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Abstract: Determining the responses of non-photosynthetic vegetation (NPV) and photosynthetic
vegetation (PV) communities to climate change is crucial in illustrating the sensitivity and sustain-
ability of these ecosystems. In this study, we evaluated the accuracy of inverting NPV and PV
using Landsat imagery with random forest (RF), backpropagation neural network (BPNN), and
fully connected neural network (FCNN) models. Additionally, we inverted MODIS NPV and PV
time-series data using spectral unmixing. Based on this, we analyzed the responses of NPV and
PV to precipitation and drought across different ecological regions. The main conclusions are as
follows: (1) In NPV remote sensing inversion, the softmax activation function demonstrates greater
advantages over the ReLU activation function. Specifically, the use of the softmax function results
in an approximate increase of 0.35 in the R2 value. (2) Compared with a five-layer FCNN with
128 neurons and a three-layer BPNN with 12 neurons, a random forest model with over 50 trees and
5 leaf nodes provides better inversion results for NPV and PV (R2_RF-NPV = 0.843, R2_RF-PV = 0.861).
(3) Long-term drought or heavy rainfall events can affect the utilization of precipitation by NPV and
PV. There is a high correlation between extreme precipitation events following prolonged drought
and an increase in PV coverage. (4) Under long-term drought conditions, the vegetation in the study
area responded to precipitation during the last winter and growing season. This study provides an
illustration of the response of semi-arid ecosystems to drought and wetting events, thereby offering a
data basis for the effect evaluation of afforestation projects.

Keywords: non-photosynthetic vegetation cover; Mu Us Sandy Land; photosynthetic vegetation
cover; precipitation; SPEI; machine learning

1. Introduction

Arid and semi-arid ecosystems are more sensitive to climate change and have weaker
resilience [1], which significantly impacts global carbon cycling and carbon stocks [2,3].
By using remote sensing techniques to detect vegetation cover and study its response to
climate, the sensitivity of arid and semi-arid ecosystems to drought can be quantified on a
spatial scale [4]. In arid and semi-arid ecological communities, above-ground vegetation
can be classified into non-photosynthetic components (ground litter and vertical dead
vegetation) and photosynthetic components [5,6]. Specifically, distinguishing between
the photosynthetic and non-photosynthetic components of vegetation can enhance our
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understanding of the impacts of climate change on vegetation production and ecological
functions [7].

Non-photosynthetic vegetation (NPV) is a crucial component in the material cycles
and energy flows within ecosystems [8,9]. In arid and semi-arid ecosystems, the interaction
between litter and sandy soils positively influences hydrological processes, the physical
and chemical properties of the soil, nutrient cycling, and vegetation recovery [10–12].
Photosynthetic vegetation (PV), on the other hand, reflects the photosynthetic activity,
productivity, and overall health of the ecosystem. It serves as an indicator of soil erosion
risks in arid and semi-arid ecosystems [13–15]. Remote sensing is a well-established
approach for deriving coverage of non-photosynthetic vegetation (NPV) and photosynthetic
vegetation (PV) [16,17]. Utilizing remote sensing to estimate the spatiotemporal dynamics
of NPV and PV in water-limited arid and semi-arid ecosystems, and analyzing their
responses to precipitation and drought, will effectively improve our understanding of the
impacts of drought on vegetation physiological ecology at a regional scale.

Scholars have proposed a series of NPV indices, including NDVI (Normalized Differ-
ence Vegetation Index) [18], Enhanced Vegetation Index (EVI) [19], Normalized Difference
Senescence Vegetation Index (NDSVI) [20], Landsat 8-OLI Dead Fuel Index (OLI-DFI) [21],
Modified Soil-Adjusted Vegetation Index (MSAVI) [22], Ci-green, and Normalized Differ-
ence Index (NDI) [23]. Although these indices have limited accuracy and a narrow range
of applications [24], they provide important indicators for NPV detection models. Since
2000, remote sensing detection of NPV and PV has primarily relied on spectral mixture
analysis [25,26]. In 2009, Guerschman et al. [5] utilized the pixel space constituted by
NDVI and the Cellulose Absorption Index (CAI) to enhance the extraction accuracy of NPV
and PV, achieving a detection precision of less than 20%, which is sufficient for studying
overall trend changes. However, this method exhibits lower simulation accuracy in shrub
and semi-shrub areas. In subsequent research, Guo et al. [6] employed machine learning
techniques to further improve the prediction accuracy of NPV and PV. They also identified
the most suitable prediction models for NPV and PV under conditions of small sample
sizes and biased distributions. However, studies on the continuous inversion of NPV and
PV over the past years using machine learning models in arid and semi-arid ecosystems
are still relatively scarce. Such studies will undoubtedly provide essential baseline data for
research on the response of arid and semi-arid ecosystems to climate.

In the study of arid and semi-arid vegetation communities in northern China, it has
been found that water-related environmental factors are the main limiting factors for
vegetation photosynthesis. Niu et al. [27] pointed out in their research on the Loess Plateau
in China that precipitation events, especially the duration and frequency of precipitation
events, have significant effects on the structure, function, and physiological ecology of
semi-arid ecosystems and vegetation. Based on flux data, Lin et al. [28] suggested that high
temperatures and low soil moisture could be the primary limiting factors for photosynthesis
in arid and semi-arid regions. In recent years, the northern arid and semi-arid regions of
China have experienced increased temperatures and decreased precipitation. The overall trend is
warmer and drier, with an increase in the intensity and frequency of drought [29,30]. Under this
trend, research on the utilization of precipitation by vegetation becomes more important.

In addition, the frequency of precipitation and the duration of drought also have
significant impacts on vegetation in arid and semi-arid ecosystems. For example, studies
on litter decomposition have found that a decrease in precipitation frequency significantly
reduces litter decomposition [31], and litter production is also correlated with summer
precipitation [32]. Xu et al. [33] found that sun-induced chlorophyll fluorescence responds
more rapidly to drought events than to longer-lasting drought conditions, with an average
response time of 9.1 months. At the community scale, it has also been observed that
drought-tolerant vegetation can maintain higher water use efficiency during soil drought
and rapidly enhance its photosynthetic capacity and ecosystem respiration during water
recovery [34–36]. Some studies have also indicated that the resilience of the semi-arid
grassland ecosystem in Inner Mongolia decreased after four years of extreme drought [37].
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These studies provide insights from various perspectives into the response of semi-arid
systems in northern China to precipitation and drought. A comprehensive consideration of
the response of NPV and PV to rainfall and drought at the regional scale would contribute
to a better understanding of the stability and resilience of semi-arid ecosystems.

Guerschman et al. [7] conducted a study on the response of NPV and PV to precip-
itation in Australia. They found that PV was mainly dependent on precipitation for a
period of 12 months, while NPV was more sensitive to long-term precipitation. Shumack
et al. [38] analyzed the impact of precipitation on PV at different time scales and investi-
gated the sensitivity of NPV and PV to aeolian sand in areas with low vegetation coverage
on sand dunes. Numerous studies have investigated the impact of climate on vegetation
photosynthesis at the regional scale, using a variety of methods such as the photochemical
reflectance index [39], solar-induced chlorophyll fluorescence [33], other photosynthetic
vegetation indices, and land surface models [40]. When it comes to NPV, the focus has been
more on studying the response of litter and crust at the community scale to climate change.
Cai et al. [41] conducted a study on the factors influencing litter turnover in China and
found that the most significant factor affecting litter turnover in grassland ecosystems is the
annual average precipitation. Yue et al. [42] conducted a meta-analysis that indicated warm-
ing increases litter decomposition rates by 4.4%. These studies collectively indicate that
precipitation and temperature significantly influence NPV and PV in grassland ecosystems
at the community scale in semi-arid regions. Nonetheless, there are few studies exploring
the use of remote sensing to study the response of NPV and PV to climate from a spatial
scale. Such research can offer new insights into the stability of semi-arid ecosystems.

In summary, this study investigates precipitation utilization by vegetation in semi-arid
ecosystems in northern China using Mu Us Sandy Land as an example. The research
includes: (1) Constructing a reliable machine learning model within the study area that can
continuously invert NPV and PV at different times. (2) Exploring the time-delay responses
of NPV and PV to annual total precipitation and mean temperature, and studying the
time-delay responses of monthly precipitation to NPV and PV in different desertification
types and degrees. (3) Examining the effects of drought and cumulative drought on NPV
and PV at different time scales, as well as the utilization of precipitation by NPV and PV
under different drought conditions.

2. Materials and Methods
2.1. Overview of Study Area

This study focuses on the Mu Us Sandy Land, located in the arid and semi-arid region
of northern China. The Mu Us Sandy Land is the transition area between the Mu Us desert
and its surrounding geomorphic types, generally situated in the south of the Hetao Plain
and surrounded by the Yellow River on three sides of the northwest and east (as shown
in Figure 1c). The hydrothermal conditions of the Mu Us Sandy Land are better than
other sandy lands in China. The eastern part of the Mu Us Sandy Land is characterized
by typical grassland vegetation, while the western part is mainly desert steppe, featuring
dry-denuded bedrock hills, tablelands, and a small amount of aeolian dunes. In contrast,
the western part of Otuoke Banner, located near the Yellow River, is exposed bedrock. The
core desert area of the Mu Us Sandy Land is characterized by the presence of mobile and
coppice dunes, which mainly consist of barchan dunes and dune chains. The area also has
various types of wind erosion pits and parabolic dunes. The beaches are distributed among
sand belts composed of dunes, and saline-alkali lands are common on the beaches [36]. The
vegetation communities in the moderately and extremely severe desertification areas were
mainly composed of herbaceous pioneer vegetation and large shrubs, while the dominant
species in the area were Artemisia ordosica Krasch. and Corethrodendron fruticosum var.
mongolicum (Turcz.) Turcz. ex Kitag. The building species in the mild desertification area
were Caragana sinica (Buc’hoz) Rehder and Salix gordejevii Y. L. Chang et Skv. while the
coppice dune types were Artemisia ordosica Krasch., Caragana sinica (Buc’hoz) Rehder, and
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Salix gordejevii Y. L. Chang et Skv. The main types in the Gobi desertification areas are
composed of annual and perennial herbs [43,44].
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study area; (c) location of the study area in a semi-arid region of China.

The annual total precipitation in the Mu Us Sandy Land region decreases from south-
east to west, ranging from 440 mm to 250 mm [6]. As shown in Figure 1b, the peak monthly
precipitation occurs in August. The annual average precipitation is about 340 mm, which is
higher than that of other sandy lands. From 1995 to 2019, the precipitation in 1999–2000 was
significantly lower than the average precipitation of the past 60 years. The precipitation
in 2005 was also very low, but in 2004 it was slightly above the long-term average. The
annual average precipitation in 2010 and 2011 was basically the same as that of many years,
while the annual average precipitation in 2014 and 2015 was slightly below the long-term
average for two consecutive years. The Mu Us Sandy Land region has an annual average
temperature ranging from 6 ◦C to 8.5 ◦C, and the temperature decreases from south to
north. The region also belongs to the arid to semi-arid climate region, with a maximum
wind speed of up to 28 m/s [44].
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2.2. NPV and PV Data Sources and Calculation Methods

This study utilized MODIS NDVI 8-day products and SWIR76 data to calculate the
monthly average NPV, PV, and bare soil products from 2000 to 2015, based on linear spectral
unmixing. This approach was developed by Guerschman et al. [5] using hyperspectral data
collected from over 1000 field sites. The SWIR76 index is defined as the ratio of the SWIR7
band (2130 nm) to the SWIR6 band (1640 nm) in MODIS data.

It is important to note that the spatial resolution of MODIS data, which is greater
than 250 m, may result in inaccurate analysis of NPV and PV in the Mu Us desert area,
where shrub desertification is predominant. Consequently, a key focus of this study is to
develop NPV and PV estimation models using Landsat series imagery through machine
learning techniques.

The construction process of the machine learning model in this study is divided into
three parts: data collection for the model output, external validation of the model, and
model selection. First, data collection for the model output used UAV imagery collected in
the field, covering a total of 457 points from 2017 to 2023. The UAV imagery processing
included radiometric correction and mosaicking, object-based multiscale segmentation,
resulting in NPV, PV, and bare soil cover data for 457 points, each with a spatial coverage
exceeding 30 × 30 m. Second, the input for model construction consisted of Landsat
spectral data corresponding to the UAV sampling points. With both the output and input
data combined to form the dataset, 70% of the data were used to build the model, and 30%
were used for the test set. To minimize the impact of data distribution bias on accuracy,
ten-fold cross-validation was employed to average the final accuracy. Notably, the data
used for model construction were also split into a training set and a validation set at a 70%
to 30% ratio. Finally, the model selection was based on the final accuracy obtained from the
ten-fold cross-validation of the test set.

The formulas mentioned in the above methods are explained as follows. In Formulas (1)
and (2), ŷi is the predicted value, yi is the true value, y is the average of the predicted values,
and n is the number of samples.

R2 =
∑n

i=1
(
ŷi − y)2

∑n
i=1 (yi − y)2 (1)

RMSE =

√
1
n∑n

i=1 (yi − ŷi)2 (2)

The ten-fold cross-validation method is commonly used to test the accuracy of al-
gorithms. It involves dividing the dataset into 10 parts, then iteratively using 9 parts as
training data and 1 part as test data. Each iteration yields an accuracy (or error) rate, and
the average of the ten results provides an estimate of the algorithm’s precision.

The development of a machine learning model first requires the identification of its
inputs and outputs. The model inputs will include indices such as NDVI (Normalized
Difference Vegetation Index) [18], Enhanced Vegetation Index (EVI) [19], Normalized
Difference Senescence Vegetation Index (NDSVI) [20], Landsat 8-OLI Dead Fuel Index (OLI-
DFI) [21], Modified Soil-Adjusted Vegetation Index (MSAVI) [22], Ci-green, and Normalized
Difference Index (NDI) [23].

In this study, the mesh search method is used in the parameter adjustment process of
the machine learning model. The parameter settings for the model tested in this study are
detailed as follows:

RF Parameters: To optimize for minimal mean squared error (MSE) and fast conver-
gence, the parameters for the RF regression models, specifically for NPV and PV, were
set with a minimum of five leaf nodes and requiring over 50 decision trees. Additional
parameters, such as the depth of individual trees and the number of features considered by
each tree, were fine-tuned based on MSE values during the algorithmic process.

BP Neural Network Parameters: The BP neural network comprises three layers. The
transfer function from the input layer to the first hidden layer is the logsig function, with
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the number of neurons experimentally determined. From the first hidden layer to the
second hidden layer, the transfer function is the softmax function, ensuring the sum of
the three neurons in the output layer equals one. The transition from the second hidden
layer to the output layer utilizes the purelin function. The output layer consists of three
nodes representing the fractions of NPV, PV cover, and bare soil within a pixel. The error
loss function employed is the mean squared error function, and the gradient descent is
executed using the Levenberg–Marquardt algorithm. To ensure model convergence, the
learning rate and maximum number of fail attempts were set to 0.01 and 10, respectively.

FCNN Parameters: Apart from the input and output layers, this deep learning network
includes five hidden layers, each with 128 neurons and the rectified linear unit (ReLU)
function as the transfer function between layers. The overall performance of each model is
illustrated in Appendix A Figure A1.

The preprocessing of the remote sensing images included radiometric correction, geo-
metric correction, color balancing, and mosaicking. Atmospheric correction was performed
using the FLAASH module in ENVI. Histogram matching was conducted for other im-
ages and test period images, followed by mosaicking of all employed images. This study
downloaded all low-cloud-cover Landsat 5 TM images taken from 17 September to 17
October for the years 2000 to 2012. Considering the dates and cloud cover, the missing
images were replaced with those from the same period in the previous or following year.
For the data from 2013 to 2019, Landsat 8-OLI images from 17 September to 17 October
were used. Similarly, missing images were substituted with those from the same period
in the previous or following year, considering both dates and cloud cover. The frequency
of image acquisition for each period and the corresponding sensors are documented in
Appendix A Tables A1–A4.

The Landsat Operational Land Imager (OLI) and Thematic Mapper (TM) sensors
have been found to show differences in reflection values for the same ground objects. For
instance, in urban mapping, the reflectance difference of Landsat 8-OLI images for different
ground objects is more noticeable than that of Landsat 5 TM [45]. However, some studies
have shown that there is a high correlation between vegetation indices and reflectance of
the same ground object using different sensors in large and uniform areas [46]. To account
for these differences, a regression relationship between the Landsat 8-OLI and Landsat 5
TM bands was established before building the NPV and PV coverage detection models
for Landsat 5 TM images. The reflection values of Landsat 8-OLI images corresponding
to sample points were then back-calculated to reflect the values of Landsat 5 TM images
through this regression relationship. Finally, a new machine learning regression fitting
model was built using the NPV coverage and PV coverage data from UAV sampling points.

2.3. Precipitation and SPEI Data

The quadratic thin plate spline function is a type of interpolation method commonly
used to interpolate meteorological data. In this study, it was used to interpolate precipitation
and temperature data at 500 m and 30 m resolutions. Elevation was also used as a covariate
in the interpolation process. The data used for interpolation were based on measurements
from 19 meteorological stations located in the Mu Us Sandy Land and its surrounding
areas. The interpolation was carried out for both annual and monthly total precipitation
and annual mean temperature.

The Standardized Precipitation-Evapotranspiration Index (SPEI), proposed by Vicente-
Serrano et al. [47] as an extension of the Standardized Precipitation Index (SPI), represents
the dry and wet conditions of a region based on the degree of deviation between pre-
cipitation and potential evapotranspiration from the average state. In this study, the
Penman–Monteith formula was preferred for calculating potential evapotranspiration in
arid and semi-arid regions. Four-time scales of SPEI were calculated, including SPEI-1 for
1-month conditions, SPEI-3 for 3-month conditions, SPEI-6 for 6-month conditions, and
SPEI-12 for 12-month conditions. Table 1 shows the classification of dry and wet conditions.
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Table 1. Classification of drought and wet grade based on SPEI.

Drought and
Moisture Levels

Extreme
Drought

Moderate
Drought

Mild
Drought Normal Mild Moist Moderate

Moist
Extreme

Moist

SPEI value ≤−2.0 (−2.0, −1.0] (−1.0, −0.5] (−0.5, 0.5] (0.5, 1.0] (1.0, 2.0] >2.0

2.4. Temporal and Spatial Regression Analysis

In this study, the PV and NPV from September 2001 to September 2019 were analyzed
using pixel-by-pixel regression with MODIS NPV and PV products having a resolution of
500 m. The annual total precipitation and annual mean temperature of the same resolution
were used for the analysis. The time delay effect of the current year refers to the total
precipitation and average temperature from January to September of the image year, while
the time delay effect of the previous year refers to the total precipitation and average
temperature from 10–21 months before the image acquisition month. Similarly, the time
delay effects for the first two years (22–33 months), the first three years (34–45 months),
and the first four years (46–57 months) were also analyzed.

Regression analysis was conducted at a regional scale to explain the response of NPV
and PV coverage, calculated from Landsat series images, to precipitation and multi-scale
SPEI. The monthly total rainfall data for the first 21 months of the NPV and PV coverage
data of the current period were considered. For example, when the data for the period
were from Landsat image with the strip number 127032 in 2005 (obtained on 7 October), the
corresponding rainfall data were from January 2004 to September 2005. Similarly, the NPV
and PV data were analyzed against the cumulative drought and moisture conditions on
four-time scales of SPEI-1, SPEI-3, SPEI-6, and SPEI-12 using SPEI data. In this study, these
datasets were used to analyze the response of spatial patterns of vegetation to precipitation
in the geographical ecological region.

Based on the explanation of the above methods and data, the technical flowchart of
this research is shown in Figure 2.
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3. Results
3.1. Machine Learning Model Construction for Estimating NPV/PV Cover

This study assessed the performance of random forest (RF), backpropagation (BP),
and fully connected neural network (FCNN) models in the remote sensing retrieval of NPV
and PV. The accuracy results from ten-fold cross-validation are presented in Table 2. It is
evident that the RF algorithm excelled in model generalization performance, whereas both
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BP and FCNN models exhibited subpar generalization performance, especially the FCNN,
with the cross-validated (R2 and RMSE) for the NPV model even falling below 0.53.

Table 2. Accuracy table for estimating NPV and PV by different machine learning models.

Model Name R2
NPV R2

PV RMSENPV RMSEPV

RF 0.843 0.861 1.11% 1.67%
BPNN 0.828 0.851 1.29% 0.62%
FCNN 0.471 0.780 16.7% 14.4%

This study concludes that when applying a backpropagation-type FCNN, using the
logsig function as the transfer function is preferable. It was observed that when all link-
ing functions are ReLU, simply increasing the number of layers and neurons does not
significantly enhance the model’s generalization ability. In a separate study conducted
by our team, we investigated the generalization capabilities of ensemble algorithms and
backpropagation neural networks for detecting NPV. Based on the comprehensive results
from these studies, we conclude that the random forest model is more advantageous for
the remote sensing inversion of NPV and PV in arid and semi-arid ecosystems.

Subsequently, this study validated the MODIS NPV and PV products derived through
the spectral unmixing method. The RMSE for PV was 25%, and for NPV, it was 33%.
We consider this product’s trend across the entire study area to be reliable, enabling its
utilization in analyzing the impacts of annual total precipitation and mean temperature
on NPV and PV. When testing the inversion of MODIS NPV and PV using RF, BPNN, and
FCNN models, the R2 values were all below 0.2. This indicates that the machine learning
models developed using Landsat imagery cannot be applied to MODIS data.

3.2. Inversion Results and Statistical Characteristics of NPV and PV across Different Periods

Upon determining the use of the RF algorithm for the inversion of NPV and PV
in the study area, this research selected Landsat images from four periods: 2000, 2005,
2010, and 2015. To ensure consistency between Landsat 5 and Landsat 8 images, areas
with unchanged features such as buildings, forests, and deserts were used to perform
regression correction on the band values. The correction relationships are illustrated in
Appendix A Figure A2.

The NPV and PV retrieved by the RF model for the years 2000, 2005, 2010, and 2015 are
presented in Appendix A Figures A3–A6, with box plot statistics segmented by different
types of desertification displayed in Figures 3 and 4 of the main text. The images from top
to bottom represent light, moderate, and severe desertification, while the images from left
to right represent different types of desertification. The red symbols in the figures represent
outliers that exceed the overall distribution by a factor of 1.5 quartiles.

The coverage of NPV in coppice dunes was found to be higher than in the desertifi-
cation region. Additionally, it was observed that the higher the degree of desertification,
the lower the NPV coverage. The coverage of NPV showed significant variation across
different years, suggesting that it is influenced by climatic factors.

The coverage of PV (as shown in Figure 4) also exhibited significant fluctuations in
different years. Furthermore, as depicted in Figure A5b in Appendix A, PV was exception-
ally high in 2015. These observations highlight the sensitivity of NPV and PV to climate,
and we aim to further explore the extent of climate influence in the subsequent sections.
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3.3. NPV and PV Response to Annual Precipitation and Temperature

The NPV and PV data for the end of the growing season from 2001 to 2019 were
obtained by calculating MODIS data. The accuracy of the linear spectral unmixing results
was verified by comparing them with the real values of the field sampling points. In
this study area, the RMSE for PV was 25% and for NPV was 33%. The effects of average
temperature and total precipitation on NPV and PV at the end of the growing season were
analyzed, and the results are shown in Figures 5 and A7, Figures A8–A10 in Appendix A.

Figure 5. (a) Response of non-photosynthetic vegetation to annual precipitation. (b) Response of
photosynthetic vegetation to annual precipitation. (c) Response of non-photosynthetic vegetation to
annual mean temperature. (d) Response of photosynthetic vegetation to annual mean temperature.

It was found that, when considering the effect of precipitation on vegetation at an
annual time scale, NPV is more responsive than PV to precipitation. Precipitation has
a positive effect on vegetation, while temperature has a weak negative effect (with a
slope of less than 0.15 in most areas). The effects of temperature and precipitation varied
significantly across different land cover types. In particular, in sandy land areas, the impact
of temperature and precipitation on NPV and PV over a long-term time scale was found to
be minimal. In contrast, grassland and shrub areas exhibited a certain degree of response
to long-term precipitation and temperature.
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Based on Figure A7 in Appendix A, the maximum impact of total precipitation on NPV
occurred between 33 and 45 months. Meanwhile, the response of PV to total precipitation
from January to September was more evident (Figure A8 in Appendix A). The effect of
average temperature on NPV varied slightly with different time delay scales. In a typical
steppe area, the coverage of NPV tended to decrease as temperature increased, but the
overall influence was relatively low across the study area (Figure A9 in Appendix A). PV,
on the other hand, had a very low response to average temperature at different time delay
scales, indicating that air temperature may not be the primary factor influencing changes
in PV coverage (Figure A10 in Appendix A).

3.4. Effects of Monthly Time Scale Precipitation on NPV and PV Spatial Distribution

Four periods of NPV and PV data from 2000, 2005, 2010, and 2015 (as shown in
Figures A3–A6 in Appendix A) were analyzed for regional correlation with meteorological
data. The results of the analysis are shown in Figures 6 and 7. Among them, the years 2010
(wet year) and 2000 (dry year) are representative. For ease of understanding, we will only
include figures for the years 2000 and 2015 in the main text. The impact of monthly precipi-
tation on NPV and PV in the years 2005 and 2010 can be found in Appendix A Figures A11
and A12. Each column in the figures represents a different desertification type, while each
row represents a different year.
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Figure 6. (a) Time-Lagged Response of NPV and PV to Monthly Precipitation on mobile dune
desertification during Dry Years. (b) Time-Lagged Response of NPV and PV to Monthly Precipitation
on coppice dune desertification during Dry Years. (c) Time-Lagged Response of NPV and PV to
Monthly Precipitation on Gobi desertification during Dry Years. (d) Time-Lagged Response of
NPV and PV to Monthly Precipitation on mobile dune desertification during Wet Years. (e) Time-
Lagged Response of NPV and PV to Monthly Precipitation on coppice dune desertification Wet Years.
(f) Time-Lagged Response of NPV and PV to Monthly Precipitation on Gobi desertification Wet Years.
Figure note: MBD represents mobile dune desertification; CD represents coppice dune desertification;
GD represents Gobi desertification; MD represents mild desertification; MOD represents moderate
desertification; and SD represents severe desertification. K is the response degree of NPV and PV to
precipitation in the desertification type and degree region.
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Figure 7. (a) Time-delay correlation (R2) of NPV and PV to Monthly Precipitation on mobile dune
desertification during Dry Years. (b) Time-delay correlation (R2) of NPV and PV to Monthly Precipi-
tation on coppice dune desertification during Dry Years. (c) Time-delay correlation (R2) of NPV and
PV to Monthly Precipitation on Gobi desertification during Dry Years. (d) Time-delay correlation
(R2) of NPV and PV to Monthly Precipitation on mobile dune desertification during Wet Years.
(e) Time-delay correlation (R2) of NPV and PV to Monthly Precipitation on coppice dune deser-
tification Wet Years. (f) Time-delay correlation (R2) of NPV and PV to Monthly Precipitation on
Gobi desertifi-cation Wet Years. Figure note: MBD represents mobile dune desertification; CD
represents coppice dune desertification; GD represents Gobi desertification; MD represents mild
desertification; MOD represents moderate desertification; and SD represents severe desertification.
R2 is the correlation.

Figure 6 illustrates that in the regional regression relationship established between
monthly precipitation and NPV/PV, most of the slopes exceed 0.25 (the position of the
green horizontal boxes in the figure is generally around 0.25). This indicates that for
every 1 mm increase in precipitation in the study area, NPV and PV may increase by
approximately 0.25%. The response of NPV and PV to precipitation varied significantly for
different desertification types and degrees within the first 21 months. In Figure 7, the R2

values indicate weak correlations in a statistical sense. However, based on the principle of
regional relevance, if a particular rainfall event leads to an overall increase in NPV/PV for
a specific desertification type and exhibits higher correlation compared to other rainfall
events, it suggests that this rainfall event has a certain degree of influence on NPV/PV.

The PV coverage at the end of the growing season in areas of moderate and severe
desertification showed correlation with precipitation in winter, the preceding, and current
growing seasons. Specifically, the PV coverage of moderate and severe mobile dunes
and coppice dunes showed more distinct changes to precipitation in different months
(yellow dotted line and green dotted line in Figures 6 and 7). The PV coverage of moderate
and severe desertification in the Gobi type (Figure 6c) fluctuated more in response to
monthly precipitation in arid years (2000, 2005, and 2015) than in other types and degrees
of desertification. However, the fluctuation decreased in the years with a humid climate
(2010) (Figure 6f).
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NPV (black line in Figure 7) and PV (red dashed line) of mild desertification exhibit a
relatively stable response to rainfall and do not fluctuate significantly with the occurrence
of rainfall events. In the desertification types of Gobi and sand dune reactivation, mildly
desertified NPV shows a higher correlation with rainfall events (Figure 7c). PV and NPV
information on moderate and severe desertification is more sensitive to precipitation
changes, and this sensitivity becomes more pronounced with the increasing severity of
drought (Figure 7). The dependence of PV and NPV on precipitation in coppice dune
desertification and mobile dune desertification was greater in arid years than in long-term
humid years (Figure 7b,e).

Overall, the response of NPV and PV to rainfall events is complex and influenced by
factors such as vegetation type, duration of drought, rainfall frequency, and other related
factors. Therefore, in the following section, we attempt to further elucidate certain issues
by combining the duration of drought with the occurrence of rainfall events.

3.5. Effects of Drought on NPV and PV Spatial Distribution at Different Time Scales
3.5.1. Occurrence of Drought in the Study Area

In this section, we will measure the impact of drought on the spatial distribution of
NPV and PV using the SPEI index. The measurements will be taken at scales of 1, 3, 6, and
12 months. The SPEI at different time scales at the end of the growing season is shown in
Figures A13–A16 in Appendix A. The end of the growing season in 2000 had a prolonged
and severe drought from July to September, with the SPEI values consistently below −2.0.
In 2005, the typical grassland area experienced a continuous drought, although the overall
drought severity was lower than that of 2000. In 2010, the area was continuously wet, while
2015 was characterized by a prolonged moderate drought. During the growing season, the
drought severity ranged from moderate to severe, but at the end of the growing season,
there were extreme wet conditions.

3.5.2. Impact of Drought and Rainfall Events on NPV and PV

The average effects of SPEI on NPV and PV were approximately 0.3, and these effects
varied depending on the year and type of desertification, as shown in Figures 8 and 9.
Specifically, the PV coverage of severe desertification showed a stronger response to SPEI.
In the persistent drought year of 2000, the PV coverage had a stronger response to drought
events at the 12-month scale (the orange line in Figure 8a–c), while in the persistent wet year
of 2010, the PV coverage had a stronger response to wet events at the 1-month and 3-month
scales (the orange line in Figure 8g–i). The response of PV coverage to SPEI increased after
extreme humid events occurred following long-term drought in 2015 (the orange line in
Figure 8j–l). The response of PV coverage to SPEI over three months was still higher for PV
with severe desertification.

In contrast, the response of NPV to SPEI was lower than that of PV, particularly for
the severe desertification type where NPV had the lowest response. The response of NPV
to SPEI at different time scales showed little change, but the response of NPV to SPEI at 6
and 12 months was slightly higher, with an average effect of approximately 0.2. In 2015,
the NPV of severely desertified land showed a significantly higher response to extreme
humid events, with an effect size of approximately 0.5 (the black, blue, and purple lines in
Figure 8j–l).

Overall, the correlation between SPEI and NPV and PV varies depending on the
year and type of desertification. In 2000, when drought was severe and continuous, the
correlation between SPEI and NPV/PV spatial distribution was weak due to the extremely
dry growing seasons (Figure 9a–c). In 2005, mild to moderate drought resulted in a higher
correlation between SPEI and NPV/PV for moderate desertification (Figure 9d–f). In
2010, severe mobile dune and coppice dune desertification had a strong correlation with
long-term humidity events (Figure 9g–i). In 2015, severe desertification NPV had a good
correlation with SPEI, especially for Gobi and coppice dune desertification, which had a
strong correlation with extreme humid events (Figure 9j–l).
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Figure 8. (a) Response of NPV and PV to SPEI on mobile dune desertification in the Year 2000.
(b) Response of NPV and PV to SPEI on coppice dune desertification in the Year 2000. (c) Response of
NPV and PV to SPEI on Gobi desertification in the Year 2000. (d) Response of NPV and PV to SPEI
on mobile dune desertification in the Year 2005. (e) Response of NPV and PV to SPEI on coppice
dune desertification in the Year 2005. (f) Response of NPV and PV to SPEI on Gobi desertification in
the Year 2005. (g) Response of NPV and PV to SPEI on mobile dune desertification in the Year 2010.
(h) Response of NPV and PV to SPEI on coppice dune desertification in the Year 2010. (i) Response of
NPV and PV to SPEI on Gobi desertification in the Year 2010. (j) Response of NPV and PV to SPEI
on mobile dune desertification in the Year 2015. (k) Response of NPV and PV to SPEI on coppice
dune desertification in the Year 2015. (l) Response of NPV and PV to SPEI on Gobi desertification
in the Year 2015. Figure note: MBD represents mobile dune desertification; CD represents coppice
dune desertification; GD represents Gobi desertification; MD represents mild desertification; MOD
represents moderate desertification; and SD represents severe desertification. K is the response degree
of NPV and PV to precipitation in the desertification type and degree region.
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Figure 9. (a) Correlation of NPV and PV to SPEI on mobile dune desertification in the Year 2000.
(b) Correlation of NPV and PV to SPEI on coppice dune desertification in the Year 2000. (c) Correlation
of NPV and PV to SPEI on Gobi desertification in the Year 2000. (d) Correlation of NPV and PV
to SPEI on mobile dune desertification in the Year 2005. (e) Correlation of NPV and PV to SPEI
on coppice dune desertification in the Year 2005. (f) Correlation of NPV and PV to SPEI on Gobi
desertification in the Year 2005. (g) Correlation of NPV and PV to SPEI on mobile dune desertification
in the Year 2010. (h) Correlation of NPV and PV to SPEI on coppice dune desertification in the Year
2010. (i) Correlation of NPV and PV to SPEI on Gobi desertification in the Year 2010. (j) Correlation
of NPV and PV to SPEI on mobile dune desertification in the Year 2015. (k) Response of NPV and
PV to SPEI on coppice dune desertification in the Year 2015. (l) Response of NPV and PV to SPEI
on Gobi desertification in the Year 2015. Figure note: MBD represents mobile dune desertification;
CD represents coppice dune desertification; GD represents Gobi desertification; MD represents mild
desertification; MOD represents moderate desertification; and SD represents severe desertification.
R2 is the correlation.
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The SPEI has a stronger ability to explain the spatial distribution of NPV and PV than
precipitation. Due to the occurrence of drought and humid events in different years, the
SPEI has a greater effect on the spatial distribution of NPV and PV. Long-term drought had
a significant influence on the photosynthetic information of severe desertification, while
short-term moisture had a great influence on the photosynthetic information, and long-
term moisture had a high correlation with the spatial distribution of non-photosynthetic
information.

4. Discussion
4.1. Uncertainty and Error Sources in the NPV and PV Products of This Study

As shown in Appendix A Figure A1, 85% of the errors in the final RF model adopted
in this study fall within the range of 0.1113. Here, we attempt to discuss the uncertainty in
NPV and PV products and the potential sources of error.

4.1.1. Nonlinear Mixing Effects of NPV, PV, and Bare Land at 500 m Scale

The time series linear regression analysis of NPV, PV coverage, and precipitation from
MODIS data revealed a discernible trend, but with a significant gap between adjacent
pixels. For the MODIS43 data product used by Guerschman et al. [16], the effect of such
noise points was significant after smooth filtering, and they should not still be present in
the results of this study. However, as shown in Figure 10, there are still some noise points
(blank pixels in Figure 10a,c) with different positions in MODIS NPV and PV coverage for
two consecutive years.
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In other similar studies in semi-arid regions of China, the end element value was
considered, and the calculated results still demonstrated this phenomenon. Therefore, in
arid and semi-arid regions, the 500 m pixel scale mixes a lot of ground objects, leading to a
nonlinear mixing effect. Considering the presence of such nonlinear mixing effects, this
study also employed machine learning models on MODIS imagery. However, due to the
mixed effects of different shrubs at the 500 m scale, the spectral differences between pixels
with the same NPV and PV cover were excessively large. As a result, the machine learning
models for MODIS NPV and PV based on the original dataset exhibited poor accuracy,
with R2 values not exceeding 0.2.

4.1.2. Potential Effects of Soil Properties and Vegetation Types on NPV Machine
Learning Models

Soil, sediments, and minerals in rocks exhibit strong absorption characteristics in the
SWIR2 spectral region [48], complicating the estimation of NPV coverage using lignocellu-
lose absorption. Specifically, methods that characterize NPV using only a single SWIR2
band (e.g., NDTI) are more susceptible to variations in surface cover, surface moisture, and
soil properties. In our study area, the predominant soil type is sandy soil. Measurements
of bare soil, NPV, and PV using a spectrometer within the 400–900 nm range indicate that
sandy soil impacts PV detection from 760 to 900 nm, but distinctions remain clear within
the 400–760 nm range, as illustrated in Figure 11.
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Additionally, water within plant tissues can alter or obscure the lignocellulose absorp-
tion features at 2100 nm [49]. Figure 11 also displays variances in the spectral characteristics
of different plants’ NPV in our study area, though the distinction between NPV and PV
remains consistent when using different band combinations.
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Multiple researchers have highlighted that using multiple SWIR2 bands rather than
a single SWIR2 band improves the performance of NPV characterization [50–52]. Conse-
quently, employing multiple band combinations can mitigate the influence of soil type
and vegetation type on machine learning models predicting NPV and PV. However, if the
study scope expands, the machine learning models developed in this research will need to
reintegrate vegetation and soil types, thereby increasing the sample diversity.

4.2. Long Time Delay Effect of Precipitation on NPV

Numerous studies have demonstrated that increased precipitation significantly en-
hances litter production and decomposition, while warming can accelerate litter decom-
position rates [42,53,54]. These findings are consistent with the responses of NPV to
precipitation and temperature observed in this study. Additionally, another study in the
arid and semi-arid regions of northern China indicated that litter quality is more likely af-
fected by the interval between precipitation events rather than the reduction in precipitation
itself. Drought has been identified as the primary factor influencing litter quality [8].

Our study analyzed the effects of rainfall and drought on NPV and PV and similarly
found that when rainfall continued to decrease and meteorological drought continued to
accumulate, the responses of NPV to rainfall became more pronounced. In years with
prolonged drought, NPV is correlated with precipitation during the late winter and growing
season, which is consistent with the findings of Liang [55]. This implies that in drought
years, vegetation communities rely more heavily on groundwater recharge during the
winter. This underscores the importance of focusing on the time-lag and cumulative
effects of meteorological events such as droughts in future research on arid and semi-
arid ecosystems.

Simultaneously, considering the type and degree of desertification can help us un-
derstand that litter is more susceptible to drought and cumulative drought in ecologically
vulnerable areas with severe desertification. Litter can help retain water, reduce soil
temperature, and reflect the resilience of vegetation communities to climate disturbances.
Therefore, including NPV as a remote sensing indicator of the stability of arid and semi-arid
ecological communities in subsequent studies holds great scientific significance.

4.3. Response of PV to Short-Term Precipitation

The study by Tang et al. [56] showed that the response of carbon flux to precipitation
in arid and semi-arid ecosystems is related to the amount and timing of rainfall and early
soil moisture. Similarly, the study by Xu et al. [33] demonstrated that the duration of
drought affects the response of ecosystem photosynthesis. Consistent with these findings,
this present study found that under the cumulative effect of long-term drought, extreme
humid events led to a significant increase in PV coverage. A study on the response of the
photosynthetic characteristics of plant communities in similar ecological environments
to drought concluded that the ecosystem had strong resistance to soil drought and high
temperature, maintained long-time light-use efficiency during drought, and increased
photosynthetic capacity rapidly when the soil was wet [57]. According to Nakano, Nemoto,
and Shinoda [34], ecosystem respiration surged after a heavy rainfall event. The short-
term response of PV to rainfall and drought reflects the resilience of arid and semi-arid
ecosystems after extreme climate events.

4.4. Research Shortcomings and Prospects

In the analysis conducted in this study, we did not examine the nonlinear effects of
climate on vegetation, nor did we consider the short-term cumulative effects of precipitation
on plant communities. Instead, we focused solely on the lag effects. Future research should
integrate multiple factors, such as surface temperature, human activities, and soil moisture,
employing nonlinear analytical models to investigate the causes of dynamic changes in
ecosystems in arid and semi-arid regions.
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Our study posits that NPV and PV are robust indicators of the health status and
resilience of arid and semi-arid ecosystems to extreme climate events. This implies that in
arid and semi-arid ecosystems, the mutual feedback effects between PV, NPV, and water
will provide new insights and perspectives for the study of vegetation pattern dynamics.
Additionally, it will offer crucial evidence for researching the resistance and sensitivity of
these ecosystems to climate change. Furthermore, since NPV encompasses both litter and
standing dead biomass, investigating the relationships among PV, NPV, and soil organic
carbon will also provide important methods for spatial quantification of the carbon cycle in
arid and semi-arid ecosystems.

5. Conclusions

The main conclusions of this study are as follows:

1. Spectral Variability and Machine Learning Models: In arid and semi-arid regions, the
mixture of shrubs and herbaceous plants leads to significant spectral variability at
different spatial scales for the same location. Consequently, machine learning models
developed for NPV and PV using Landsat imagery cannot be directly transferred to
MODIS imagery. Neural networks that only use the RELU activation function, even
in deep learning models, perform poorly in NPV inversion tasks. In contrast, random
forests, as an ensemble method, demonstrate superior inversion accuracy for both
NPV and PV.

2. PV, NPV, and Monthly Precipitation: The response of PV to monthly precipitation
was greater than that of NPV, with a more obvious response observed in areas with
higher degrees of desertification.

3. PV, NPV, and Drought Accumulation: The accumulation time of drought signifi-
cantly influenced NPV and the response of PV to climate. In areas with more severe
desertification, the response of NPV to cumulative drought was more pronounced.
Under conditions of cumulative drought, both NPV and PV were highly dependent
on precipitation during the growing season and winter of the previous year. However,
their dependence on precipitation decreased under cumulative wetting conditions.

4. PV and Extreme Humid Events: After a long-term drought, extreme humid events can
lead to an increase in the coverage of moderate and mild desertification PV, whereas
the response of severe desertification PV to extreme humid events is less pronounced
than its response to long-term drought.
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Appendix A

Table A1. Images used in 2000–2001 and their acquisition schedule.

Landsat 5 Ranks
No.

Image Acquisition
Time

Reference (R) or
Adjust (A)

Landsat 5 Ranks
No.

Image Acquisition
Time

Reference or
Adjust

128033 20000917 R 127034 20000926 A
128034 20000917 A 129033 20011017 A
127032 20000926 A 129034 20000924 A
127033 20000926 A

Table A2. Images used in 2004–2005 and their acquisition schedule.

Landsat 5 Ranks
No.

Image Acquisition
Time

Reference (R) or
Adjust (A)

Landsat 5 Ranks
No.

Image Acquisition
Time

Reference or
Adjust

128033 20040928 R 127034 20040922 A
128034 20040928 A 129033 20050922 A
127032 20051007 A 129034 20051007 A
127033 20040922 A

Table A3. Images used in 2010–2011 and their acquisition schedule.

Landsat 5 Ranks
No.

Image Acquisition
Time

Reference (R) or
Adjust (A)

Landsat 5 Ranks
No.

Image Acquisition
Time

Reference or
Adjust

128033 20100912 R 127034 20101007 A
128034 20100912 A 129033 20110922 A
127032 20101007 A 129034 20110922 A
127033 20101007 A

Table A4. Images used in 2014–2015 and their acquisition schedule.

Landsat 5 Ranks
No.

Image Acquisition
Time

Reference (R) or
Adjust (A)

Landsat 5 Ranks
No.

Image Acquisition
Time

Reference or
Adjust

128033 20141007 R 127034 20151005 A
128034 20141007 A 129033 20150917 A
127032 20151005 A 129034 20150917 A
127033 20151005 A
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Figure A1. (a) Process of parameter selection for RF models. (b) Error distribution of random forest 
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Figure A1. (a) Process of parameter selection for RF models. (b) Error distribution of random forest
models. (c) Process of parameter selection for BPNN. (d) Process of parameter selection for FCNN.
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Figure A2. (a) The regression relationship between Landsat 8 B2 and Landsat 5 B1. (b) The regression
relationship between Landsat 8 B3 and Landsat 5 B2. (c) The regression relationship between Landsat
8 B4 and Landsat 5 B3. (d) The regression relationship between Landsat 8 B5 and Landsat 5 B4.
(e) The regression relationship between Landsat 8 B6 and Landsat 5 B5. (f) The regression relationship
between Landsat 8 B7 and Landsat 5 B6.
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Figure A3. (a) Non-photosynthetic vegetation coverage at the end of the growing season in 2000. (b) 
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Figure A3. (a) Non-photosynthetic vegetation coverage at the end of the growing season in 2000.
(b) Photosynthetic vegetation coverage at the end of the growing season in 2000.
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(b) Photosynthetic vegetation coverage at the end of the growing season in 2005.



Remote Sens. 2024, 16, 3226 25 of 37
Remote Sens. 2024, 16, x FOR PEER REVIEW 26 of 39 
 

 

 

Figure A5. (a) Non-photosynthetic vegetation coverage at the end of the growing season in 2010. (b) 
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Figure A5. (a) Non-photosynthetic vegetation coverage at the end of the growing season in 2010.
(b) Photosynthetic vegetation coverage at the end of the growing season in 2010.
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Figure A6. (a) Non-photosynthetic vegetation coverage at the end of the growing season in 2015.
(b) Photosynthetic vegetation coverage at the end of the growing season in 2015.



Remote Sens. 2024, 16, 3226 27 of 37

Figure A7. (a) Response degree of non-photosynthetic vegetation at the end of growing season to
total precipitation in 1–9 months. (b) Response degree of non-photosynthetic vegetation at the end of
growing season to total precipitation in 10–21 months. (c) Response degree of non-photosynthetic
vegetation at the end of growing season to total precipitation in 22–33 months. (d) Response degree
of non-photosynthetic vegetation at the end of growing season to total precipitation in 34–45 months.
(e) Response degree of non-photosynthetic vegetation at the end of growing season to total precipita-
tion in 46–57 months.
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Figure A8. (a) Response degree of photosynthetic vegetation at the end of growing season to total
precipitation in 0–9 months. (b) Response degree of photosynthetic vegetation at the end of growing
season to total precipitation in 9–21 months. (c) Response degree of photosynthetic vegetation at the
end of growing season to total precipitation in 21–33 months. (d) Response degree of photosynthetic
vegetation at the end of growing season to total precipitation in 33–45 months. (e) Response degree
of photosynthetic vegetation at the end of growing season to total precipitation in 45–57 months.
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Figure A9. (a) Response of non-photosynthetic vegetation to 0–9 month mean temperature at the
end of growing season. (b) Response of non-photosynthetic vegetation to 9–21 month mean tempera-
ture at the end of growing season. (c) Response of non-photosynthetic vegetation to 21–33 month
mean temperature at the end of growing season. (d) Response of non-photosynthetic vegetation to
33–45 month mean temperature at the end of growing season. (e) Response of non-photosynthetic
vegetation to 45–57 month mean temperature at the end of growing season.
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of growing season. (b) Response of photosynthetic vegetation to 9–21 month mean temperature at 

the end of growing season. (c) Response of photosynthetic vegetation to 21–33 month mean temper-

ature at the end of growing season. (d) Response of photosynthetic vegetation to 33–45 month mean 

temperature at the end of growing season. (e) Response of photosynthetic vegetation to 45–57 month 

mean temperature at the end of growing season. 

Figure A10. (a) Response of photosynthetic vegetation to 0–9 month mean temperature at the end of
growing season. (b) Response of photosynthetic vegetation to 9–21 month mean temperature at the
end of growing season. (c) Response of photosynthetic vegetation to 21–33 month mean temperature
at the end of growing season. (d) Response of photosynthetic vegetation to 33–45 month mean
temperature at the end of growing season. (e) Response of photosynthetic vegetation to 45–57 month
mean temperature at the end of growing season.
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Figure A11. Time-delay responses of non-photosynthetic and photosynthetic vegetation coverage to
monthly precipitation in different desertification types and degrees. Figure note: MBD represents
mobile dune desertification; CD represents coppice dune desertification; GD represents Gobi deser-
tification; MD represents mild desertification; MOD represents moderate desertification; and SD
represents severe desertification. K is the response degree of NPV and PV to precipitation in the
desertification type and degree region.



Remote Sens. 2024, 16, 3226 32 of 37
Remote Sens. 2024, 16, x FOR PEER REVIEW 33 of 39 
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Figure A12. Time-delay correlation (R2) of non-photosynthetic and photosynthetic vegetation cover
with monthly precipitation in different desertification types and degrees. Figure note: MBD repre-
sents mobile dune desertification; CD represents coppice dune desertification; GD represents Gobi
desertification; MD represents mild desertification; MOD represents moderate desertification; and
SD represents severe desertification. R2 is the correlation.
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Figure A13. (a) Spatial distribution map of 1-month SPEI series in September 2000. (b) Spatial dis-

tribution map of 3-month SPEI series in September 2000. (c) Spatial distribution map of 9-month 
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Figure A13. (a) Spatial distribution map of 1-month SPEI series in September 2000. (b) Spatial
distribution map of 3-month SPEI series in September 2000. (c) Spatial distribution map of 9-month
SPEI series in September 2000. (d) Spatial distribution map of 12-month SPEI series in September 2000.
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Figure A14. (a) Spatial distribution map of 1-month SPEI series in September 2005. (b) Spatial dis-
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Figure A14. (a) Spatial distribution map of 1-month SPEI series in September 2005. (b) Spatial
distribution map of 3-month SPEI series in September 2005. (c) Spatial distribution map of 9-month
SPEI series in September 2005. (d) Spatial distribution map of 12-month SPEI series in September 2005.
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Figure A15. (a) Spatial distribution map of 1-month SPEI series in September 2010. (b) Spatial dis-

tribution map of 3-month SPEI series in September 2010. (c) Spatial distribution map of 9-month 
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2010. 

Figure A15. (a) Spatial distribution map of 1-month SPEI series in September 2010. (b) Spatial
distribution map of 3-month SPEI series in September 2010. (c) Spatial distribution map of 9-month
SPEI series in September 2010. (d) Spatial distribution map of 12-month SPEI series in September 2010.
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Figure A16. (a) Spatial distribution map of 1-month SPEI series in September 2015. (b) Spatial dis-

tribution map of 3-month SPEI series in September 2015. (c) Spatial distribution map of 9-month 

SPEI series in September 2015. (d) Spatial distribution map of 12-month SPEI series in September 

2015. 
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