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Abstract: The Leaf Area Index (LAI) strongly influences vegetation evapotranspiration and pho-
tosynthesis rates. Timely and accurately estimating the LAI is crucial for monitoring vegetation
growth. The unmanned aerial vehicle (UAV) multispectral digital camera platform has been proven
to be an effective tool for this purpose. Currently, most remote sensing estimations of LAIs focus on
cereal crops, with limited research on economic crops such as apples. In this study, a method for
estimating the LAI of an apple orchard by extracting spectral and texture information from UAV
multispectral images was proposed. Specifically, field measurements were conducted to collect LAI
data for 108 sample points during the final flowering (FF), fruit setting (FS), and fruit expansion (FE)
stages of apple growth in 2023. Concurrently, UAV multispectral images were obtained to extract
spectral and texture information (Gabor transform). The Support Vector Regression Recursive Feature
Elimination (SVR-REF) was employed to select optimal features as inputs for constructing models to
estimate the LAI. Finally, the optimal model was used for LAI mapping. The results indicate that
integrating spectral and texture information effectively enhances the accuracy of LAI estimation,
with the relative prediction deviation (RPD) for all models being greater than 2. The Categorical
Boosting (CatBoost) model established for FF exhibits the highest accuracy, with a validation set R2,
root mean square error (RMSE), and RPD of 0.867, 0.203, and 2.482, respectively. UAV multispectral
imagery proves to be valuable in estimating apple orchard LAIs, offering real-time monitoring of
apple growth and providing a scientific basis for orchard management.

Keywords: LAI; UAV multispectral images; gabor transform; apple orchard; CatBoost

1. Introduction

Chinese apple (Malus pumila Mill.) production contributes to over half of the world’s
total apple output, with the Loess Plateau being one of the largest apple-producing areas
globally [1,2]. The quality and quantity of apples serve as crucial indicators for assessing
the agricultural economic development of the Loess Plateau [3]. The Leaf Area Index
(LAI), defined as half the total leaf area per unit ground area, is an essential parameter for
characterizing vegetation canopy structure and function [4,5]. Due to its relationship with
vegetation evapotranspiration and photosynthesis rates, the LAI is a vital input in various
models for eucalypt growth, water usage, and evapotranspiration [5–7]. It finds extensive
applications in agricultural and forestry production, ecological environment monitoring,
and global change research [8,9]. Accurate and timely acquisition of LAI information in
apple orchards is critical for scaling physiological measurements from the leaf to the canopy
level and for monitoring the health of apple trees [10].
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Direct measurement of an LAI requires substantial labor and resources and damages
crop leaves during field sampling, making it impractical for large-scale applications [11].
Remote sensing technology provides a rapid, efficient, and scalable method for estimat-
ing LAIs from regional to global scales [12]. Satellite remote sensing, in particular, is an
effective means of large-scale agricultural monitoring because of its extensive coverage
and non-destructive nature. However, satellite data often face temporal and spatial
heterogeneity issues owing to the effects of clouds and cloud shadows [13]. Unmanned
aerial vehicles (UAVs) have emerged as a near-ground remote sensing platform in recent
years. UAVs are small, user-friendly, and can be equipped with various sensors (visible,
multispectral, hyperspectral, or radar) for near-ground remote sensing, offering great
potential for monitoring various crop parameters [14]. Multispectral sensors extend
beyond the visible spectrum to include the red edge (RE) and near-infrared (NIR) bands,
capturing more LAI information from crop canopies [15]. The pigments in green plant
leaves do not absorb light above 700 nm, leading to a rapid change in reflectance in the
RE region and high reflectance in the NIR region, making them more sensitive to plant
LAIs [16,17]. The methods for estimating the LAI from remote sensing multispectral
data generally fall into the two following categories: empirical statistical methods and
physical models. Physical models are typically based on the radiative transfer model
theory, such as the PROSAIL model [18], which can provide more physical information
about an LAI. Nevertheless, the parameterization and computational complexity of
these models are significantly increased [19]. In terms of empirical methods, researchers
have established regression models based on the statistical relationship between ground-
measured LAI data and remote sensing data [20]. However, statistical regression models
struggle to handle interactions and nonlinear relationships between variables [21]. The
introduction of machine learning has brought about new opportunities for LAI remote
sensing estimation. Machine learning models learn the mapping relationship between
remote sensing data and LAI, demonstrating high estimation accuracy. Algorithms such
as Support Vector Machines (SVMs) [22], Random Forests (RFs) [23], and Gradient Boost-
ing Decision Trees (GBDTs) [24] have been widely used to identify complex nonlinear
relationships in remote sensing data for LAI estimation. Li et al. [25] validated the strong
capability of the RF method in predicting grassland LAIs, suggesting it as an alternative
to traditional empirical regression models. SVR effectively handles high-dimensional
data and nonlinear problems, making it widely applicable in classification and regres-
sion tasks [26,27]. Zhang et al. [28] used three machine learning methods to predict leaf
chlorophyll content in apple orchards, finding that the Categorical Boosting (CatBoost)
model performed best due to its excellent generalization ability and robustness.

However, most studies estimating orchard LAI use VIs, and few have combined
UAV multispectral images with texture features (TFs) and texture indices (TIs) to es-
timate apple orchard LAIs. Liu et al. [29] selected five vegetation indices (VIs) highly
correlated with apple LAIs based on UAV multispectral data and conducted experiments
on three different types of apples in Shaanxi Province. The results from the constructed
LAI estimation model showed that the Gradient Boosting Decision Tree (GBDT) pro-
vided the best accuracy, with an R2 of 0.846. Zhang et al. [30] constructed a hybrid
inversion model to estimate the LAI of individual apple tree canopies by removing
canopy shadows and combining the PROSAIL model with UAV multispectral image
spectral indices. The results showed an R2 of 0.74 for LAI estimation. The TFs of remote
sensing images represent the spatial heterogeneity of spectral reflectance in different
bands, reflecting the visual characteristics of homogeneity in the image [26,31]. These
features are widely used in image recognition and classification [32,33]. Texture informa-
tion enhances the identification of vegetation spatial structures and improves monitoring
of vegetation growth [34,35]. Numerous studies have demonstrated that adding texture
information can improve LAI estimation accuracy. Qiao et al. [26] developed a model
to estimate peanut LAIs based on spectral and texture information extracted from UAV
multispectral images. Using spectral and texture information (Grey Level Co-occurrence
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Matrix, GLCM) from UAV multispectral images, Li et al. [36] estimated the LAI of winter
wheat at two critical growth stages. The results both indicated that the LAI estimation
models incorporating VIs and TFs were more accurate than those using a single type
of information. The Gabor transform, also known as the windowed Fourier transform
(with the Gaussian function as the window function), is a conversion from the time
domain to the frequency domain. It has excellent properties for extracting local spatial
and frequency domain information, addressing the limitations of the Fourier transform
in describing local frequency domain features. The Gabor transform identifies specific
directional patterns in images and analyzes them at various scales, thus providing rich
feature information [37–40]. Currently, most quantitative inversion studies use GLCM
for TF extraction, with limited use of the Gabor transform. The suitability of the Ga-
bor transform for extracting texture information from multispectral images for LAI
estimation remains to be explored.

Currently, most LAI remote sensing estimations focus on cereal crops such as
corn [41], rice [31,42], and winter wheat [43], with limited research on economic
crops [11]. Given the significant differences in canopy structures among various vegeta-
tion types, it is necessary to develop more accurate LAI estimation methods for apple
orchards by incorporating texture information from UAV multispectral images, which
can subsequently be used to monitor tree health. Therefore, a method for estimating
apple orchards’ LAIs based on spectral and texture information extracted from UAV
multispectral images was proposed in this study. The specific research steps are as fol-
lows: (1) Extract spectral and texture features (Gabor transform) from UAV multispectral
images of apple orchards at different growth stages and construct VIs and Tis. (2) Apply
feature selection methods (Support Vector Regression Recursive Feature Elimination,
SVR-RFE) to rank the importance of VIs, TFs, and TIs and filter out the most critical
features. (3) Construct the SVR, RFR, and Catboost models to estimate LAIs using VIs
and TFs, or VIs, TFs, and TIs as inputs, respectively, to explore the optimal estimation
model. (4) The optimal model was then employed to map the orchard’s LAI. The results
demonstrate that combining VIs with texture information significantly improves the
accuracy of LAI estimation for apple canopies, with the Catboost model achieving the
highest precision. This approach offers a valuable tool for precision agriculture in apple
orchards and provides important insights for future vegetation parameter estimation
based on UAV imagery.

2. Materials and Methods
2.1. Study Area

The study area is located in Wuquan Town, Yangling District, Xianyang City, Shaanxi
Province (108◦0′57′′, 34◦18′47′′), covering an area of about 3.75 hectares (Figure 1a). Yan-
gling is situated within a river valley plain in the Fenwei Valley agricultural area of the
Loess Plateau. The climate type is characterized by a continental monsoon semi-humid
climate, with an average annual temperature of 12.9 ◦C and an average annual precipita-
tion of 635.1–663.9 mm [11]. It exhibits distinct day–night temperature differences and
four distinct seasons, which are conducive to the growth of apple trees, facilitating fruit
sugar accumulation and improving fruit quality and taste. Additionally, the soil type in
Yangling is Lou soil, known for its good permeability and fertility, which promotes the
development of apple tree roots (https://www.ylq.gov.cn/zjyl/ylgl/93.htm, accessed
on 1 May 2024). The orchard has been cultivating apples for 11 years and represents a
typical apple orchard.

https://www.ylq.gov.cn/zjyl/ylgl/93.htm


Remote Sens. 2024, 16, 3237 4 of 25Remote Sens. 2024, 16, x FOR PEER REVIEW 4 of 26 
 

 

 
Figure 1. (a) Geographic location of the study area; (b) UAV image and sampling sites. The red 
star indicates our study area. In (a), the orange area denotes Xianyang City, the green area signifies 
Wuquan Town, and the gray area indicates Yangling District. 

2.2. Data Acquisition and Processing 
The growth cycle of apple trees is relatively long. Blooming occurs in mid-March, 

followed by fruit-bearing in May, with the harvest taking place in the autumn. Typically, 
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rapidly during the FF stage and maintains a high level from the vigorous growth phase to 
the harvest stage, as an increased number of leaves are essential for nutrient absorption 
and transpiration during fruit development [6]. LAI measurements and UAV multispec-
tral image collection in this study were conducted at the following three different growth 
stages of apple trees in 2023: the FF on 30 May, the FS on 3 July, and the FE on 11 August. 
A total of 108 apple trees were uniformly selected as sampling points within the orchard 
(Figure1b), with the coordinates of sampling points remaining consistent across all stages. 
The specific workflow diagram is shown in Figure 2. 

Figure 1. (a) Geographic location of the study area; (b) UAV image and sampling sites. The red
star indicates our study area. In (a), the orange area denotes Xianyang City, the green area signifies
Wuquan Town, and the gray area indicates Yangling District.

2.2. Data Acquisition and Processing

The growth cycle of apple trees is relatively long. Blooming occurs in mid-March,
followed by fruit-bearing in May, with the harvest taking place in the autumn. Typi-
cally, an apple tree begins to produce fruit 2–3 years after planting and then follows a
consistent developmental cycle, including stages such as bud breaking (BB), flowering,
final flowering (FF), fruit setting (FS), fruit expansion (FE), and maturation [44,45]. The
LAI increases rapidly during the FF stage and maintains a high level from the vigorous
growth phase to the harvest stage, as an increased number of leaves are essential for
nutrient absorption and transpiration during fruit development [6]. LAI measurements
and UAV multispectral image collection in this study were conducted at the following
three different growth stages of apple trees in 2023: the FF on 30 May, the FS on 3 July,
and the FE on 11 August. A total of 108 apple trees were uniformly selected as sampling
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points within the orchard (Figure 1b), with the coordinates of sampling points remaining
consistent across all stages. The specific workflow diagram is shown in Figure 2.
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Figure 2. Flowchart of data analysis and processing.

2.2.1. LAI Measurement

An apple canopy LAI image was obtained using the CI-110 Plant Canopy Imager (CID
Inc., Washington, DC, USA) and LAI calculation was undertaken using the CI-110 Plant
Canopy Analysis software (https://cid-inc.com/, accessed on 11 March 2024). Leveraging
its unique design features, such as a 170◦ fisheye lens and an 8-megapixel high-resolution
camera, the CI-110 ensured clarity and coverage of image acquisition. The operating
principle of the CI-110 is based on the canopy gap fraction method, which indirectly
estimates the LAI by measuring the proportion of visible sky under the canopy. This method
is not only efficient but also non-invasive to plants. The CI-110 was positioned about 0.5 m
above the ground to ensure data reliability and accuracy during observations [11]. Each
sampling point underwent two independent observations, with the average value being
taken as the final LAI for that sampling point. Figure 3 illustrates the observation and
processing of the apple canopy during the FS using the CI-110.

2.2.2. Acquisition and Processing of UAV Multispectral Image

DJI Phantom 4 Multispectral drone (DJI Innovations, Shenzhen, China) was utilized to
acquire multispectral images of the study area (Table 1). Before acquiring the UAV data, it
is essential to perform radiometric calibration to characterize the sensor’s response under
current environmental conditions. The flight altitude was uniformly set at 30 m, with a
flight speed of 5 m/s and longitudinal and lateral overlap rates set at 75%. Flight times were
selected to be in the clear, windless morning periods. The multispectral images underwent
geometric correction, registration, and stitching using Pix4D Mapper software to obtain the

https://cid-inc.com/
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reflectance data. In ArcGIS 10.8 software, buffer zones were established for the sampling
points, with a radius of 0.5 m yielding the best correlation between band reflectance and the
LAI [11]. Subsequently, the average reflectance value of all raster cells within each buffer
zone was calculated and assigned as the reflectance value for the respective sampling point.
This process produced reflectance data for 108 sampling points at each growth stage.
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Table 1. Detailed parameters information of multispectral UAV used in this study.

UAV Parameter Value

Central wavelength

Blue (B) 450 nm
Green (G) 560 nm

Red (R) 650 nm
Red-edge (RE) 730 nm

Near-infrared (NIR) 840 nm

Maximum flight speeds
Ascending 6 m/s
Descending 3 m/s

Horizontal flight 50 km/h

Weight
Ground Sampling Distance

Total weight
(flight altitude/18.9) cm/pixel

1.487 kg
1.59 cm/pixel

2.3. Methods
2.3.1. Construction of Vegetation Indices, Texture Features, and Texture Indices

Vegetation indices, obtained through mathematical calculations on particular spectral
bands, effectively mitigate the impact of sensor and environmental noise on targets. More-
over, combinations of reflectance from different bands can partially mitigate the influence
of leaf physical properties (leaf structure, orientation, and radiation angle) on canopy
spectra. For example, the Normalized Difference Vegetation Index (NDVI) is derived by
applying a nonlinear stretch to the reflectance of NIR and R bands, thereby enhancing
the contrast between them. It is commonly employed to monitor vegetation growth and
mitigate certain radiometric errors. NDVI values range from −1 to 1, with positive values
indicating the presence of vegetation [46]. The Ratio Vegetation Index (RVI), defined as
the ratio of NIR to R reflectance, is highly sensitive to vegetation. In areas with healthy
green vegetation, the RVI is significantly greater than 1, whereas, for bare surfaces, it
typically hovers around 1 [47]. Due to the limited research on the LAI of apple orchards, we
referenced previous studies estimating the LAIs of apple orchards, kiwi orchards, maize,
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and winter wheat [10,28,30,39,43]. In this study, 19 VIs were calculated from the B, G, R,
RE, and NIR bands for the inversion of the apple canopy LAI, as detailed in Table 2.

Table 2. Vegetation indices used in this study.

VIs Formula Reference

NDVI (NIR − R)/(NIR + R) [46]
RVI NIR/R [47]

Difference Vegetation Index (DVI) NIR − R [48]
Transformed Normalized Difference Vegetation Index (TNDVI)

√
NDVI + 0.5 [49]

Renormalized Difference Vegetation Index (RDVI) (NIR − R)/
√

NIR + R [50]
Normalized Green–Red Difference Index (NGRDI) (G − R)/(G + R) [51]

Normalized Green Index (NGI) G/(NIR + R + G) [52]
Normalized Difference Red Edge Index (NDRE) (NIR − RE)/(NIR + RE) [53]

Enhanced Vegetation Index (EVI) 2.5[(NIR − R)/(NIR + 6R − 7.5B + 1)] [54]
Optimized Soil Adjusted Vegetation Index (OSAVI) (NIR − R)/(NIR − R + 0.16) [55]

MERIS terrestrial chlorophyll index (MTCI) (NIR − RE)/(RE − R) [56]
Chlorophyll Index Red Edge (CIRE) NIR/RE − 1 [57]

2-Band Enhanced Vegetation Index (EVI2) 2.5(NIR − R)/(1 + NIR + 2.4R) [58]
Green Normalized Difference Vegetation Index (GNDVI) (NIR − G)/(NIR + G) [59]

Triangle Vegetation Index (TVI) 60(NIR − G) − 100(R − G) [60]
Visible Atmospherically Resistant Index (VARI) (G − R)/(G + R − B) [61]

Soil Adjusted Vegetation Index (SAVI) 1.5(NIR − R)/(NIR + R + 0.5) [62]
Modified Triangle Vegetation Index (MTVI) 1.2[1.2(NIR − G) − 2.5(R − G)] [63]
Structure Insensitive Pigment Index (SIPI) (NIR − B)/(NIR − R) [64]

Gabor transform involves filtering images using Gabor filtering, where the phase
parameter controls the return value of the Gabor function, comprising both real and
imaginary parts. The imaginary part represents the odd-symmetric filter, while the real
part represents the even-symmetric filter. The texture features of the image are derived
from the modulus of the real and imaginary parts (Formulas (1)–(5)) [40,65].

Real:

g(x, y) = e(−
x′2+γ2y′2

2σ2 )cos
(

2π
x′

λ
+∅

)
(1)

Imaginary:

g(x, y) = e(−
x′2+γ2y′2

2σ2 )sin
(

2π
x′

λ
+∅

)
(2)

x′ = xcos(θ) + ysin(θ) (3)

y′ = ycos(θ)− xsin(θ) (4)

T =
√

real2 + imaginary2 (5)

where x and y denote the pixel coordinates in the image while x′ and y′ represent the
new position coordinates generated by the rotated Gabor kernel function. λ represents
the wavelength, θ signifies the orientation of the parallel stripes in the Gabor function, ∅
denotes the phase offset, σ stands for the standard deviation of the Gaussian function, and
γ represents the spatial aspect ratio. real and imaginary, respectively, denote the real and
imaginary parts.

In apple canopy LAI research, Gabor filtering was applied to process UAV multispec-
tral images, extracting the four statistical features, mean (MEAN), variance (VAR), second
moment (SEC), and correlation (CORR), across the five spectral channels [66]. Following
fine-tuning, the parameters of the Gabor filtering were set to a window size of 3 × 3, a
kernel size of 9, a sigma of 1, a theta of 0, a lambda of 5, a gamma of 0.5, a psi of 0, and an
angle of 0, resulting in the optimal texture feature extraction. A total of 20 texture features
were extracted for each period. To simplify the nomenclature of texture features, band
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names were added to differentiate the texture information of each band. For instance,
“MEAN-R” denotes the mean value of the R.

TFs from different bands were combined to construct the TIs [67], including a Normal-
ized Difference Texture Index (NDTI), a Ratio Texture Index (RTI), and a Difference Texture
Index (DTI) (Table 3). A total of 570 TIs were extracted for each period. To simplify the
nomenclature of TIs, texture features and band names were added in the LAI research to
differentiate each TI composed of texture information from different bands. For example,
“NDTIMEAN-R/SEC-RE” represents the NDTI formed by the MEAN of R and SEC of RE.

Table 3. Texture indexes constructed in this study.

TIs Formula

Normalized Difference Texture Index (NDTI) (T1 − T2)/(T1 + T2)
Ratio Texture Index (RTI) T1/T2

Difference Texture Index (DTI) T1 − T2
where T1 and T2 represent two different selected texture features.

2.3.2. Feature Importance Ranking

Support Vector Regression-Recursive Feature Elimination (SVR-RFE) is a feature
selection method based on SVR that is designed to eliminate redundant information among
features. It utilizes the model coefficients of SVR to assess feature importance and employs
a recursive feature elimination strategy to select variables. The main process of using this
method for sorting and filtering features in this study includes the following: (1) Features
are initially input into the SVR model for training to determine if the model is optimal.
(2) If the model is optimal, the best features are output. Otherwise, the importance score of
each feature is calculated, and the least important feature is removed. (3) The remaining
features are then re-input into the SVR model for further training until the optimal model is
achieved. (4) The features are ranked according to their importance based on the removal
sequence [68]. During feature selection, the dataset was split into training and testing sets
in a 7:3 ratio, with the random seed set to 42 to ensure reproducibility. The Radial Basis
Function (RBF) kernel was used with other parameters set to default. Cross-validation was
employed to select the optimal features.

In this study, VIs were initially used as inputs for feature importance ranking to select
the optimal VIs for constructing the LAI estimation model. Subsequently, all TFs and TIs
were input into the SVR-RFE to identify the best combination of TFs and TIs. The selected
VIs, TFs, and TIs were then used as inputs to build the model, aiming to investigate whether
incorporating texture information improves the accuracy of the LAI estimation.

2.3.3. Modeling Methods

CatBoost is an open-sourced machine learning algorithm created by the Russian search
engine company Yandex in 2017. It optimizes the GBDT algorithm and integrates multiple
base learners using a serial method. There are dependencies among the base learners
generated during training. The final result is obtained by weighting the regression values
of all base learners [69]. CatBoost uses a greedy strategy to build models, allowing them
to gradually learn the underlying patterns and structure of the data, thereby effectively
improving prediction accuracy. By applying Ordered Boosting to address the gradient
bias issues, CatBoost considers the importance of features and sequentially adds them
according to their importance. Additionally, it employs Oblivious Trees as base predictors,
endowing the model with stronger robustness and generalization capabilities. CatBoost has
the following four important parameters: iterations (maximum number of decision trees),
learning rate (controls the convergence speed of the model), depth (maximum depth of the
trees), and loss function. CatBoost was employed to estimate the LAI of the apple orchard
in this study. RMSE was chosen as the loss function, and a grid search with cross-validation
was conducted to optimize the model’s hyperparameters. The number of iterations was
set within the range of 100 to 1000 with intervals of 100, while the learning rate was set
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within the range of 0.01 to 0.1 with arbitrary values to mitigate overfitting. The depth was
constrained to integers between 6 and 12 while other parameters in the model were kept at
their default values.

RFR is an ensemble learning algorithm that utilizes Bootstrap sampling with replace-
ment to randomly select subsets of training samples and variables, generating multiple
decision trees [23]. In handling regression problems, RFR derives the final prediction by
averaging the predicted values of all decision trees. It excels at handling high-dimensional
and large-scale datasets and showcasing a good generalization performance [70,71]. RFR
can randomly select features for branching, increasing model diversity and making the
model more robust and less susceptible to noisy data and outliers. By combining the
predictions of multiple relatively independent decision trees, RFR mitigates the potential
overfitting issues of individual models, thus improving the overall model’s generaliza-
tion ability [72]. Only two parameters were defined with specified ranges in this study:
n_estimators (number of trees in the forest), and max_depth (maximum depth of the trees),
ranging from 80 to 150 and 3 to 5, respectively. All other parameters were set to their
default values.

Support Vector Regression (SVR) is a regression analysis method based on structural
risk minimization and statistical theory [22]. It demonstrates strong adaptability when
dealing with regression problems with more dimensions than samples. SVR introduces
kernel functions to build complex decision boundaries in high-dimensional space, effec-
tively handling nonlinear regression problems. Additionally, the algorithm controls model
complexity by introducing a penalty coefficient (C) to prevent overfitting. The RBF kernel
function with a gamma value of 0.1 was employed for SVR calculations in this study. Model
parameters were optimized using cross-validation and grid search methods to enhance the
model’s generalization ability. The C values were set between 5 and 50, while epsilon was
kept at its default of 0.1; all other parameters remained at their default values.

2.3.4. Model Evaluation Indices

The model accuracy is evaluated using the coefficient of determination (R2), root mean
square error (RMSE), and relative prediction deviation (RPD) metrics. The formulas for
these metrics are used to assess the model’s performance. A higher R2 closer to 1 indicates
a better fit of the model to the response variable. The RMSE reflects the deviation between
simulated values and actual measurements; a lower RMSE suggests that the predicted
values are closer to the actual measurements, indicating better model performance. An
RPD greater than 2 indicates an excellent predictive ability in the model in regard to the
response variable. RPD values between 1.4 and 2 suggest that the model only has a rough
predictive capability for the response variable. RPD values less than 1.4 indicate that the
model lacks a predictive ability for the response variable [73].

R2 =
n

∑
i=1

(ŷi − y)2/
n

∑
i=1

(yi − y)
2

(6)

RMSE =

√
n

∑
i=1

(yi − ŷi)
2/n (7)

RPD =
SD

RMSE
=

√
n

∑
i=1

(yi − yi)
2/

n

∑
i=1

(ŷi − yi)
2 (8)

where yi and ŷi represent the measured and predicted values of the LAI and yi denotes the
mean of the observed values in the modeling or validation dataset. n is the sample size and
SD is the standard deviation.
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3. Results
3.1. Apple Orchard LAI and Multispectral Feature Analysis

The LAI ranges of sample points selected for the FF, FS, and FE growth stages are 0.19
to 2.21, 0.34 to 2.82, and 0.28 to 3.50, respectively (Table 4). The coefficients of variation for
the three growth stages are 43.54%, 45.21%, and 39.83%, all indicating moderate variability
(CV between 0.1 and 1). As the growth stages progress, the canopy structure of apple trees
undergoes continuous changes, with the LAI showing a gradual increasing trend. During
FE, the mean and maximum values of the LAI reach their peaks. As the apple growth stage
changes, the number, area, and quality of apple leaves gradually increase. The leaf area and
quantity continue to increase to achieve high fruit yield during the fruit expansion period,
leading to the peak of the LAI. The samples are divided into prediction and validation sets
in a 7:3 ratio, resulting in 74 prediction sets and 34 sample sets for each growth stage.

Table 4. Apple orchard LAI statistics at different growth stages.

Growth Stage Sample Size Min Max Mean Standard Deviation (SD) Coefficient of Variation (CV, %)

FF 108 0.19 2.21 1.19 0.52 43.54
FS 108 0.34 2.82 1.47 0.66 45.21
FE 108 0.28 3.50 1.89 0.75 39.83

Figure 4 displays the average reflectance obtained from UAV-based multispectral
images across all samples during three growth stages. The spectral trends during different
growth stages show the following consistent pattern: low reflectance in the B, G, and R
bands, followed by a sharp increase in the RE band, and peaking in the NIR band. In the
visible light region, apple leaf pigments absorb blue and red light while reflecting green
light, creating a reflectance peak (G peak) and two absorption valleys (B and R valley).
The reflectance in these visible light bands exhibit minimal variation across different
growth stages. Conversely, in the NIR region, the cellular structure of the leaves strongly
reflects electromagnetic radiation, resulting in the characteristic high reflectance associated
with vegetation. As the growth stages advance, the apple tree leaves undergo more
vigorous development, leading to a gradual increase in both RE and NIR reflectance. These
observations are consistent with the findings reported by Zhang et al. [30].
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3.2. Correlation Analysis between LAI and Both Spectral and Texture Information

The correlations between the LAI and the VIs, TFs, and TIs are shown in Tables 5 and 6
and Figure 5. Figure 5 illustrates the correlations between the DTI, which consists of any
two TFs, and the LAI at three growth stages. The complete correlation heatmap is provided
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in Figure A1. During the three growth stages, the DTI, NDTI, and RTI formed by the MEA
and SEC of the RE and NIR bands, in combination with the TFs of other bands, exhibited
a high correlation with the LAI. This further indicates that the RE and NIR bands are
more sensitive to the LAI. During FF, 19 VIs and six TFs reached a highly significant level
(p < 0.01), with correlation coefficients ranging from 0.45 to 0.81 and 0.46 to 0.78. The TIs
with the highest absolute correlation coefficient for DTI, RTI and NDTI all exceeded 0.79.
At FS, 21 VIs and 10 TFs reached a highly significant level, with correlation coefficients
ranging from 0.44 to 0.82 and 0.44 to 0.63. The TIs with the highest absolute correlation
coefficient were all exceeding 0.78. In FE, 20 VIs and 6 TFs reached a highly significant
level, with correlation coefficients ranging from 0.42 to 0.81 and 0.56 to 0.77. The TIs with
the highest absolute correlation coefficient were all exceeding 0.78. These results indicate
that the correlation of TIs is superior to that of TFs and that the parameters with the highest
correlation vary across different growth stages.

Table 5. Correlation coefficients between VIs and LAI at different growth stages.

VIs
Correlation Coefficients

FF FS FE

B −0.14 −0.08 0.07
G 0.51 ** 0.03 0.26 **
R −0.10 −0.61 ** −0.33 *

RE 0.73 ** 0.44 ** 0.67 **
NIR 0.78 ** 0.57 ** 0.75 **

NDVI 0.55 ** 0.75 ** 0.72 **
RVI 0.50 ** 0.80 ** 0.74 **
DVI 0.79 ** 0.66 ** 0.79 **

TNDVI 0.55 ** 0.75 ** 0.72 **
RDVI 0.81 ** 0.73 ** 0.81 **
NRI 0.55 ** 0.82 ** 0.72 **
NGI −0.51 ** −0.60 ** −0.63 **

NDREI 0.33 ** 0.59 ** 0.54 **
EVI 0.81 ** 0.72 ** 0.81 **

OSAVI 0.79 ** 0.66 ** 0.77 **
MTCI 0.30 ** 0.28 ** 0.34 **
CIRE 0.32 ** 0.59 ** 0.54 **
EVI2 0.80 ** 0.71 ** 0.81 **

GNDVI 0.50 ** 0.61 ** 0.63 **
TVI 0.80 ** 0.68 ** 0.80 **

VARI 0.56 ** 0.82 ** 0.72 **
SAVI 0.81 ** 0.75 ** 0.81 **
MTVI 0.80 ** 0.69 ** 0.80 **
SIPI 0.45 ** 0.65 ** 0.42 **

where * and ** indicate significant at the 0.05 and 0.01 levels, respectively.

Table 6. Correlation coefficients between TFs and LAI at different growth stages.

Texture Feature
Correlation Coefficient

FF FS FE

MEAN −B 0.14 −0.08 0.07
VAR −B −0.06 0.47 ** 0.35 **
SEC −B 0.06 −0.09 0.08

CORR −B −0.03 0.49 ** 0.36 **
MEAN −G 0.51 ** 0.03 0.28 **

VAR −G 0.01 0.56 ** 0.56 **
SEC −G 0.46 ** 0.06 0.29 **

CORR −G 0.09 0.59 ** 0.58 **
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Table 6. Cont.

Texture Feature
Correlation Coefficient

FF FS FE

MEAN −R 0.10 −0.61 ** −0.32 **
VAR−R −0.12 −0.22 * −0.18
SEC−R −0.01 −0.63 ** −0.36 **

CORR−R −0.12 −0.16 −0.12
MEAN−RE 0.73 ** 0.44 ** 0.69 **

VAR−RE −0.03 0.40 ** 0.22 *
SEC−RE 0.69 ** 0.45 ** 0.69 **

CORR−RE 0.04 0.40** 0.22 *
MEAN−NIR 0.78 ** 0.57 ** 0.77 **

VAR−NIR 0.00 −0.14 −0.18
SEC−NIR 0.74 ** 0.56 ** 0.77 **

CORR−NIR 0.06 −0.08 −0.19
where * and ** indicate significant at the 0.05 and 0.01 levels, respectively.
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3.3. LAI Estimation Based on VIs

The ranking of significantly correlated VIs based on SVR-RFE is depicted in Figure 6.
VARI and RVI exhibit consistently good performance across all three growth stages. For FF,
FS, and FE, the top 12, top 9, and top 7 ranked VIs, respectively, were selected to construct
SVR, RFR, and CatBoost models for LAI estimation. The modeling and validation results
are presented in Table 7, with the fitting curves on the validation set shown in Figure 7.

In FF, CatBoost demonstrated high accuracy for both modeling and validation, with a
validation R2 of 0.788 and an RPD exceeding 2.0. SVR exhibited a lower performance, with
modeling and validation of the RMSE at 0.283 and 0.274, respectively. The modeling R2 was
0.688 and the RPD was less than 2, indicating a moderate estimation capability for the LAI.
RFR achieved the highest modeling R2 of 0.868 but showed overfitting with a validation
R2 of 0.721 and an RPD of less than 2. In FS, CatBoost provided the best LAI estimation
performance, with a modeling and validation R2 of 0.799 and 0.770, respectively, and an
RPD of 2.084. This was followed by SVR and RFR, with a validation R2 of 0.707 and 0.708,
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respectively. In FE, the performance of the models was ranked as CatBoost > RFR > SVR.
CatBoost achieved the highest validation R2 of 0.769 and an RPD of 2.083, along with the
lowest RMSE among the three models 0.323. The scatter plot distribution generally reveals
a trend where predicted values tend to be higher for lower-measured LAI values and lower
for higher-measured LAI values. Overall, CatBoost exhibits the closest fit to the 1:1 line
with the highest R2 and shows the best-fitting performance.

Remote Sens. 2024, 16, x FOR PEER REVIEW 14 of 26 
 

 

 
Figure 6. Feature importance ranking of VIs at different growth stages. Green indicates features 
preferred during the FF stage, purple represents the FS stage, and orange denotes the FE stage. 

Table 7. Accuracy of LAI estimation models based on the selected VIs. 

Growth 
Stage 

Variate Size Model 
Modeling Set Validation Set 

R2 RMSE Rv2 RMSEv RPDv 

FF 12 
SVR 0.688 0.283 0.736 0.274 1.947 
RFR 0.868 0.184 0.721 0.281 1.900 

CatBoost 0.807 0.216 0.788 0.237 2.172 

FS 9 
SVR 0.733 0.350 0.707 0.329 1.847 
RFR 0.752 0.318 0.708 0.382 1.849 

CatBoost 0.799 0.277 0.770 0.323 2.084 

FE 7 
SVR 0.703 0.395 0.708 0.431 1.852 
RFR 0.782 0.358 0.716 0.374 1.875 

CatBoost 0.798 0.277 0.769 0.323 2.083 
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Table 7. Accuracy of LAI estimation models based on the selected VIs.

Growth
Stage Variate Size Model

Modeling Set Validation Set

R2 RMSE Rv
2 RMSEv RPDv

FF 12
SVR 0.688 0.283 0.736 0.274 1.947
RFR 0.868 0.184 0.721 0.281 1.900

CatBoost 0.807 0.216 0.788 0.237 2.172

FS 9
SVR 0.733 0.350 0.707 0.329 1.847
RFR 0.752 0.318 0.708 0.382 1.849

CatBoost 0.799 0.277 0.770 0.323 2.084

FE 7
SVR 0.703 0.395 0.708 0.431 1.852
RFR 0.782 0.358 0.716 0.374 1.875

CatBoost 0.798 0.277 0.769 0.323 2.083
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3.4. LAI Estimation Based on VIs Combined with Texture Information

Through SVR-RFE, the importance rankings of TFs and TIs were determined, and the
selected texture information, combined with the preferred VIs, were used as model inputs.
For the FF, FS, and FE periods, the top four, top three, and top five TFs or TIs were selected,
respectively. The specific TFs and TIs are shown in Table 8, with the complete rankings
provided in the Supplementary Materials. The modeling and validation results are detailed
in Table 9, and the fitting curves for the validation set are illustrated in Figure 8.
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Table 8. The optimal combination of TFs and TIs selected by SVR-RFE.

Growth Stage Texture Feature and Index

FF

DTISEC-R/MEAN-NIR
NDTICORR-R/SEC-RE
RTICORR-R/SEC-RE

MEAN-NIR

FS
RTISEC-G/SEC-R

RTIMEAN-G/MEAN-R
DTISEC-R/MEAN-NIR

FE

DTIMEAN-R/MEAN-NIR
DTISEC-R/MEAN-NIR
RTIMEAN-R/SEC-RE

NDTIMEAN-R/SEC-RE
MEAN-NIR

Table 9. LAI estimation model accuracy based on VIs combined with texture information.

Growth
Stage Variates Size Model

Modeling Set Validation Set

R2 RMSE Rv
2 RMSEv RPDv

FF 16
SVR 0.859 0.248 0.795 0.253 2.123
RFR 0.877 0.195 0.755 0.264 2.018

CatBoost 0.941 0.190 0.867 0.203 2.482

FS 12
SVR 0.840 0.252 0.811 0.313 2.314
RFR 0.868 0.244 0.787 0.286 2.165

CatBoost 0.899 0.227 0.858 0.273 2.411

FE 12
SVR 0.815 0.303 0.797 0.373 2.263
RFR 0.935 0.180 0.815 0.356 2.378

CatBoost 0.913 0.200 0.840 0.280 2.386

Compared to using only VIs, incorporating texture information improved the overall
accuracy of the models across all three periods, with all RPD exceeding 2. In FF, the
modeling R2 for SVR increased from 0.688 to 0.859, and the RPD rose to 2.123. RFR also
showed high modeling and validation accuracy, with a validation set R2 of 0.755, though
overfitting was still observed. CatBoost provided the best LAI estimation, with an R2 of
0.941 and 0.867 for the modeling and validation sets, respectively, and an RPD of 2.472. The
R2 for the modeling set increased by 0.134. In FS, the LAI estimation accuracy improved for
all three models, with each demonstrating good estimation capability. The modeling R2 for
all models exceeded 0.84. The RPD for SVR increased from 1.847 to 2.314, an improvement
of 0.467. During FE, RFR achieved the highest modeling R2 of 0.935, but its validation
R2 was only 0.815. In contrast, CatBoost proved to be more stable, showing no signs of
overfitting, with a modeling and validation R2 of 0.913 and 0.840, respectively. The R2

for the modeling set increased by 0.124. The inclusion of texture information increased
the RPD by 0.303, reaching 2.386. Overall, CatBoost demonstrated good predictive ability
across all three growth stages. The scatter plot distribution trends were consistent with
the modeling results based on VIs, showing that predicted values tended to be higher
for lower-measured LAI values and lower for higher-measured LAI values. Overall, the
fitting curves of the CatBoost models in all three growth stages were closer to the 1:1 line,
indicating the best-fitting performance.
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3.5. LAI Inversion Mapping

According to model accuracy, CatBoost with VIs combined with texture information
was more suitable for the LAI estimation model for each growth stage. By incorporating
the image matrix in Python, the spatial distribution mapping of the apple orchard LAI for
each growth stage in the study area was conducted (Figure 9).

At FF, apple trees have ceased flowering, resulting in fewer and smaller leaves. At this
point, the average LAI in the orchard is approximately 2.0. The LAI distribution exhibits
a pattern of lower values in the east and higher values in the west, a trend also observed
during FS. In FS, the apple trees are in a period of rapid leaf growth, with overlapping and
dense leaf coverage, leading to an average LAI of around 2.5. The LAI values in the western
part of the orchard mostly range from 1.8 to 2.8, while those in the eastern part range
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from 0.2 to 1.8. According to the investigation, the orchard received uniform fertilization
and irrigation early in the season. The differences in the LAI that were observed between
the eastern and western parts of the orchard may be due to variations in the soil nutrient
conditions. The soil in the eastern part of the orchard had lower nutrient levels compared
to the western part, leading to slower growth and development of the trees in the east. By
the late FS stage, additional fertilization was applied to the eastern part of the orchard,
which accelerated tree growth due to improved nutrient availability. Thus, in FE, although
the trees primarily directed nutrients to fruit development, leaf growth continued rapidly.
The average LAI in the orchard reached approximately 2.8, with most values ranging from
1.2 to 3.2. This inversion map closely aligns with the actual growth conditions observed.
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4. Discussion
4.1. Feasibility of Estimating LAI with Multispectral UAV Images in Apple Orchard

Vegetation canopy reflectance in the visible light spectrum is typically influenced
by pigment deposition, while the RE and NIR bands have greater penetration ability.
Consequently, the RE and NIR bands are frequently employed in constructing VIs for
canopy parameter research. Analysis of UAV multispectral imagery and LAI observations
in apple orchards indicates that VIs derived from the R, RE, and NIR bands exhibit a higher
correlation with the orchard LAI, such as SAVI, VARI, and RVI, with correlation coefficients
exceeding 0.8, reaching a highly significant level (p < 0.01). Sun et al. [74] found that RVI
had the strongest correlation with the maize canopy LAI, while Qiao et al. [10] reported a
strong correlation between SAVI and the maize LAI. The correlation between individual TFs
and the apple LAI is relatively weak. However, the correlation improves when TIs derived
from these features are used, which is consistent with previous research findings [74–76].
Among TIs, MEAN-RE, MEAN-NIR, SEC-RE, and SEC-NIR showed a high correlation
with the LAI. Zhang et al. [77] indicated that MEAN features in the R, RE, and NIR bands
had strong correlations with the wheat canopy LAI; TIs calculated from NIR and RE
bands had even higher correlations with the winter wheat canopy LAI. Compared to RGB
UAVs, multispectral UAVs, which include visible light and RE and NIR bands sensitive to
vegetation canopy structure, improve LAI estimation accuracy. Additionally, they are more
maneuverable and easier to operate in real-world environments than hyperspectral UAVs,
making them an ideal platform for agricultural orchard management.

4.2. Advantages of Combining Spectral and Texture Information for Estimating LAI

Texture feature provides information about the vegetation structure and details within
the image, which are related to plant growth [42]. Integrating spectral and texture features
enables a more comprehensive interpretation and monitoring of apple growth in a two-
dimensional space, thereby enhancing model accuracy. Among the added TIs, those
formed by any combination of MEAN and SEC with RE and NIR bands exhibit better
correlation and are the most frequently used in modeling. MEAN and SEC primarily reflect
characteristics such as image roughness, smoothness, and texture coarseness. Moreover,
when texture information was input into SVR-RFE for importance ranking, TIs generally
ranked higher than TFs. TIs derived from the statistical combination of two TFs help
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to reduce or mitigate random noise inherent in single feature extraction, capturing the
combined effects of two different texture features on the LAI [75]. The results of this study
indicate that model accuracy improved across all three growth stages after incorporating
TFs and TIs, with RPD exceeding 2, consistent with findings from Zhang et al. [11], Sun
et al. [74] and Fei et al. [78]. In FF, the R2 of the SVR modeling set increased the most, from
0.688 to 0.859, and the RPD rose to 2.123. The R2 of CatBoost for the modeling set increased
by 0.134. In FS, all three models demonstrated effective LAI estimation, with the modeling
set R2 exceeding 0.84. Notably, the RPD for SVR increased by 0.467. In FE, the R2 of the
RFR modeling set increased by 0.153, reaching 0.935.

4.3. Advantages of CatBoost in Estimation LAI

In this study, models constructed using VIs, TFs, and TIs selected by SVR-RFE ef-
fectively estimated LAI, with CatBoost demonstrating superior performance (Figure 10a).
Although the RFR model exhibited high R2 for certain growth stages in this study, overfit-
ting was observed. The overall accuracy was limited, which may be due to multicollinearity
among the selected features [28]. CatBoost employs a greedy strategy to enhance prediction
accuracy effectively and utilizes symmetric trees as base learners to reduce the likelihood of
overfitting. The validation accuracy of models built with the same independent variables
using Stepwise Regression (SR) for LAI estimation is illustrated in Figure 10b. SR is a tradi-
tional statistical technique that automatically selects important variables from a large pool
to build a predictive model. The results indicate that SR provides the best LAI estimation
for FS, with an R2 of 0.720 and an RPD of 1.736. However, the RPD for all three periods
is below 2. CatBoost performs well across all three periods, with R2 values greater than
0.8 and RPD values exceeding 2. SR’s estimation accuracy is inferior to that of CatBoost.
CatBoost excels in estimation accuracy, whether used with VIs alone or combined with
texture information. Uribeetxebarria et al. [79] achieved precise wheat yield estimation with
a spatial resolution of 10 m by combining satellite data with CatBoost, outperforming MLR,
SVM, and RF. Similarly, Zhai et al. [80] integrated multi-source sensor data with soil–plant
analysis development (SPAD) values and used the CatBoost algorithm to estimate the
maize above-ground biomass, achieving higher accuracy than other models. However,
CatBoost is currently not widely used in the inversion application of orchard LAI. It also
demonstrates strong adaptability to small sample data, making it the most potent estimator
in this study for apple orchard LAI estimation and inversion mapping.
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4.4. Advances and Limitation

While most precision agriculture focuses on staple crops such as winter wheat, rice,
and corn, this study applies UAV multispectral technology to apples, an economically
significant crop, to support rapid and non-destructive estimation of an apple orchard LAI.
The LAI is crucial for plant photosynthesis and transpiration, making the rapid estimation
of the canopy LAI essential for real-time monitoring of apple tree growth. When extracting
texture features, Gabor transform stands out for its high sensitivity in capturing edge and
texture information in images. It performs admirably in extracting the multispectral image
texture features of apple orchards, an aspect that has been rarely explored in previous
research. However, this study did not consider the use of physical models for estimating
the apple orchard LAI, such as the PROSAIL model, which integrates the PROSPECT model
for leaf optical properties and the SAIL model for canopy radiative transfer. Although the
estimation accuracy of PROSAIL may be lower than that of VIs when sample sizes are
sufficient, PROSAIL is capable of reflecting the physical processes of vegetation [30,81,82].
Collecting more physical data to construct physical models or integrating physical models
with empirical approaches is necessary for future research, as this could potentially enhance
the universality of LAI estimation.

5. Conclusions

This study extracted spectral and texture information from UAV multispectral images
taken at different growth stages to construct VIs, TFs and TIs. The SVR-RFE algorithm was
used for feature selection, and LAI estimation models were constructed for the respective
growth stages, resulting in spatial distribution maps of the LAIs in apple orchards. The
main conclusions are as follows: (1) Compared to using only spectral features, the inclusion
of texture features extracted by Gabor transform across different growth stages significantly
improved the accuracy of apple LAI estimation. The RPD for all models was greater than
2. (2) The LAI estimation models established using CatBoost exhibited high accuracy
among the three models, with the FF showing the highest validation accuracy (validation
set R2 = 0.867, RMSE = 0.203, RPD = 2.482) and the best estimation capability across
the three growth stages. (3) The combination of spectral and texture information from
UAV multispectral images effectively estimated the apple orchard LAI. This approach
can be used to monitor the growth and health of apple orchards in real-time, facilitating
timely fertilization and irrigation. Consequently, it provides a scientific basis for orchard
management, significantly reducing labor costs in agricultural practices.
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