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Abstract: Artificial intelligence (AI) has made remarkable progress in recent years in remote sensing
applications, including environmental monitoring, crisis management, city planning, and agriculture.
However, the critical challenge in utilizing AI models in real-world remote sensing applications is
maintaining their robustness and reliability, particularly against adversarial attacks. In adversarial at-
tacks, attackers manipulate benign data to create a perturbation to mislead AI models into predicting
incorrect decisions, posing a catastrophic threat to the security of their applications, particularly in
crucial decision-making contexts. These attacks pose a significant threat to the integrity and compre-
hensiveness of AI models in remote sensing applications, as they can lead to inaccurate decisions with
substantial consequences. In this paper, we propose to develop an adversarial robustness technique
that will ensure the AI model’s accurate prediction in the presence of adversarial perturbation. In
this work, we address these challenges by developing a better adversarial training approach using
explainable AI method-guided features and data augmentation techniques to strengthen the AI model
prediction in remote sensing data against adversarial attacks. The proposed approach achieved the
best adversarial robustness against Project Gradient Descent (PGD) attacks in EuroSAT and AID
datasets and showed transferability of robustness against unseen attacks.

Keywords: deep learning; adversarial attack; adversarial robustness; explainable AI; model inter-
pretability; remote sensing; data augmentation

1. Introduction

In recent years, the integration of Artificial Intelligence (AI) and remote sensing has
been successfully applied across various fields, including environmental monitoring, disas-
ter management, building urban settlements, and farming [1,2]. Deep learning algorithms,
particularly deep convolutional neural networks, He et al. [3] have demonstrated significant
performance improvements over traditional methods [4]. Deep learning algorithm's ad-
vantages of these algorithms include direct usage of the feature vectors, rapid training and
testing times, and superior generalization capabilities compared to traditional classification
methods [5].

Despite these advancements, AI systems in remote sensing are vulnerable to adversar-
ial attacks, which means intentionally adding perturbed input to the benign data to mislead
machine learning models into making incorrect predictions. Adversarial attacks in remote
sensing can significantly threaten the integrity of machine learning models used to inspect
satellite imagery, aerial photographs, and other geospatial data [6–8]. Adversarial attacks
deliberately manipulate benign data with malicious input, eventually creating erroneous
AI model predictions. For instance, adversarial algorithms can deceive remote sensing
models into misclassifying aircraft as birds, which has severe implications in military
applications [7]. Researchers have employed various adversarial attack methods, e.g., Fast
Gradient Sign Method (FGSM) [9], Basic Iterative Method (BIM) [10], Carlini & Wagner
(C&W) [11], and Projected Gradient Descent (PGD) [12] to assess the vulnerability of re-
mote sensing image scene classification systems [6,7]. Chan et al. [6] and Cheng et al. [13]
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evaluated adversarial attack’s impact in deep convolutional neural networks (DCNN) for
scene classification, land cover mapping, and object detection in remote sensing. These
models are susceptible to adversarial examples, leading to potential misclassifications and
compromised model performance [6].

To counter these adversarial threats, several defense strategies have been introduced.
Adversarial training [14] involves incorporating adversarial examples into the training
process to improve model robustness. Adversarial regularization aims to enhance the
model’s resilience by adding regularization terms that penalize vulnerability to adver-
sarial perturbations. Additionally, techniques like Progressive Generative Adversarial
Networks (PSGAN) have been proposed to further bolster defenses against these sophisti-
cated attacks [13], specifically tailored for remote sensing applications. PSGANs introduced
reconstructed examples generated during image reconstruction, alongside clean and ad-
versarial examples, to bolster classifier resilience against known and unknown adversarial
attacks. These findings underscore the critical need for ongoing research to develop more
resilient models capable of withstanding adversarial threats in the remote sensing domain.
Most defense approaches lose clean data accuracy by achieving adversarial robustness.

Furthermore, the high level of complexity within the remote sensing data, which can
change with the characteristics of lighting conditions, meteorology, and sensor systems,
forms an extra barrier that makes it challenging to develop AI models that are robust
enough [15]. Due to these challenges, it is crucial to develop highly-performing AI models
for the field of remote sensing. Explainable AI (XAI) refers to methods and processes
that provide insights into how machine learning models make decisions [16,17]. But
those XAI methods can be manipulated by adversarial attacks [18] that create a need to
train machine learning models to produce robust interpretations for their predictions [19].
Boopathy et al. [20] highlighted the integration of XAI into robust training frameworks to
improve adversarial robustness by losing clean data accuracy.

Most of these defense approaches are developed for natural images that might not
have a similar effectiveness in remote sensing. The high complexity and variability of
remote sensing data pose additional challenges that are not fully addressed by current
defense approaches. Existing defense methods often have a trade-off between adversarial
robustness and clean data accuracy. It is crucial to develop new techniques that can enhance
robustness without sacrificing performance on clean data. This paper addresses the research
gap in achieving adversarial robustness in remote sensing.

We propose a novel adversarial robustness technique that combines robust inter-
pretable features with data augmentation techniques. Our approach aims to enhance
the robustness of AI models against adversarial attacks while maintaining high accuracy
on clean data. We validate our method using the EuroSAT [5] and AID (Aerial Image
Dataset) [21] datasets, demonstrating its effectiveness across diverse and complex remote
sensing scenarios. Additionally, we apply the CAM [22] method to visualize its results
on both clean and perturbed data after PGD attacks. Our experiments show satisfactory
adversarial test accuracy (ATA) against PGD attacks, underscoring the potential of our
approach to fill the existing research gaps. Additionally, we evaluate the transferability of
the robustness against other attacks. Transferability refers to a model’s ability to maintain
its performance and robustness against newer or unseen types of adversarial attack. Our
work aims to contribute to the development of more reliable, interpretable, and transferable
AI models in remote sensing applications.

Our overall contributions can be summarized as follows:

• We proposed an adversarial robustness technique that uses robust interpretable fea-
tures with data augmentation to enhance the robustness of AI models against adver-
sarial attacks in remote sensing applications.

• We validated our approach using EuroSAT and AID datasets, demonstrating its
effectiveness across diverse and complex remote sensing scenarios.

• We applied SaliencyMix [23] augmentation to improve adversarial robustness and
clean data, which performed better than the traditional data-augmentation technique.
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• We evaluated transferability of the robustness against FGSM and BIM attacks and
achieved similar consistency as PGD attack.

2. Methods

In this section, we have provided an overview of the methods and concepts used in
our research. It includes a discussion on the threat model for adversarial example attacks,
highlighting the techniques employed to generate adversarial perturbations. Key methods
such as the FGSM and PGD are explained, demonstrating their application and impact on
different datasets.

2.1. Threat Model: Adversarial Example Attack

Adversarial example attacks are specific input perturbations, or changes that make
machine learning models predict incorrect information. The attacker cannot access the
training process to poison the model f . However, the attacker can access or query the
trained machine learning model’s weight to generate the adversarial perturbations. The
attacker can generate the adversarial example, xadv by adding a perturbation δ to the clean
image X. The attacker can choose to use any adversarial example generation method
to achieve the best attack success rate by misclassifying the image into the wrong class,
f (x) ̸= f (xadv).

FGSM, introduced by Goodfellow et al. in 2015 [9], is a white box and targeted attack.
It adds subtle noise to the input data, aiming to maximize the loss function’s value in a
targeted way. To do that, it first calculates the loss function’s gradient for the input image.
This gradient represents the direction in which the loss function increases the fastest for
small changes in the input data. FGSM then uses this gradient to generate a perturbation
(adversarial noise) by multiplying it by a small constant value, ϵ. The positive or negative
sign of the gradient indicates whether the perturbation is added to or subtracted from the
input image. Conceptually, we can illustrate it as Equation (1), where x is the benign image,
xadv is the generated perturbed image, ϵ is the multiplication factor. ∇x is the gradient with
respect to the input x and J(Θ, x, y) is the loss function.

xadv = x + ϵ · sign(∇x J(Θ, x, y)) (1)

FGSM is a popular attack method because of its simplicity since it requires only
one step to attack. It is suitable for scenarios requiring a quick generation of adversarial
examples. However, it also has some limitations, including being less effective against
models trained with robustness techniques or defenses specifically designed to mitigate
gradient-based attacks.

PGD is the prolonged version of FGSM, which was developed by Madry et al. [12] to
overcome the limitations of FGSM. This algorithm uses iterations of small perturbations to
the input data. These perturbations are kept within a specified range. Similar to FGSM,
PGD calculates the gradient of the loss function. However, instead of applying a single
perturbation in one step, it applies the perturbations in multiple steps shown in Equation (2)
where P denotes the projection operator.

δi+1 = P(δi + ϵ · (∇x J(Θ, x + δi, y)) (2)

This iterative process allows PGD to explore the input space more comprehensively and
find more effective adversarial examples compared to FGSM. Despite its effectiveness,
PGD requires more computational resources due to its iterative nature. However, its
ability to generate robust adversarial examples makes it a valuable technique for testing
the resilience of machine learning models, particularly those used in critical applications
such as medical image analysis. We demonstrate the impact of perturbation strengths
ranging from ϵ = 2/255 to ϵ = 10/255 generated by the PGD attack on the clean samples
of the EuroSAT and AID datasets in Figures 1 and 2 respectively. Although adversarial
perturbations are added in these figures, the images still visually appear as benign.
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(a) Original Sample (b) ϵ = 2/255 (c) ϵ = 4/255

(d) ϵ = 6/255 (e) ϵ = 8/255 (f) ϵ = 10/255

Figure 1. Example of PGD attack for different perturbation strengths (ϵ) on sample from “Annual
Crop” class in EuroSAT dataset.

(a) Original Sample (b) ϵ = 2/255 (c) ϵ = 4/255

(d) ϵ = 6/255 (e) ϵ = 8/255 (f) ϵ = 10/255

Figure 2. Example of PGD attack for different perturbation strengths (ϵ) on sample from “Park” class
in AID dataset.

2.2. Explainable AI Methods

Class Activation Map (CAM), proposed by Zhou et al. [22], works by generating
a heatmap that highlights the regions of the input image that contributed the most to
the final classification decision. This heatmap is created by examining the activations of
the convolutional layers in a neural network. Formally, a CAM, Mc can be defined by



Remote Sens. 2024, 16, 3210 5 of 17

Equation (3). Here c refers to the class, wk is the weight of the corresponding class and Ak
represents the activation of the last convolutional layer at the spatial location (x, y).

Mc(x, y) = ∑
k

wc
k Ak(x, y) (3)

2.3. Interpretation Discrepancy

Interpretation discrepancy refers to the difference in interpretation between a natural
input example (x) and its corresponding adversarial example x′ [20]. This can be quantified
using a generic form of lp norm-based interpretation discrepancy, denoted as D(x, x′),
where p can be either 1 or 2. We represent the interpretation discrepancy D(x, x′) as follows:

D(x, x′) =
1
c ∑

i∈c
||I(x, i)− I(x′, i)||p (4)

where I(x, i) represents the interpretation of the input x for the class label i, I(x′, i) repre-
sents the interpretation of the adversarial input x′ for the class label i, and c denotes the
class label.

Interpretation discrepancy can significantly impact the robustness and reliability of
machine learning models, particularly in the context of adversarial attacks and model
interpretability. Significant discrepancies between model interpretations for clean and
perturbed inputs within the same class highlight potential vulnerabilities in the model’s
predictive capabilities. High interpretation discrepancy indicates inconsistent model be-
havior, undermining the reliability of its explanations and suggesting limited applicability
across different inputs. Explanation methods, including CAM [22], GradCAM [16], and
ScoreCAM [17] can be used to mitigate interpretation discrepancy, thereby enhancing the
model’s resilience against adversarial perturbations and improving the trustworthiness of
model explanations.

3. Comparison Method for Adversarial Robustness

Adversarial robustness of a machine learning model refers to the fact that the machine
learning model can maintain its performance in the event of adversarial attacks. Our
proposed approach uses data augmentation and robust interpretable features to train
the model, which ensures the model can correctly identify the object in the presence of
adversarial perturbation. We compare several techniques, as follows:

3.1. Adversarial Training

Adversarial training is a common technique to improve adversarial robustness. It
utilizes the training data with adversarially perturbed examples to expose the model to
a diverse set of challenging inputs during training [12]. We repeatedly trained the model
on clean samples and adversarial examples to achieve robust predictions against adver-
sarial perturbations. We utilized adversarial training with the PGD (Projected Gradient
Descent) based attack to create adversarial examples. The PGD attack iteratively perturbs
the input data to maximize the loss within a specified perturbation budget mentioned
in Section 2.1. The basic adversarial training [12] framework with PGD attack can be
formulated as follows:

min
θ

E(x,y)∼D

[
max
δ∈∆

L(θ, x + δ, y)
]

(5)

Here θ represents the model parameters. The dataset D consists of input data x and
corresponding labels y. Adversarial perturbations, denoted by δ, are added to the input
x. ∆ is the set of allowed perturbations, typically constrained by δ ≤ ϵ. The loss function
used for training is denoted as L.
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3.2. Robustness Using Interpretability

We compared interpretability-aware robustness training methods proposed by Akhi-
lan et al. [20] to improve adversarial robustness against adversarial attacks. Recalling from
Section 2.3, the interpretability-aware defense method can reduce interpretation discrep-
ancies to increase robustness. The target label-free interpretation discrepancy measure,
denoted by Equation (6), quantifies the difference in interpretation between a natural
example x and its adversarial example x′.

D̃(x, x′) = (1/2)∥I(x, y)− I(x′, y)∥1

+ (1/2)∑i ̸=t
e f (x′)i

∑i′ e f (x′)i′
∥I(x, i)− I(x′, i)∥1

(6)

The first term calculates the disparity in interpretation for the true label y, while the
second term considers discrepancies in interpretations for other non-true labels, weighted
by their importance in prediction. Based on this loss, interpretability-aware training
methods were developed to train the classifier against the worst-case interpretation dis-
crepancy. The following min-max optimization problem is used in interpretability-aware
robustness training:

min
θ

E(x, t) ∼ Dtrain[ ftrain(θ; x, y) + γD̃worst(x, x′)] (7)

Here θ represents the model parameters, Dtrain indicates training data, ftrain signifies the
cross-entropy loss, D̃worst measures the worst-case interpretation discrepancy between
benign input x and perturbed input x′, and γ regulates the balance between accuracy
and interpretability robustness. Depending on the variation in measuring the worst-case
interpretation discrepancy, two methods were proposed: Int and Int2.

3.2.1. Int and Int − Adv

This method aims to improve the robustness of the classifier by incorporating inter-
pretability into the training process. It penalizes the interpretation discrepancy between
natural and perturbed examples. The training process involves a min-max optimization
problem (7) where the outer minimization aims to learn model parameters that reduce
classification loss, and the inner maximization identifies the worst-case interpretation
discrepancy within a defined perturbation bound. It uses the worst-case interpretation dis-
crepancy measure defined in Equation (8) to maximize the interpretation discrepancy under
l∞ perturbations, where D̃(x, x′) represents the discrepancy in interpretations between x
and its perturbed version x + δ.

D̃worst
(
x, x′

)
:= max

∥δ∥∞≤ϵ
D̃(x, x + δ) (8)

This method focuses solely on interpretability discrepancy without directly incorpo-
rating adversarial examples designed to misclassify. In contrast, another variation of this
method called int − adv enhances robustness by incorporating interpretability and integrat-
ing adversarial training to improve robustness against adversarial attacks. The training
process involves minimizing classification loss and penalizing interpretation discrepancy
while also including an adversarial loss (Equation (5)) component:

min
θ

E(x,y)∼Dtrain

[
ftrain(θ; x, y) + γD̃worst + adversarial Loss

]
(9)

The adversarial loss ensures the model is robust against inputs intentionally perturbed
to cause misclassification. The main difference between int and int − adv methods is that
int − adv method directly adds an adversarial loss in the training process.
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3.2.2. Int2 and Int2 − Adv

The Int2 method focuses on robustness by penalizing interpretation discrepancy while
considering perturbations specifically aimed at causing misclassification. It uses a different
interpretation discrepancy measure:

D̃worst
(
x, x′

)
:= D̃

(
x, x + arg max

∥δ∥∞≤ϵ
ftrain (θ; x + δ, y)

)
(10)

Here ftrain(θ; x + δ, y) is the adversarial loss that aims to maximize the difference
between the predicted label and the true label, thereby causing misclassification. D̃(x, x+ δ)
quantifies the difference between the interpretation maps of the natural example x and the
perturbed example x + δ.

Int2 − Adv combines robustness against interpretation discrepancy with a focus on
misclassification perturbations and integrates adversarial training (Equation (5)) to enhance
overall robustness. It utilizes a min-max optimization with an additional adversarial
loss component.

Int and Int2 methods diverge in the focus and selection of perturbations during
training. The Int method targets perturbations that maximize the interpretation discrepancy,
aiming to generate adversarial examples that disrupt the model’s interpretability. In
contrast, the Int2 method targets perturbations that cause misclassification and maximizes
the interpretation discrepancy for those misclassified examples. This dual focus ensures
robustness against adversarial attacks that lead to incorrect predictions while maintaining
consistent interpretations. Thus, Int primarily addresses interpretability robustness, while
Int2 balances classification robustness and interpretability by targeting misclassification-
induced interpretation discrepancies.

3.3. Traditional Data Augmentation

To mitigate the trade-off between adversarial robustness and clean data accuracy, we
integrated data augmentation techniques with interpretability-aware robustness training to
enhance performance against adversarial attacks. Initially, we employed the traditional
data augmentation methods mentioned to verify their effectiveness in improving clean
data accuracy and adversarial robustness.

Data augmentation is a technique widely utilized in machine learning and computer
vision to artificially expand the size of the training dataset by applying various transfor-
mation techniques to the existing dataset [24]. The primary goal of data augmentation
is to introduce diversity and variability into the training data, which can improve the
model’s ability to generalize and make accurate predictions on unseen data. Traditional
data augmentation methods include rotation, translation, shearing, zooming, and flipping
applied to images or data samples. These transformations, such as rotating images to
simulate different viewpoints, shifting them horizontally or vertically to represent changes
in perspective, or even mirroring them to introduce variation, serve to diversify the dataset.

4. Proposed Adversarial Robustness Method

We trained the model using both original examples and adversarial examples gen-
erated through the PGD attack. During training, we utilized cross-entropy loss for the
classification task to measure the dissimilarity between the predicted probability distribu-
tion and the true label distribution. This loss optimizes classification performance, ensuring
accurate predictions on natural examples.

Additionally, we generated explanation maps for both original and adversarial in-
puts using the CAM method. Interpretation discrepancy, as outlined in Boopathy et al.’s
work [20], was calculated from these maps. While calculating the interpretation discrep-
ancy, we incorporated a regularization term, which ensures that the model’s explanations
or interpretations remain consistent and reliable across different input variations, including
adversarial perturbations. This explicit constraint minimizes interpretation differences
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between natural and adversarial examples, enabling the model to provide consistent and
reliable interpretations, ultimately leading to more trustworthy and robust machine learn-
ing systems. However, despite achieving the expected robustness against PGD attacks, we
observed low accuracy in clean testing data. To mitigate this challenge, we propose a data
augmentation-based adversarial robustness training approach that leverages both clean
and augmented samples, as illustrated in Figure 3.

Figure 3. The proposed adversarial Robustness Approach via ExplainableAI and Data Augmentation.

The SaliencyMix [23] data augmentation method focuses on selecting image patches
based on the saliency (explanation) information to enhance model training. It begins with a
saliency detection algorithm that generates a saliency map for a given source image. The
most salient region within this map is identified, allowing the selection of a patch that
contains significant object information. Then this selected source patch is combined with a
target image using a binary mask to create a mixed image sample, represented as:

Xmix = M ⊙ Xsource + (1 − M)⊙ Xtarget (11)

Here, Xmix is the augmented image, M is the binary mask, Xsource is the source
image patch, and Xtarget is the target image. The multiplication ⊙ represents element-wise
multiplication between the binary mask and the images. In addition to mixing images,
SaliencyMix also mixes the labels of the source and target images based on the sizes of the
patches. The mixed label is defined as Equation (12), where Ymix is the mixed label and
Ytarget are the labels of the source and target images, respectively, and α is the mixing ratio
based on patch sizes.

Ymix = αYsource + (1 − α)Ytarget (12)

The objective function for training models with SaliencyMix includes the standard
cross-entropy loss LCE and a regularization term Lreg, combined as Equation (13) where λ
controls the strength of the regularization.

L = LCE + λLreg (13)

Thus, SaliencyMix enhances model performance and robustness by integrating saliency-
guided patch selection, image and label mixing, and a well-structured objective function.

5. Experimental Setup
5.1. Datasets

In this experiment, we have used two remote sensing datasets EuroSAT [5] and
AID (Aerial Image Dataset) [21]. EuroSAT dataset is a collection of satellite images of
European land cover. The images, acquired from the Sentinel-2 satellite, consist of 27,000 la-
beled 64 × 64 image patches. These patches represent ten types of land cover, including
urban areas, farms, forests, and water bodies, where each class contains images rang-
ing from 2000 to 3000. The AID dataset is a collection of aerial images of diverse land
cover types in China. The images, acquired from Google Earth, consist of 10,000 labeled
600 × 600 image patches. These patches represent thirty types of land cover, including
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residential areas, farmlands, forests, and water bodies, with each class containing between
220 and 420 images. The EuroSAT dataset is a collection of satellite images of European
land cover. The AID dataset offers high-resolution RGB images, while the EuroSAT dataset
offers both RGB and multispectral images containing 13 bands. To ensure fair comparisons,
we used image patches with a dimension of 600 × 600 × 3 for AID and 64 × 64 × 3 for
EuroSAT. However, during implementation, we resized the AID dataset images to 200× 200
to reduce computational complexity and ensure efficient processing without significantly
compromising the spatial resolution. To ensure equitable representation, we have balanced
both datasets through a 70 − 30 split, dedicating 70% of the data for training purposes and
30% for testing.

5.2. Convolutional Neural Network (CNN) Architecture

For training and evaluating our experiments with the EuroSAT and AID datasets, we
utilized a small CNN architecture consisting of three convolutional layers with padding,
which was used to maintain the spatial dimensions of the input feature map throughout
the network. The first convolution layer has a 4 × 4 kernel size and a stride of 2 with a
16 number of filters; the second convolution layer has a 4 × 4 kernel size and a stride of 2
with a 32 number of filters; and the third convolution layer has a 7 × 7 kernel size and a
stride of 1 with a 100 number of filters. Then, we use global average max pooling, followed
by a 1 × 1 convolutional. Next, we use a flatten layer to convert the features into a vector
representation, and finally, we apply a softmax cross-entropy for classification.

5.3. Hyper-Parameters

In our work, we have experimented and fine-tuned the overall performance with
different hyper-parameters. We set the learning rate according to the number of epochs,
starting at 0.001 for the initial 50 epochs, reducing to 0.0001 until epoch 100. We trained the
model for 100 epochs with a batch size of 64. In the case of adversarial training, we specified,
step size of 2/255 and 10 adversarial steps. We applied a regularization parameter λ of
0.001 to prevent overfitting. ReLU [25] has been used as an activation function through
the entire network, while Adam [26] was used as an optimizer. This hyperparameter
configuration was selected to ensure optimal performance and generalization.

5.4. Evaluation Matrix: Adversarial Test Accuracy (ATA)

We used Adversarial Test Accuracy (ATA) for evaluating adversarial robustness. It
measures the model’s ability to correctly classify adversarial examples. To calculate ATA,
adversarial examples are first generated using an attack method, such as FGSM, PGD, BIM,
etc., from a set of clean (non-adversarial) inputs. The clean inputs and the adversarial
examples are then passed through the model to obtain predictions. The number of correct
predictions on the adversarial examples by the robust model compared to total adversarial
examples used as input. The ATA is calculated using the following formula:

ATA =

(
Number of Correct Predictions on Adversarial Examples

Total Number of Adversarial Examples

)
× 100% (14)

ATA is a quantitative metric assessing a model’s resilience to adversarial attacks. A
higher ATA indicates superior robustness, as the model can maintain accurate predictions
even when presented with maliciously perturbed inputs.

6. Results

We trained the model with the proposed interpretability-aware training methods men-
tioned in Section 4. We also compared the models in normal and applied PGD-based adver-
sarial training [18] settings to compare with the performance of the interpretability-aware
training methods Int, Int − adv, Int2, and Int2 − adv. We also used only cross-entropy
loss to train the model and labeled it as a normal training method. In our experiment, we
generated adversarial examples using the PGD attack shown in Figures 4 and 5.
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Training
Methods

Original
Inputs

CAM of
Original
Inputs

Adversarial
Inputs

CAM of
Adversarial

Inputs

Normal

Adversarial

Int

Int-Adv

Int2

Int2-Adv

Figure 4. Class activation maps (CAMs) of the original input of the river class from the EuroSAT
dataset and their corresponding adversarial inputs for different training methods in the proposed
SaliencyMix-based data augmentation method.
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Figure 5. Cont.
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Int

Int-Adv

Int2

Int2-Adv

Figure 5. Class activation maps (CAMs) of the original input of the bridge class from the AID
dataset and their corresponding adversarial inputs for different training methods in the proposed
SaliencyMix-based data augmentation method.

6.1. Base Method

The base method applies Int, Int − Adv, Int2, and Int2 − Adv using the original,
unaugmented dataset and labeled as Base. The standard base method achieved a clean data
accuracy of 88% (ϵ = 0) for the EuroSAT dataset shown in Table 1. However, the model
was highly susceptible to adversarial attacks, with ATA dropping to 0% for an adversarial
perturbation of ϵ ≥ 4/255 for the normal training method. Adversarial training improved
robustness significantly, achieving 30.5% ATA at an adversarial perturbation of ϵ = 4/255,
but resulting in a lower clean data accuracy of 80.5%. The interpretability-aware methods
(Int, Int − Adv, Int2, and Int2 − Adv) also showed improved robustness, with Int2 − Adv
achieving 21.9% ATA at an adversarial perturbation of ϵ = 10/255, even though with a
clean data accuracy of 48.4%.

Table 1. Adversarial test accuracy (ATA) after evaluation of 200 step PGD attack under different
perturbation sizes ϵ in the EuroSAT dataset with Convolutional Neural Network (CNN) architecture.
ϵ = 0 indicates without any adversarial perturbation.

Training
Methods ϵ = 0 ϵ = 2/255 ϵ = 4/255 ϵ = 6/255 ϵ = 8/255 ϵ = 9/255 ϵ = 10/255

B
as

e

Normal 88% 3% 0% 0% 0% 0% 0%
Adv 80.5% 62.5% 30.5% 9.9% 3.5% 2% 1.5%
Int 52.5% 47% 41% 28% 19% 18.5% 14%

Int-Adv 45.5% 41% 36% 29% 24.5% 22.5% 21.5%
Int2 51.5% 44.5% 37.5% 30.5% 23.5% 19.9% 17.5%

Int2-Adv 48.4% 41.5% 35% 30% 26% 24.5% 21.9%

Tr
ad

A
ug

Normal 91% 3% 0.2% 0.05% 0% 0% 0%
Adv 75% 59.8% 36% 15.1 6.7% 04.8% 3.7%
Int 57% 51.6% 43.6% 34.8% 27% 24% 22%

Int-Adv 52% 47.7% 42.4% 36.9% 31.2% 0.28.7% 26.3%
Int2 60% 49.7% 43% 0.36% 29% 26% 23%

Int2-Adv 53% 48% 42.9% 37% 32% 29% 26%

Sa
li

en
cy

M
ix Normal 91% 0.67% 0.05% 0.04% 0.02% 0.02% 0.02%

Adv 76% 59% 35% 14% 7% 6% 4 %
Int 80% 55% 26% 9.6% 4% 3% 2%

Int-Adv 53% 47.9% 41.2% 34.1% 28.7% 26.5% 24.5%
Int2 80% 56% 42.2% 34.3% 27.6% 24.5% 22.1%

Int2-Adv 52% 47% 41% 35% 29% 26% 24%
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For the AID dataset, Table 2 shows that the normal training method achieved a clean
data accuracy of 71.5%, with a significant drop in robustness against adversarial attacks.
Adversarial training improved robustness but resulted in a lower clean data accuracy of
61% and ATA of 1.9% accuracy at ϵ = 10/255. The interpretability-aware methods (Int,
Int − Adv, Int2, and Int2 − Adv) demonstrated varied results, with Int2 − Adv achieving
ATA of 6.7% accuracy at an adversarial perturbation of ϵ = 10/255 and 40.7% accuracy on
clean data.

Table 2. Adversarial test accuracy (ATA) after evaluating 200 step PGD attack under different
perturbation sizes ϵ in the AID dataset with Convolutional Neural Network (CNN) architecture.
ϵ = 0 indicates without any adversarial perturbation.

Training
Methods ϵ = 0 ϵ = 2/255 ϵ = 4/255 ϵ = 6/255 ϵ = 8/255 ϵ = 9/255 ϵ = 10/255

B
as

e

Normal 71.5% 3.8% 0.7% 0.2% 0% 0% 0%
Adv 61% 28.4% 9.9% 3.2% 1.7% 1.4% 1.9%
Int 46.2% 0.343 0.219 0.138 0.079 0.059 0.045

Int-Adv 43.1% 32.7% 23.6% 16.2% 8.9% 6.6% 5.8%
Int2 44.5% 34.2% 22.9% 15.4% 7.8% 6.4% 4.7%

Int2-Adv 40.7% 31.4% 24.2% 17.2% 10.6% 8.3% 6.7%

Tr
ad

A
ug

Normal 73.8% 4.1% 1.3% 0.2% 0% 0% 0%
Adv 59.9% 28.8% 10.1% 0.03% 1.9% 1.5% 2%
Int 46.9% 33.6% 22% 13.9% 6.9% 6.2% 4.5%

Int-Adv 43.7% 1.8% 22.9% 14.9% 9.2% 6.9% 6%
Int2 45.7% 34.1% 22.6% 13.4% 7.9% 6.2% 5%

Int2-Adv 42.7% 32.7% 24.9% 17% 10.7% 9.2% 6.9%

Sa
li

en
cy

M
ix Normal 75.3% 7.6% 2.3% 0.7% 0.1% 0.1% 0.1%

Adv 60% 29.1% 18.3% 2.9% 2.4% 1.1% 2.8%
Int 47.6% 35.1% 22.4% 4.2% 6.2% 4.7% 4.8%

Int-Adv 44% 31.9% 23.9% 15.6% 9.3% 7.7% 6.4%
Int2 46.8% 34.7% 24.1% 14.8% 8.3% 6.8% 5.7%

Int2-Adv 42.9% 34.2% 26.5% 17.6% 11% 9.8% 7%

6.2. Traditional Data-Augmentation

When we introduced traditional data augmentation, labeled as Trad Aug in Table 1,
the clean data accuracy improved for all methods. The normal training method’s accuracy
increased to 91%, though its robustness against adversarial attacks remained poor. The
interpretability-aware methods demonstrated significant improvements in clean data accu-
racy and maintained robustness. For example, the Int2-Adv method’s clean data accuracy
rose to 53%, and ATA of 26% at an adversarial perturbation of ϵ = 10/255.

For the AID dataset, applying traditional data augmentation led to improved clean
data accuracy, as indicated in Table 2 and labeled as Trad Aug. The normal training
method’s accuracy increased to 73.8%, but its robustness remained low. The interpretability-
aware methods showed enhancements in both clean data accuracy and robustness. For
instance, the Int2 − Adv method’s clean data accuracy increased to 42.7%, with ATA of
6.9% at an adversarial perturbation of ϵ = 10/255.

6.3. SaliencyMix Based Data-Augmentation

The most notable improvements were observed with the application of SaliencyMix
data augmentation for the EuroSAT dataset, labeled as SaliencyMix in Table 1. The
normal training method’s clean data accuracy remained at 91%, with slight improve-
ments in adversarial robustness. The interpretability-aware methods, particularly Int2 and
Int2 − Adv, showed substantial enhancements in both clean data accuracy and robustness.
For instance, the Int2 method achieved 80% accuracy on clean data and 22.1% ATA at an
adversarial perturbation of ϵ = 10/255.

SaliencyMix data augmentation led to significant improvements for the AID dataset,
labeled as SaliencyMix in Table 2. The normal training method’s clean data accuracy
increased to 75.3%. The interpretability-aware methods demonstrated the best performance
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with SaliencyMix. For example, the Int2 method achieved 46.8% accuracy on clean data
and 5.7% ATA at an adversarial perturbation of ϵ = 10/255, while Int2 − Adv achieved
42.9% on clean data and 7.0% ATA at an adversarial perturbation of ϵ = 10/255.

The CAM explanation maps further support these findings. The differences in the
explanation maps between original and adversarial examples for regular methods highlight
the effectiveness of interpretability-aware methods in minimizing discrepancies between
original and adversarial inputs. This alignment in explanations is crucial for maintaining
model performance under adversarial conditions. Figure 4 illustrates the CAM of original
and adversarial inputs for a “River” class image from the EuroSAT dataset. The CAM
explanation maps in the 2nd and last columns of the figure show purple and green portions
indicating the important region classification identified by the CAM method. Notably,
there are differences in the explanation map between the original and adversarial exam-
ples in regular normal and adversarial methods, where the original “River” sample was
misclassified as the “AnnualCrop” class. However, for the interpretability-aware methods
(Int, Int − Adv, Int2, and Int2 − Adv), there are no noticeable differences in the CAM
between the original input and adversarial inputs. During training in these methods, the
model minimizes the discrepancies between the interpretations of original and adversarial
inputs. For the AID dataset, similar trends were observed in the explanation maps shown
in Figure 5.

6.4. Robustness Transferability

In the trained models using EuroSAT and AID datasets with SaliencyMix augmenta-
tion, we applied PGD attacks in all the training methods, including the interpretability-
aware training such as Int, Int − adv, Int2, and Int2 − adv. Then, we evaluated these
models using other attacks, including FGSM and BIM, to assess robustness transferability.
The FGSM attack induces small, one-step perturbations to input features based on the
gradient sign of the loss function. We used the ATA metric to evaluate model robustness.
The ATA metric indicated varying levels of robustness against the FGSM attack across
different training methods. The ATA metric for these training methods was lower than the
PGD attack results for both FGSM and BIM attacks for the EuroSAT dataset. These results
are shown in the last column of Table 3 with an adversarial perturbation of ϵ = 10/255.
However, for the AID dataset, Table 4 shows that FGSM attacks resulted in better ATA than
PGD, and BIM yielded higher ATA than both PGD and BIM.

Table 3. Evaluation of robustness transferability using adversarial test accuracy (ATA) in unseen
FGSM and BIM attacks under different perturbation sizes ϵ in the EuroSAT dataset with Convolutional
Neural Network (CNN) architecture and SaliencyMix augmentation. ϵ = 0 indicates without any
adversarial perturbation.

Training
Methods ϵ = 00 ϵ = 2/255 ϵ = 4/255 ϵ = 6/255 ϵ = 8/255 ϵ = 9/255 ϵ = 10/255

FG
SM

Normal 91% 98% 3.3% 2.7% 2.8% 3.4% 3.8%
Adv 76% 60.2% 43.1% 28.4% 18.4% 15.1% 12.3%
Int 80% 56.9% 34.8% 21.8% 13.3% 11.1% 9.5%

Int-Adv 53% 48.1% 43.1% 38.7% 34.3% 32.5% 31%
Int2 80% 57.2% 34.5% 20.9% 12% 9.7% 7.9%

Int2-Adv 52% 58.8% 44.8% 33% 24.6% 21.2% 18.3%

B
IM

Normal 91% 0.7% 0.02% 0% 0% 0% 0%
Adv 76% 59.1% 34.5% 14.1% 7.2% 5.6% 4.5%
Int 80% 54.7% 26.3% 9.6% 3.9% 2.9% 2.1%

Int-Adv 53% 47.9% 41.2% 34.1% 28.7% 26.5% 24.5%
Int2 80% 55.6% 25.6% 8.9% 3.8% 2.8% 2.1%

Int2-Adv 52% 58% 40% 22% 9.2% 6.9% 5.5%
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Table 4. Evaluation of robustness transferability using adversarial test accuracy (ATA) in unseen
FGSM and BIM attacks under different perturbation sizes ϵ in the AID dataset with Convolutional
Neural Network (CNN) architecture and SaliencyMix augmentation. ϵ = 0 indicates without any
adversarial perturbation.

Training
Methods ϵ = 00 ϵ = 2/255 ϵ = 4/255 ϵ = 6/255 ϵ = 8/255 ϵ = 9/255 ϵ = 10/255

FG
SM

Normal 75.3% 05.6% 1.7% 1.4% 1.2% 0.9% 0.9%
Adv 61% 31.3% 14.3% 6.5% 3.6% 2.8% 2.4%
Int 47.6% 34.9% 23.9% 16.5% 12.6% 10.8% 8.9%

Int-Adv 44% 33.1% 25.2% 19.3% 13.9% 11.9% 10.5%
Int2 46.8% 34.3% 24.5% 17.3% 11.9% 10.7% 8.7%

Int2-Adv 43% 31.7% 25% 19.2% 14.5% 12.4% 11.1%

B
IM

Normal 75.3% 3.8% 0.7% 1.4% 0.2% 0% 0%
Adv 61% 28.4% 9.9% 3.2% 1.7% 1.4% 1%
Int 47.6% 34.3% 21.9% 13.8% 7.9% 5.9% 4.5%

Int-Adv 44% 32.7% 23.6% 16.2% 9.8% 7.6% 5.8%
Int2 46.8% 34.2% 22.3% 15.4% 8.7% 6.4% 4.7%

Int2-Adv 43% 31.4% 24.2% 17.2% 10.6% 8.3% 6.7%

7. Discussion

Our experimental results on the EuroSAT and AID datasets provide a comprehensive
analysis of various training methods aimed at enhancing adversarial robustness while
maintaining or improving accuracy on clean data. The baseline results highlight a common
trade-off in adversarial training, where increased robustness against attacks typically
results in reduced performance on clean data. For instance, the standard adversarial
training methods improved robustness but could not withstand a large adversarial noise
in the EuroSAT dataset, as seen with an accuracy drop from 80.5% to 1.5% against an
adversarial perturbation of ϵ = 10/255 from PGD-based attack, as shown in Table 1.
Whereas, interpretability-aware training methods (Int, Int − Adv, Int2, and Int2 − Adv)
yielded better robustness, particularly at higher perturbation levels (ϵ). Notably, the
Int2 − Adv method demonstrated superior robustness, maintaining 21.9% ATA at an
adversarial perturbation of ϵ = 10/255 for EuroSAT, although this came with a lower clean
data accuracy of 48.4%. This indicates that while these methods enhance robustness, there
is still a trade-off with clean data accuracy.

The integration of traditional data augmentation techniques resulted in a notable
improvement in clean data accuracy across all methods. This enhancement was evident in
the increase of clean data accuracy to 53% from 48.4% in int2 − adv training for EuroSAT
dataset. However, robustness improvements were limited, which indicates the necessity
for more sophisticated augmentation strategies.

In summary, from Tables 1 and 2, we can see that the ATA score has increased when
data augmentation, specifically SaliencyMix, is applied to clean data (ϵ = 0) in both
normal training and interpretability-aware robustness training methods, Int, Int − Adv,
Int2, and Int2 − Adv. Therefore, we can conclude that the SaliencyMix method improved
clean data accuracy while maintaining or enhancing robustness against adversarial attacks.
The interpretability-aware methods, when combined with SaliencyMix, provided the best
balance between clean data accuracy and adversarial robustness. Similarly, in the AID
dataset, we found that the clean data accuracy improved from 40.7% to 42.9% and ATA
accuracy improved from 6.7% to 7% against an adversarial perturbation of ϵ = 10/255
from the PGD-based attack, as shown in Table 2. These results underscore the effectiveness
of combining interpretability-aware training with advanced data augmentation techniques
to achieve robust and accurate models for remote sensing image classification.

To evaluate the robustness transferability, when we applied FGSM and BIM attacks on
our proposed adversarial robustness model (SaliencyMix), we observed consistent patterns
of accuracy improvement across normal and interpretability-aware methods. For example,
comparing the ATA of the PGD-based attack shown in Table 1 (labeled as SaliencyMix)
and FGSM-based attack from Table 3, we see that for PGD, the normal training accuracy
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drops from 91% to 0.02% at the highest perturbation level (adversarial perturbation of
ϵ = 10/255). Similarly, for FGSM, the accuracy drops from 91% to 3.8%, which has a similar
drop in accuracy. We observe similar trends in the case of interpretability-aware training
methods, such as Int − 2 and Int2 − Adv. Int2 − Adv has a ATA of 24% under PGD-based
attack (Table 1) and ATA of 18.3% under FGSM-based attack (Table 3). We also found
similar adversarial robustness performance in Adv, Int, Int − Adv, and Int − 2 training
methods. The robustness method performed worse against BIM-based attacks, as shown
in Table 3 compared to the FGSM-based attack. For the AID dataset, we observed similar
adversarial robustness performance in Adv, Int, Int − Adv, Int − 2, and Int − 2 − adv
training methods against FGSM and BIM adversarial attacks shown in Table 4. This
suggests that the robustness gained from these training methods is transferable against
other unseen attacks.

Overall, these results underscore the effectiveness of combining interpretability-aware
training with advanced data augmentation techniques like SaliencyMix to achieve robust
and accurate models for remote sensing image classification.

8. Conclusions

Our study demonstrates that combining interpretability-aware training with advanced
data augmentation techniques such as SaliencyMix can significantly enhance the robustness
and clean data accuracy of models trained on remote sensing datasets. While adversarial
training improves robustness, it often does so at the cost of clean data accuracy. However,
integrating saliency-guided data augmentation methods provides the best approach, yield-
ing models that are not only robust to adversarial perturbations but also highly accurate
on unperturbed data. Interpretability-aware techniques, particularly when paired with
SaliencyMix, stand out by ensuring reliable and consistent model explanations, which
further contribute to their robustness and trustworthiness.

These findings highlight the importance of advanced data augmentation techniques
in adversarial training paradigms. However, our approach is not without limitations. The
computational efficiency of the proposed methods remains a challenge, as the training
process can be time-consuming and resource-intensive. Additionally, our models have been
tested against only three types of attacks (PGD, FGSM, and BIM), leaving uncertainty about
their robustness against other sophisticated adversarial techniques, such as adversarial
patches [27].

In the future, we can explore further refinements in augmentation strategies and
interpretability constraints to push the boundaries of robust and accurate model training.
Additionally, extending these techniques to other datasets and exploring their applicability
in real-world scenarios will be crucial for broader adoption. Our work underscores a
promising direction for developing resilient machine-learning models capable of maintain-
ing high performance in the face of adversarial challenges.
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Abbreviations
The following abbreviations are used in this manuscript:

Full-Form Abbreviation
Artificial Intelligence AI
Class Activation Map CAM
Fast Gradient Sign Method FGSM
Basic Iterative Method BIM
Projected Gradient Descent PGD
Aerial Image Dataset AID
Adversarial Test Accuracy ATA
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