table 2. Statistics generated from the spectral information for large-scale mapping of pinsapo fir
forest typologies.

Statistics

Arithmetic mean of the values
of n cells

Variance: mean of the squared differences of n cells with
respect to their arithmetic mean

Maximum: maximum value of n cells Coefficient of variation: relationship between the size of
the mean and the variability of the variable

Minimum: minimum value of n cells Interquartile range: difference between the third and
first quartile of a distribution

Standard deviation: square root of the
cell variance Sum: sum of the values of n cells

2.5.4. Model Variable Selection

Selected predictive variables were standardized and resampled to a common scale
with a mean equal to zero and variance equal to one, which eliminated the measurement
and different variability of the original variables [37]. Then, given the large number of
variables considered (Tables S1 and 2), selection of the variables was carried out by applying
the VSURF (Variable Selection Using Random Forests) algorithm [38]. This algorithm is
specially designed to obtain an importance ranking in databases with a high number of
variables. In the first step, irrelevant variables were eliminated from the dataset. In the next
step, response-related variables were removed for interpretation purposes, selecting the best
set of variables for prediction purposes in the last step. Finally, a collinearity analysis was
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carried out on the selected variables to reduce uncertainty in the models’ predictions. For
this, a variance inflation analysis (VIF) was applied [39]. All variables with a VIF value > 10
were eliminated [40]. In this way, the dimensionality was reduced, without significant loss
of information. The five variables selected were “Elev.P80” (80th percentile of elevation
values), “Elev.MAD.mode” (median absolute deviation of the mode of elevation values),
“Elev.variance” (dispersion or spread of elevation values), “Blue_stdev” (standard deviation
of blue band values) and “Blue_mean” (arithmetic mean of the blue band values).

2.5.5. Models Calibration and Validation

For the classification of pinsapo fir forest types, three different non-parametric classifi-
cation algorithms were used: Random Forest [41], Support Vector Machines (SVMs) [42]
and Neural Networks [43]. The use of these algorithms in remote sensing studies has
increased due to their ability to integrate different types of data [44]. To estimate the output
error of the algorithms used, two sets of available observations (sampled plots) were ran-
domly divided into a training set (70% of total observations) and validation data (remaining
30%). The model was fitted to the training set, and the fitted model was used to predict
the responses for the observations in the validation set. Finally, the degree of reliability of
the classification was evaluated for each of the three algorithms using a confusion matrix
including overall accuracy (OA) and Kappa Index [45]. The value of this indicator ranges
between 0 and 1, where 1 represents a perfect classification [46] (<0.2, poor; 0.21–0.40, weak;
0.41–0.60, moderate; 0.61–0.80, good; and 0.81–1.00, strong).

3. Results
3.1. Classification Models

The three algorithms used to classify pinsapo forest types showed similar accuracy
(Table 3). The overall hit rate showed a percentage of correct predictions of ≈62%. This
percentage of correct predictions was high, considering the elevated number of classes clas-
sified (7). However, the Random Forest classification algorithm showed the highest Kappa
Index (k = 0.43). This value indicates a sample of “moderate” classification agreement.

Table 3. Accuracy assessment obtained for the different classification models for large-scale mapping
of pinsapo fir forest typologies.

Model Overall Accuracy Kappa Error Rate

Random Forest 0.62 0.43 0.38

Support Vector Machines 0.62 0.26 0.38

Neural Network 0.61 0.29 0.39

Across forest types, the RF algorithm classified the uneven-aged stand typologies
(II0c and II1c) better but slightly underperformed to differentiate between even-aged and
two-aged stand types (Table 4). These were the most confusing types, with a higher number
of false positives and false negatives.

Table 4. Accuracy assessment for different pinsapo fir forest types for large-scale mapping of pinsapo
fir forest typologies (see Table 1 and Figure 3 for type description).

Type II0a II0b II0c II1a II1b II1c III1

Sensitivity 0.25 0 0.59 0.08 0 0.81 0.31

Specificity 0.99 1 0.79 0.99 1 0.52 0.79

Detection rate 0.05 0 0.20 0.05 0 0.41 0.48
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3.2. Variable Importance for Pinsapo Fir Forest Types Classification

From the predictors used in the classification, the LiDAR metrics “Elev.P80”,
“Elev.MAD.mode” and “Elev.variance” had the highest predictive power, followed by two
statistics calculated from the blue band of the PNOA aerial orthophotographs (Figure 4).
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3.3. Pinsapo FIR Forest Types Map

Forest types were maps for the whole distribution area of A. pinsapo using the Random
Forest classification algorithm. Table 5 shows the total and relative area occupied by each
silvicultural type at the SN, SG and SB locations. The type with the largest surface area
(3241 ha) was II1c (uneven-aged mixed stand of A. pinsapo). The second most represented
type was the II0c uneven-aged pure stand of A. pinsapo) with 1075 ha. Types II1a and
II0a (even-aged mixed and pure stands of A. pinsapo) had relatively large areas (858 and
552 ha, respectively), distributed mainly in SN. The type with the smallest presence was
III1 (stands of other species with dominance of A. pinsapo in the lower stratum).

Table 5. Absolute and relative areas of the proposed silvicultural typologies and their distribution in
the natural distribution area of A. pinsapo in Andalusia.

SN SG SB

ha % ha % ha %

II0a 539.11 12.85 - - - -

II0b 56.64 1.35 - - - -

II0c 758.95 18.09 265.24 42.60 38.85 25.54

II1a 696.44 16.60 16.99 2.73 0.14 0.09

II1b 4.19 0.01 0.17 0.03 - -

II1c 2143.85 51.10 318.32 51.12 107.58 70.75

III1 - - 21.92 3.52 5.51 3.62
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Figure 5 shows the product resulting from applying the typological key to all the
polygons with the presence of A. pinsapo in SG and SB.
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4. Discussion

In this study, a methodology for pinsapo fir forest typology is proposed as an example
of applying multisource remote sensing data to classify, on a large spatial scale, fragmented
and uneven Mediterranean forests with critical conservation concerns. First, we developed
a forest typology classification based on traditional forest inventory metrics. Second,
we used remote sensing data to spatialize the results on a large scale and improve the
applicability of the classification. Overall, the models using LiDAR and multispectral
information to predict forest typologies proved to be good indicators of forest typologies
but showed varied outcomes across the different typologies.

4.1. Model Performance Analysis

In our study, we selected the Random Forest (RF) algorithm approach to predict forest
typologies across the natural distribution area of the Abies pinsapo (≈4970 ha; Figure 1).
RF has been implemented in a wide range of analyses with remote sensing data in for-
est research [47]. The ability to handle non-linearity and to quantify the importance of
independent variables makes RF an effective algorithm [48]. However, comparative experi-
ments were performed first using the Support Vector Machine (SVM) and Neural Network
classifiers. These algorithms showed poorer results than RF in the accuracy tests for the
validation dataset (Table 3), which is consistent with previous studies [49].

The classification accuracy of forest types based on multisource remote sensing data
was moderate, and the overall accuracy was 62%. Among the classification results, uneven-



Remote Sens. 2024, 16, 3182 10 of 14

aged stands exhibited the best results in terms of sensitivity, specificity and detection rate,
while even-aged and two-aged stand types showed the lowest values. It can be noted
that the algorithm had a high recognition for the forest types with a complex vertical
stratification. On the other hand, inspection of the point cloud data revealed the presence
of large trees and gaps with variable sizes in even-aged and two-aged stand types, which
had a negative influence on the strength of the statistical relationship between ALS metrics
and forest types [50].

These results are partially explained by the selected predictors. After application of
the variable selection procedure (see Section 2.5.4), “Elev.P80”, “Elev.MAD.mode” and
“Elev.variance” from LiDAR data were the first features selected. These metrics described
different aspects of forest structures: “Elev.P80” provides a measure of the higher elevation
points in the dataset [51]; “Elev.MAD.mode” is associated with the homogeneity and
variability of the vegetation structure [52]; and “Elev.variance” is related to the variability
of tree heights within a forest stand [23]. The above-mentioned LiDAR metrics provide
a comprehensive description of the vertical distribution of the forest. However, many
of the LiDAR-derived metrics are strongly correlated and, therefore, the metrics selected
in all studies represent complementary aspects of the 3D structure of forest stands. In
our study, spectral information from aerial orthophotographs was also included, which
confirms a complementary effect of the spectral signal and 3D features. “Blue_stdev” and
“Blue_mean” were some of the selected variables. These variables described different
aspects of forest composition: “Blue_stdev” provides a measure of variability in the blue
band reflectance values, which can correlate with areas of high diversity, where different
species and plant structures contribute to a diverse reflectance pattern. These results are
similar to those obtained by the authors of [53], who found that the best individual image
band for tree species discrimination was the blue band. This fact can explain the high
detection rate (Table 4) of typologies that correspond to mixed stands (i.e., II1c and III1).
Due to the differences in spectral characteristics and biological characteristics between Abies
pinsapo and other mixed tree species, the inclusion of spectral data increases the accuracy
of forest typology.

4.2. Pinsapo Fir Forest Types Classification

The forest typology for pinsapo fir developed here considered traditional forest at-
tributes (i.e., dbh, tree density and species composition), making the typology an easy tool
to be applied when forest inventory data are available and, at the same time, easy to be
interpreted in the field. The forest type classification developed in this study was mostly
consistent with previous typologies developed for the species [27,30]. Specifically, our
typology increased the number of types compared with previous studies [30], in order to
cover all environmental and structural differences found on the whole distribution area
of the species in Andalusia. Across regions, we confirmed that the pinsapo fir forests of
SN and SG are different in terms of structure and specific composition (Supplementary
Material Tables S2 and S3), which coincides with the conclusions of other authors [10,27].

Stand delineation based on the proposed forest typology was used to develop specific
forest management measures per each type (e.g., targeting thinning planning to decrease
drought vulnerability or identify alternative plantation sites to promote recruitment) [54].
Therefore, the typology approach will be of great importance for the adaptation of pinsapo
fir forests to the climatic risks expected for the Mediterranean basin [6]. In recent decades,
the use of forest typologies has decreased, but this approach remains a reliable basis for
silviculture [54]. The rapidly growing development of geo-spatial techniques is a great
opportunity to improve the usability of forest typologies. The division of forests into
management units implies the need to compute present forest state information on that
scale. In this regard, forest typologies would benefit from using remote sensing data to
infer structural characteristics of forest stands and thus project information at larger scales.
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4.3. Pinsapo Fir Forest Map

Furthermore, the study demonstrated the potential of low-density ALS data combined
with multispectral information from high-resolution orthophotos to predict the structural
characteristics and composition of complex pinsapo fir forests. This finding is consistent
with existing experiences on the use of low-density ALS data to estimate growing attributes
in coniferous stands [17,55–57]. In view of the relevance of ALS methods in complex mix
forests, it would be interesting to maximize the utility of low-density national LiDAR data.
In fact, at this moment, several European countries offer national cover of open LiDAR
data, and in some cases (e.g., Spain) temporal series (e.g., twice in Spain). However, the
products obtained in the present work should be treated with caution. The results obtained
in the validation statistics for some of the proposed types were moderate (see Table 4).
Comparisons of the results obtained in this work with similar data from other studies are
limited because of the novelty of the method. The precision of the definition of typologies
in these cases is limited by two main reasons: (1) the lower number of observations of
these typologies in the study area (Supplementary Material Table S1), due to the limited
extension of pinsapo fir forests, and (2) the difficulty to discriminate between the stages of
stand development using remotely sensed data.

4.4. Limitations and Future Recommendations

While there are good conceptual and empirical arguments supporting our conclusions,
we acknowledge certain limitations and gaps in the data to effectively apply the proposed
typology. First, four of the eleven proposed silvicultural types were not represented in
the sampled plots and were therefore not reflected in the mapping. This does not mean
that these silvicultural types are not correctly defined, but that no current representation
exists. Second, due to the low density of ALS data, a major limitation of the proposed
methodology is the uncertainty in discriminating between even-aged and two-aged stand
types in areas where canopy tangency may exist, mainly in areas with a high fraction of
canopy cover. Third, no forest inventory data are available for this study in SB. Although
we strongly believe that pinsapo fir forests in SB have a similar structure to those in some
areas of SN, such data could increase the accuracy of classification models for this region.

Thus, five important improvements should be addressed in future versions of the
work: (1) incorporate further datasets for other distribution areas of Abies pinsapo (SB);
(2) implement sample plots for the forest types that have not been represented in the
present work; (3) increase the number of sampled plots of each forest type to increase
the performance of the classification models; (4) use high-density LiDAR point clouds;
(5) employ height- and intensity-based metrics derived from LiDAR data. In addition to
the combination of multispectral and LiDAR data, future work may explore the use of
multitemporal data available from middle-resolution imagery such as Landsat or Sentinel-2.
Finally, as new modeling approaches and datasets are developed, there will be a need to
re-analyze the existing data, with greater temporal and spatial resolutions.

5. Conclusions

We developed a novel methodology to map forest typologies across large scales
using both ALS and multispectral information. The study case of pinsapo fir forests
provided a relevant forest typology map at the stand scale suitable for operational forest
management and for landscape management. Abies pinsapo Boiss. grow in forest formations
structurally grouped in well-defined classes, fundamentally separated by the stages of
stand development and composition criteria. Forest typology enables reflecting processes of
forest vegetation dynamics on maps, producing excellent results in terms of systematizing.
Since the methods proposed are based on freely available remote sensing data and freely
accessible software, this methodology is transferable to other forest typologies and different
spatial scales.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs16173182/s1, Description of LiDAR metrics; Table S1: Number
of plots of each silvicultural type found in the sampled plots (n = 694); Table S2: Main structural char-
acteristics of the seven types of pinsapo fir forests found in the sampled plots; Table S3: Importance
values (%) of trees (dbh > 5 cm) found in sampled plots (n = 694) at pinsapo fir forests in SN and SG.
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