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Abstract: The ionospheric F2 critical frequency (foF2) is one of the most crucial application parameters
in high-frequency communication, detection, and electronic warfare. To improve the accuracy of
spatial reconstruction of the ionospheric foF2, we propose a high-accuracy surface (HAS) modeling
method. This method converts difficult-to-solve differential equations into more manageable algebraic
equations using direct difference approximation, significantly reducing algorithm complexity and
computational load while exhibiting excellent convergence properties. We used seven stations
in Brisbane, Canberra, Darwin, Hobart, Learmonth, Perth, and Townsville, with one station as a
validation station and six as training stations (e.g., Brisbane as a validation station and the other
stations—Canberra, Darwin, Hobart, Learmonth, Perth, and Townsville—as training stations). The
training stations and the HAS method were used to train and reconstruct the validation stations
at different solar activity periods, seasons, and local times. The predicted values of the validation
stations were compared with the measured values, and the proposed method was analyzed and
validated. The reconstruction results show the following. (1) The relative root mean square errors
(RRMSEs) of HAS method prediction in different solar activity epochs were 13.67%, 7.74%, and 9.19%,
respectively, which are 13.57%, 7.41%, and 6.41% higher than the prediction accuracy of the Kriging
method, respectively. (2) In the four seasons, the RRMSEs of the HAS method prediction are 9.27%,
13.1%, 8.81%, and 8.09%, respectively, which are 10.83%, 11.73%, 4.25%, and 12.00% higher than
the prediction accuracy of the Kriging method. (c) During the daytime and nighttime, the RRMSEs
of HAS method prediction were 9.23% and 11.17%, which were 5.92% and 11.99% higher than the
prediction accuracy of the Kriging method, respectively. (d) Under the validation dataset, the average
predictive RRMSE of the HAS method was 10.29%, and the average predictive RRMSE of the IRI
prediction model was 12.35%, with a 2.06% improvement in the predictive accuracy of the HAS
method. In general, the prediction effect of the HAS method was better than that of the Kriging
method, thus verifying the effectiveness and reliability of the proposed method. In summary, the
proposed reconstruction method is of great significance for improving usable frequency prediction
and enhancing communication performance.

Keywords: HAS; foF2; ionosphere; spatial reconstruction

1. Introduction

The ionosphere is a crucial component of the Sun-Earth space environment, affecting
the performance of various radio information systems such as satellite navigation, com-
munication, and radar due to its refraction, reflection, scattering, and absorption effects
on radio waves passing through it. Therefore, studying the ionosphere’s characteristic
parameters and understanding its spatiotemporal variations are of significant practical
value for high-frequency communications, terrestrial and space radio links, and other
applications [1]. The ionosphere, characterized by complex and variable plasma activities,
functions as a nonlinear system with random temporal and spatial fluctuations. Notably,
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the F2 layer within the ionosphere harbors the highest electron concentration, significantly
influencing different radio propagation modes [2]. The critical frequency of the F2 layer
(foF2) is a key parameter for ionospheric research and a primary focus for studying iono-
spheric plasma disturbances. In addition, foF2 is extensively utilized in space weather [3]
and high-frequency communications [4], among other applications. Accurate forecasting
of the foF2 is crucial for these applications. The foF2 varies with diurnal and seasonal
cycles and solar activity, and it is strongly correlated with spatial latitude and longitude [5].
Accurate reconstruction of the foF2 is thus critical for understanding and utilizing the
ionosphere [6]. The foF2 can be directly or indirectly observed by vertical and oblique
ionospheric detectors [7]. If no ionospheric detection station exists, then these parameters
can be obtained by reconstructing the spatial reconstruction model.

For a long time, ionospheric reconstruction has been a major focus of ionospheric
research. Scholars worldwide have continuously studied ionospheric regional reconstruc-
tion technology to improve the accuracy of ionospheric parameter predictions. In recent
years, researchers have gradually established models in localized regions such as China [8],
Europe [9], and Oceania [10]. Typical examples include inverse distance weighted inter-
polation [11], thin-plate spline interpolation [12], spherical harmonics [13,14], and Kriging
interpolation [15]. These methods have demonstrated good performance in reflecting the
global or local spatial distribution characteristics of the foF2. On one hand, based on the
coverage of models, foF2 spatial reconstruction can be divided into global and regional
types. Models like IRI [16] and ITU-R [17] span large spatial scales, offering more general-
ized predictions by considering the overall features of the global ionosphere and focusing
on large-scale spatial structures. On the other hand, regional models, which require higher
real-time performance, can accurately predict small- and medium-scale changes in the foF2
within localized areas. Therefore, regional models are mainstream in current research and
are essential for future communication system applications [18].

To enhance the accuracy of spatial reconstruction of the ionospheric foF2, we adopted
the HAS modeling theory. This method typically produces optimal results in spatial
data interpolation [19]. One key advantage is that the coefficient matrix of the linear
algebraic equations remains constant in each iteration [20], necessitating only a single
inverse calculation, which significantly lowers the computational burden [21]. After years
of iteration, the HAS method has achieved excellent results in many fields [22,23]. This
paper is structured as follows. First, we introduce the background and significance of
ionospheric research and foF2 parameter studies. Second, we sequentially introduce the
data, concepts, methods, and specific modeling processes used. Then, we compare the
proposed model with IRI and Kriging to verify the method’s correctness and effectiveness.
Finally, we summarize the effects of reconstruction of the ionospheric foF2 parameter.

2. Data and Methods
2.1. Data Collections

The data used in this study came from the Global Ionospheric Radio Observatory
(GIRO), which provides public access to ionospheric observations collected at multiple
locations and has real-time feeds available for most stations, offering precise and detailed
information on ionospheric observations [24]. The spatial reconstruction range in this study
was 110◦–160◦E longitude and 10◦–45◦S latitude, with a spatial resolution of 0.5◦ × 0.5◦, col-
lecting data from seven stations from 2013 to 2018. The seven stations’ latitudes, longitudes,
and distributions are shown in Figure 1.

In the spatial reconstruction of the ionospheric foF2, to ensure the same sampling
interval for the foF2 across different stations, a fixed sampling interval of 60 min was
selected. The data collection periods for the seven stations at Brisbane, Canberra, Darwin,
Hobart, Learmonth, Perth, and Townsville involved 1584, 1570, 1583, 1560, 952, 1560, and
1466 data points, respectively, from 2013 to 2018. Next the following procedures were
carried out:
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1. The raw GIRO dataset includes 24 h of data collected daily. Initially, we computed
the monthly average of the data at the seven stations and stored them sequentially.
Missing data between 2013 and 2018 at the seven stations were supplemented with
foF2 data predicted by the International Reference Ionosphere (IRI) model to facilitate
spatial reconstruction.

2. Given that the resolution of the data used for HAS modeling was 5◦ × 5◦, we approx-
imated the latitude and longitude of each station to the closest whole number and
stored the monthly average foF2 values at fixed times in corresponding grid points to
facilitate interpolation.
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Figure 1. The spatial distribution of seven modeling stations within Oceania. These stations included
Brisbane, Canberra, Darwin, Hobart, Learmonth, Perth, and Townsville.

2.2. Modeling Data

The spatial modeling process of this study is shown in Figure 2. The first step was
to generate a 5◦ × 5◦ grid within the model coverage range (110◦E–160◦E longitude and
10◦–45◦S latitude) and fill in this grid with the IRI model’s predicted data values. The
second step was to put the actual observed foF2 values from the training stations into the
corresponding adjacent grid to obtain the observed surface. The third step involved using
the high-accuracy surface (HAS) modeling method to iteratively refine the observed surface
to further improve the model’s accuracy. The fourth step used Kriging interpolation to inter-
polate the 5 × 5 iterative surface of the completed HAS model to generate a 0.5◦ × 0.5◦ grid.
Finally, cross-validation was used to verify and analyze the model’s accuracy by select-
ing six out of the seven modeling stations as training stations and the remaining one as
the validation station, followed by comparing the accuracy of the model when using the
IRI model and Kriging interpolation to confirm the correctness and effectiveness of the
proposed method.
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To test the impact of the two models on reconstruction accuracy, this study used the
RRMSE as the standard for method evaluation:

δ =

√√√√ 1
Y

Y

∑
y=1

(
f y
obs − f y

mod

f y
obs

)2

× 100% (1)

where δ is the RRMSE, Y is the number of cross-validations, f y
obs is the actual observed foF2

value at the validation station, and f y
mod is the reconstructed predicted foF2 value at the

validation station for the yth iteration.

2.3. Modeling Methods

This paper integrates HAS modeling with the characteristics of the ionospheric foF2 to
perform spatial reconstruction. The initial surface function of the foF2 spans the modeling
range and incorporates the IRI as the background field, being expressed as follows:

f oF2 = f (φ, λ) (2)

where f is the mapping satisfied by the surface, φ represents the longitude of the ionospheric
observation station, λ represents the latitude of the ionospheric observation station, and
(φ,λ) represents the coordinates of the ionospheric observation station.

During the numerical simulation of the function, the first and second fundamental
quantities of the surface must first be interpolated using the sampled values [25]. According
to the fundamental theorem of surfaces, the first and second fundamental quantities
define many surface properties. The first fundamental quantities represent geometric
properties, such as the length of the curves and the area of the surfaces [26]. In contrast, the
second fundamental quantity represents macro information on the surface, such as local
warping [27]. The first fundamental quantities B, C, and D can be expressed as follows:

B = 1 + f 2
φ

C = fφ fλ

D = 1 + f 2
λ

(3)

where fφ and fλ are denoted as the first-order derivatives of the function f(φ,λ) in the φ

and λ directions, respectively.
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The second class of fundamental quantities E and F is denoted as
E =

fφφ√
1+ f 2

φ+ f 2
λ

F = fλλ√
1+ f 2

φ+ f 2
λ

(4)

where fφφ and fλλ are the second-order derivatives of the function f(φ,λ) in the φ and λ

directions, respectively. Based on surface theory and space sampling, the surface can be
expressed by the following set of Gaussian equations: fφφ = G1

11 fφ + G2
11 fλ + E√

B+D−1

fλλ = G1
22 fφ + G2

22 fλ + F√
B+D−1

(5)

where G1
11, G2

11, G1
22, and G2

22 are the coefficients of the Gaussian system of equations and
depend only on the fundamental quantities of the first type and their derivatives, defined as

G1
11 =

DBφ−2CCφ+CBλ

2(BD−C2)

G1
22 =

2DCλ−DDφ−CDλ

2(BD−C2)

G2
11 =

2BCφ−BBλ−CBφ

2(BD−C2)

G2
22 =

BDλ−2CCλ+CDφ

2(BD−C2)

(6)

The results of the numerical experimental analyses show that the inverse of the coefficient
matrix needs to be reinverted at each iteration, which is highly computationally intensive.

To reduce the computational effort, the finite difference form’s expression of the
Gaussian system of equations is updated as follows [28]:

f n+1
i+1,j−2 f n+1

i,j + f n+1
i−1,j

hφ
2 = (G1

11)
n
i,j

f n
i+1,j− f n

i−1,j
2hφ

+ (G2
11)

n
i,j

f n
i,j+1− f n

i,j−1
2hλ

+
En

i,j√
Bn

i,j+Dn
i,j−1

f n+1
i,j+1−2 f n+1

i,j + f n+1
i,j−1

hλ
2 = (G1

22)
n
i,j

f n
i+1,j− f n

i−1,j
2hλ

+ (G2
22)

n
i,j

f n
i,j+1− f n

i,j−1
2hλ

+
Fn

i,j√
Bn

i,j+Dn
i,j−1

(7)

where n denotes the number of iterations. From Equation (7), it can be found that the
left-hand side’s coefficient matrices of the solved system of linear algebraic equations are
the same in each iteration such that the inverse matrices are required only once, thus
reducing the computational effort considerably.

In this case, the finite difference form of the fundamental quantities of the first category
and the second category is shown below:

Bi,j = 1 + (
f̃i+1,j− f̃i−1,j

2hφ
)2

Ci,j = (
f̃i+1,j− f̃i−1,j

2hφ
)(

f̃i,j+1− f̃i,j−1
2hλ

)

Di,j = 1 + (
f̃i,j+1− f̃i,j−1

2hλ
)2

(8)
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

Ei,j =

f̃i+1,j−2 f̃i,j+ f̃i−1,j
h2

φ√
1+(

f̃i+1,j− f̃i−1,j
2hφ

)2+(
f̃i,j+1− f̃i,j−1

2hλ
)2

Fi,j =

f̃i,j+1−2 f̃i,j+ f̃i,j−1
h2

λ√
1+(

f̃i+1,j− f̃i−1,j
2hφ

)2+(
f̃i,j+1− f̃i,j−1

2hλ
)2

(9)

where hφ and hλ are the calculation steps in the longitude and latitude directions and f̃i,j
is the predicted value of the foF2 calculated by the IRI model at the grid position (φi,λj).

The finite difference formulation of the Gaussian system of equations with coefficients
G1

11, G2
11, G1

22, and G2
22 are

(G1
11)i,j =

Di,j(Bi+1,j−Bi−1,j)hλ−2Ci,j(Ci+1,j−Ci−1,j)hλ+Ci,j(Bi,j+1−Bi,j−1)hφ

4(Bi,jDi,j−C2
i,j)hφhλ

(G1
22)i,j =

2Di,j(Ci,j+1−Ci,j−1)hφ−Di,j(Di+1,j−Di−1,j)hλ+Ci,j(Di,j+1−Di,j−1)hφ

4(Bi,jDi,j−C2
i,j)hφhλ

(G2
11)i,j =

2Bi,j(Ci+1,j−Ci−1,j)hλ−Bi,j(Bi,j+1−Bi,j−1)hφ+Ci,j(Bi,j+1−Bi,j−1)hφ

4(Bi,jDi,j−C2
i,j)dφdλ

(G2
22)i,j =

Bi,j(Di,j+1−Di,j−1)hφ−2Ci,j(Ci,j+1−Ci,j−1)hφ+Ci,j(Di+1,j−Di−1,j)hλ

4(Bi,jDi,j−C2
i,j)hφhλ

(10)

The difference steps in the longitude and latitude directions are expressed as follows:{
hφ = 1

φ+1

hλ = 1
λ+1

(11)

where φ denotes the number of grid points along the longitude direction and λ represents
the number of grid points along the latitude direction. The algebraic equations are then
reformulated into matrix form. The matrix expression’s form of the numerical simulation
equations for the HAS method is {

L f n+1 = Mn

J f n+1 = Nn (12)

where f n+1 = [ f n+1
1,1 , . . . f n+1

1,λ , f n+1
2,1 , . . . f n+1

2,λ , . . . f n+1
φ−1,1, . . . f n+1

φ−1,λ, f n+1
φ,1 , . . . f n+1

φ,λ ], T0 is the
interpolation result of the sampling point value, L and Mn are the left end’s coefficient
matrix and the right end’s constant term matrix of the first equation in the HAS equation
system, respectively, and J and Nn are the left end’s coefficient matrix and the right end’s
constant term matrix of the second equation in the HAS equation system, respectively.

As explained in the HAS principle, the coefficient matrices located at the left end of
the Gaussian equation system are presented in Figure 3, and it is evident that both L and J
were fixed only at specific points, with the remaining values set to zero. Thus, the iterative
process requires computation of the coefficient matrices’ inverses just once [29], and the
computation time of the HAS method did not significantly increase with the number
of iterations.

Let H = [L, J]T and Kn = [Mn, Nn]T. To ensure that the simulated values at the training
stations consistently matched the actual observed values, the least squares problem was
formulated with the following equation constraints:{

min
∣∣∣∣HFn+1 − Kn

∣∣∣∣
2

s.t. PFn+1 = Q
(13)
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where P is the sampling matrix, P(k, (n − 1) × λ + j) = 1, Q(m) = f̃i,j, and the foF2 value at
the kth training station is ensured to be derived from an actual observation.
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For sufficiently large η, the HAS method can be transformed for solving the uncon-
strained least squares problem:

min∥
[

H
ηP

]
Fn+1 −

[
Kn

ηQ

]
∥

2
(14)

In other words, it solves

[HT ηPT]

[
H
ηP

]
Fn+1 = [KT ηQT]

[
K
ηQ

]
(15)

Subsequently, the issue is ultimately converted into solving a set of linear algebraic
equations:

AFn+1 = Rn (16)

or
Fn+1 = A−1Rn (17)

In summary, the process of applying the HAS method to achieve surface reconstruction
in foF2 space is as follows:

1. Generate a grid covering the modeling range, complete the data on the grid using the
foF2 predicted by the IRI model, and then fill in the corresponding grid with the actual
foF2 observations at the training station to generate the foF2’s initial value surface.

2. Normalize the foF2’s initial value surface and compute the surface’s first class of
fundamental quantities B, C, and D, second class of fundamental quantities E and F,
and the Gaussian system of equations with the coefficients G1

11, G2
11, G1

22, and G2
22.

3. For n ≥ 0, solve the iterative equations Lfn+1 = Mn and Jf n+1 = Nn for the latitudinal
and longitudinal directions, respectively.

4. For n ≥ 0, perform appropriate iterations to solve the iterative equation AFn+1 = R
and obtain the numerical solution of the surface under the given boundary condi-
tions. Then, apply inverse normalization to derive the predicted foF2 value at the
validation station.

3. Results

To show the effect of the HAS method comprehensively, Figure 4 illustrates the
change in the predicted RRMSE of the HAS method with the number of iterations at seven
modeling stations during various randomly chosen times. As shown in Figure 4, the
predicted RRMSE of the HAS model progressively diminished and exhibited a convergence
trend as the iterations increased. The convergence rates differed across the stations, and the
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final prediction errors were also significantly different, with some stations achieving better
results with more than 30 iterations and others requiring more than 40 iterations to achieve
better results.
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The choice of the number of iterations is crucial in the HAS regional foF2 spatial
reconstruction method. To ensure the accuracy of the model and avoid overfitting, we
adopted the following strategies:

1. Based on experience and experimental results, we set the maximum number of itera-
tions to 40. This setting was based on the observed model convergence and perfor-
mance in multiple experiments.

2. During the iteration process, we continuously observed the model’s performance,
tracking the trend of the RRMSE at the validation station in particular. The judgment
criteria for overfitting were mainly based on the results of cross-validation. When
the RRMSE of the validation station showed a significant upward trend in several
consecutive iterations, we considered that the model may have started to overfit and
stopped the iteration immediately.

1. The Darwin station has the best prediction effect, converging at iteration 31 with
an RRMSE of 1.44%. The Learmonth station had a worse prediction effect, with an
RRMSE of 9.26% at iteration 40, mainly because Learmonth had a higher amount of
missing data during the modeling time, which had a certain negative impact on the
effect of the iteration.

2. The Brisbane station had a better convergence effect, and a stable prediction error was
obtained at 35 iterations. The Perth station reached convergence at iteration 38, with
an RRMSE of 6.20%. The Canberra, Hobart, and Learmonth stations reached a better
prediction effect after 40 iterations, but their errors still showed a decreasing trend.

3. The Townsville station achieved better prediction at the 26th iteration, but after
continuing the iteration, the prediction error showed a slight increase in the trend
of overfitting. Therefore, applying the HAS method requires proper selection of the
number of iterations to obtain a smaller error rate.

4. Taken together, the average RRMSE of 40 iterations for the seven stations above at
different times was 4.83%, which demonstrates the accuracy and efficacy of the HAS
method. Additionally, we employed the same approach to ascertain the necessary
number of HAS iterations required to achieve the foF2 prediction using the HAS
method, and the prediction results all converged to a satisfactory accuracy.

4. Discussion

As shown in Figure 5, we first divided the solar activity epochs into three periods: a
high year, moderate year, and low year. Then, the foF2 data for the four seasons of spring,
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summer, autumn, and winter were selected. Next, the foF2 data were further divided
into daytime and nighttime categories. The final composition was assigned to different
validation datasets to ensure the coverage of different solar activity levels, seasons, and
periods, thus ensuring the comprehensiveness and representativeness of the validation.
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To provide a clearer explanation of the statistical variations in the HAS method’s foF2
predictions, relatively high, moderate, and low solar activity periods were classified based
on the monthly average sunspot number as shown in Figure 6a, where a sunspot number
greater than 100 is a period of high solar activity, a sunspot number in the range of [10, 100]
is a period of moderate solar activity, and a sunspot number less than 10 is a period of low
solar activity [30].
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Figure 6a shows the variation in the monthly mean of sunspot numbers during
2013–2018, with the high solar activity period mainly concentrated in 2014, the medium
solar activity period was mainly distributed in 2013 and 2015–2017, and the low solar
activity period was mainly concentrated in 2018. Figure 6b demonstrates the predicted
RRMSEs for different solar activity periods. In different solar activity periods, the RRMSEs
which were poorly predicted were higher in spring and summer, and the RRMSEs which
were more accurately predicted were lower in winter. As a whole, the high solar activity
periods predicted the foF2 better than the other solar activity periods, and the prediction
was better in winter. The predicted RRMSEs for different seasons can be seen in Figure 6c.
Specifically, the RRMSEs for spring 2014 and winter 2018 were relatively high at most time
points, indicating relatively large prediction errors. The RRMSEs for summer 2016 and
autumn 2018 were usually relatively low, indicating relatively good predictions. Figure 6
shows the distribution of RRMSEs under different solar activity periods and seasons, which
provides an important basis for analyzing the foF2 prediction model.

4.1. Comparison between the IRI Model and HAS Method

The IRI prediction model has a wide range of spatial scales and can provide better
average age prediction according to the change in characteristics of the global ionospheric
surface domain. In addition, in the reconstruction process of the HAS method, because the
actual data of the stations were sometimes missing, they could not be reconstructed, and
the IRI prediction model was used to supplement the missing data. Therefore, the HAS
model was first compared with the predicted RRMSEs of the IRI model. Figure 7 compares
the results of the IRI model based on the validation data and the HAS method. The results
show that the average RRMSE of IRI prediction was larger, and the prediction accuracy of
the HAS method improved by 2.06%, which verifies the effectiveness of the HAS method.
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4.2. Comparison between the Kriging Method and HAS Method

In addition to our comparison with the IRI prediction model initially used in the
modeling process, we also considered a comparison with the now most-used Kriging
interpolation method. Kriging interpolation is widely utilized for reconstructing regional
ionospheric parameters like the foF2 and is known for proving high-quality reconstruc-
tions [31]. The Kriging method was chosen for comparison with the HAS method. The
step of using the enhanced Kriging method for foF2 interpolation is outlined below. Firstly,
we used the variational function established by the Euclidean distance between the ob-
servation station points and found the spatial relativity. Secondly, we used the optimal
linear unbiased estimation as the foundation and the minimum estimation variance as
the standard to solve for the weight coefficients of each training station relative to the
validation station. We ensured that the sum of these weight coefficients was equal to one.
According to the weight coefficients, the actual observations of the training stations were
used to achieve the foF2 reconstruction results of the validation stations. Next, six out of



Remote Sens. 2024, 16, 3247 11 of 16

the seven modeling stations were sequentially designated as training stations, while the
remaining one served as the validation station. The foF2 predictions for the validation
station were then computed using both the Kriging method and the HAS method. The
RRMSEs of the seven stations were calculated as the final prediction RRMSE of the six
validation datasets mentioned above, and the results shown in Table 1 were obtained.

Table 1. Validation dataset prediction results based on solar activity epochs, seasons, and local time.

No.
Solar Activity

Epoch Year Season Month
Local Time RRMSE (%) Increase

(%)Time Day Night Kriging HAS

(1) High 2014 Spring November 10:00 Yes 20.10 9.27 10.83
(2) Middle 2016 Summer January 12:00 Yes 15.28 8.13 7.15
(3) Low 2018 Autumn March 15:00 Yes 11.11 10.28 0.83
(4) High 2014 Summer December 03:00 Yes 34.37 18.07 16.30
(5) Middle 2017 Autumn April 22:00 Yes 15.01 7.34 7.67
(6) Low 2018 Winter July 21:00 Yes 20.09 8.09 12.00

Mean 19.33 10.20 9.13

As shown in Figure 8, it can be seen that the predictions of the HAS method were
significantly better than those of the Kriging interpolation method.
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1. The RRMSEs at different solar activity levels are given in Figure 8a. The Kriging and
HAS methods obtained the optimal forecasting outcomes with prediction RRMSEs
of 15.15% and 7.74%, respectively, during the middle solar activity period. During
the high solar activity period, the prediction RRMSEs of both the Kriging and HAS
methods decreased relative to the medium solar activity period, with the prediction
results of the Kriging method decreasing by 15.80% and those of the HAS method
decreasing by 8.13%. At low solar activity periods, the difference between the pre-
diction RRMSEs of the Kriging method and the HAS method is 6.41%. Therefore,
the prediction effects of both methods varied with the solar activity level, and the
prediction RRMSEs became smaller when the solar activity improved in the middle
solar activity period relative to the low solar activity period, while the prediction
RRMSE became larger in the high solar activity period relative to the middle solar
activity period. This shows the important influence of solar activity on the foF2 from
this side.

2. The RRMSEs of the predictions using the two methods during the four seasons are
given in Figure 8b. In spring, the HAS method predicted better results than the Kriging
method, with a difference of 10.83% in the RRMSEs. In summer, the Kriging and HAS
methods achieved the worst predictions. In autumn, the Kriging method reached
the best prediction, but the prediction was still poor compared with that of the HAS
method. In winter, the HAS method predicted the best results, with an RRMSE of
8.09%. Overall, the HAS method predicted better results than the Kriging method
under all four seasons.

3. The RRMSEs of both methods during the day and at night are shown in Figure 8c.
The prediction RRMSE of the Kriging method decreased by 7.66% during the daytime
compared with nighttime, and the prediction RRMSE of the HAS method increased
by 1.94% during the nighttime compared with daytime. Overall, the HAS method’s
predictions were better than the Kriging method both during the day and at night,
and both method’s predictions were better during the day.

4. Overall, the HAS method outperformed the Kriging method in different seasons, solar
activity levels, and at daytime and nighttime. This confirms the effectiveness and
precision of the HAS method introduced in this paper and provides a new approach
and methodology for the prediction of ionospheric parameters.

To present the reconstruction outcomes of both methods in a more intuitive manner,
Figure 9 shows the results of spatial reconstruction using the HAS method and the Kriging
method at different times:

1. The reconstruction outcomes of the HAS and Kriging methods at 12:00 p.m. local time
for the high solar activity year in November 2014 are illustrated in Figure 9a,b, respec-
tively. The figures show that the value domains reconstructed by the HAS method
ranged from 7.5 to 12, and the value domains reconstructed by the Kriging method
ranged from 7.5 to 11.5, indicating that the values reconstructed by the HAS method
would be larger than those reconstructed by the Kriging method in some regions. In
addition, the results of the reconstruction by the HAS method can be observed as
multiple obvious contour circles, which represent the large value variations of the
local regions, with obvious high-value areas. In contrast, the contour lines in the
reconstructed results of the Kriging method are relatively smooth, and there is no
obvious local variation in the HAS method.

2. Figure 9e,f shows the distribution of the RRMSEs of the HAS and Kriging methods in
predicting the seven stations at 12:00 p.m. local time for the high solar activity year in
November 2014, respectively, and the RRMSE plots of the HAS method show that the
RRMSEs were larger at some points in the plots but smaller at most stations. Compared
with the prediction of the RRMSEs for the Kriging method, the HAS method predicted
the RRMSEs of all seven stations better than the Kriging method.

3. The reconstruction outcomes of the HAS and Kriging methods at 12:00 a.m. local time
for the low solar activity year in July 2018 are illustrated in Figure 9c,d, respectively.
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The figure shows that the local area reconstructed by the HAS method had a large
change in value. For example, an obvious high-value area can be seen in the upper
right of the figure. The transition between the high-value and low-value areas in the
reconstructed results of the Kriging method is relatively smooth, and the characteristics
of the spatial distribution are not as obvious as those of the HAS method, which lacks
some details.

4. Figure 9g,h shows the RRMSE distributions of the seven stations predicted by the HAS
and Kriging methods, respectively, at 12:00 a.m. local time for the low solar activity
year in July 2018. The RRMSE plots of the HAS method show that it was larger at the
Perth station. All the other stations had smaller values than the predicted RRMSEs of
the Kriging method, and as a whole, the HAS method was better. Overall, the HAS
method is suitable for applications which are sensitive to local variations. However, it
is important to note that some regions may have large RRMSEs.

5. Overall, the HAS method showed high accuracy and reliability in the spatial recon-
struction of the foF2 at different times and locations. Compared with the Kriging
interpolation method, the HAS method can more accurately capture the spatial varia-
tion characteristics of the ionospheric parameters with smaller prediction RRMSEs.
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at 12:00 p.m. local time for the high solar activity high in November 2014. (b) The reconstruction
outcomes of the Kriging method at 12:00 p.m. local time for the high solar activity year in November
2014. (c) The reconstruction outcomes of the HAS method at 12:00 a.m. local time for the high solar
activity year in July 2018. (d) The reconstruction outcomes of the Kriging method at 12:00 a.m. local
time for the high solar activity year in July 2018. (e) Distribution of the RRMSEs of the HAS method
in predicting the seven stations at 12:00 p.m. local time for the high solar activity year in November
2014. (f) Distribution of the RRMSEs of the Kriging method in predicting the seven stations at 12:00
p.m. local time for the high solar activity year in November 2014. (g) Distribution of the RRMSEs of
the HAS method in predicting the seven stations at 12:00 a.m. local time for the low solar activity
year in July 2018. (h) Distribution of the RRMSEs of the HAS method in predicting the seven stations
at 12:00 a.m. local time for the low solar activity year in July 2018.

5. Conclusions

In this study, we introduced a novel technique named the HAS method for spatial
reconstruction of the foF2 region. The foF2 ionospheric parameter of seven ionospheric
stations in Oceania was reconstructed in sequence under different solar activity epochs,
seasons, and local times, and the foF2 predicted data were compared with the actual data
to verify the validity of the HAS method. Moreover, the prediction accuracy of the HAS
model was compared with the IRI prediction model and Kriging interpolation method,
and it was verified that the HAS method improved the accuracy. The validation results
indicate that during different solar activity periods, the HAS method predicted the foF2
with a smaller RRMSE of 7.74% during moderate solar activity periods, which represented
an improvement of 7.41% in prediction accuracy compared with the Kriging interpolation
method. Across the four seasons, the HAS method predicted the foF2 with a smaller
RRMSE of 8.09% in winter, showing a prediction accuracy which aligned closely with
the actual observations from ionospheric stations, which had an RRMSE of 10.20%. The
HAS method’s prediction accuracy improved by 12.00% compared with that of the Kriging
method. At different times, the HAS method predicted the foF2 with a smaller RRMSE
of 9.23% during moderate solar activity periods, representing a 5.92% improvement in
prediction accuracy compared with that of the Kriging interpolation method. The average
RRMSE of the IRI prediction model under the validation dataset was 12.35%, and the
prediction accuracy of the HAS method improved by 2.06% compared with that of the
IRI prediction model. These results demonstrate the correctness and effectiveness of the
proposed HAS method.
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