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Abstract: This study explores novel techniques to improve the detection accuracy of skarn iron
deposits using advanced image-processing methodologies. Leveraging the capabilities of ASTER
image, band ratio (BR) images, and principal component analysis (PCA) alongside the power of 3D
convolutional neural networks (3D-CNNs), the research aims to enhance the precision and efficiency
of ore detection in complex geological environments. The proposed method employs a specific
3D-CNN architecture accepting input as a 7 × 7 × C image patch, where C represents the combined
number of selected ASTER image bands, principal component (PC) bands, and computed BR images.
To evaluate the accuracy of the proposed method, five distinct image band combinations, including
the proposed band combination, were tested and evaluated based on the overall accuracy (OA),
average accuracy (AA), and kappa coefficient. The results demonstrated that while the incorporation
of BR images alongside ASTER bands initially seemed promising, it introduced significant confusion
in certain classifications, leading to unexpected misclassification rates. Surprisingly, utilizing solely
ASTER bands as input parameters yielded higher accuracy rates (OA = 93.13%, AA = 91.96%,
kappa = 90.91%) compared with scenarios involving the integration with band ratios (OA = 87.02%,
AA = 79.15, kappa = 82.60%) or the integration of BR images to PC bands (OA = 87.78%, AA = 82.39%,
kappa = 83.81%). However, the amalgamation of ASTER bands with selected PC bands showed slight
improvements in accuracy (OA = 94.65%, AA = 92.93%, kappa = 93.45%), although challenges in
accurately classifying certain features persisted. Ultimately, the proposed combination of ASTER
bands, PC bands, and BR images (proposed band combination) presented the most visually appealing
and statistically accurate results (OA = 96.95%, AA = 94.87%, kappa = 95.93%), effectively addressing
misclassifications observed in the other combinations. These findings underscore the synergistic
contributions of each of the ASTER bands, PC bands, and BR images, with the ASTER bands
proving pivotal for optimal skarn classification, the PC bands enhancing intrusions classification
accuracy, and the BR images strengthening wall rock classification accuracy. In conclusion, the
proposed combination of input image bands emerges as a robust and comprehensive methodology,
demonstrating unparalleled accuracy in the remote sensing detection of skarn iron minerals.

Keywords: ASTER bands; band ratio (BR) images; principal component (PC) bands; 3D-CNN

1. Introduction

The identification and classification of minerals constitute fundamental tasks within
the many disciplines of geology, serving as the cornerstone for various scientific uses.
The processes of mineral identification, detection, and mapping involve categorizing the
mineral composition exposed in an area with diverse lithological composition and various
geological settings. This serves the purpose of pinpointing specific geological areas for
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further survey and exploration. Over the years, diverse methods and techniques have
been employed for mineral detection and mapping, encompassing physical and chemical
methods as well as remote sensing techniques [1,2].

Various optical remote sensing methods have been employed for mapping and detec-
tion, specifically, iron oxides and hydroxyl minerals. These methods include image spectral
band rationing (BR) and false-color composite (FCC) [3–8], principal component analysis
(PCA) [9,10], spectral angle mapper (SAM) [11–13], linear spectral unmixing (LSU) [14],
constrained energy minimization (CEM) [15], and convolutional neural network (CNN)
methods [16–19], among others. BR and/or PCA in conjunction with FCC have been widely
used in previous studies, largely due to their simplicity and their capacity for enhancing the
spectral response of minerals as well as separating the altered mineralized rocks from all the
other background materials. However, even with the series of refinements in these methods
over the years, the interpretation of the final image largely requires significant expertise
because the ratio image is not a classified image, even though the boundaries between
some minerals can be seen when used as FCC. In the situation where thresholds are used
to extract the pixels depicting the target minerals, there is no specific thresholding concept
adopted across studies, making each study identify suitable values as the threshold. This
introduces bias into the methods. In addition, there is lack of universality of the existing
BRs, making it difficult to recycle them. For instance, refs. [20,21] identified different BRs
(Landsat 8 BRs 4/2 and 6/2, respectively) for iron mineral enhancement. Similarly, ref. [22]
identified Landsat 8 BRs 6/4 and 5/4 for ferrous and ferric iron minerals, which is different
from those of [23] (6/5 and 7/5) for the same task.

For PCA, the resulting PCs may become very difficult to interpret if there are many
variables in the datasets because it will be difficult to understand the underlying meaning
of the PCs and how it relates to the variables [24]. In addition to the interpretability
problem with the PCA method, the method works very well only with linear data, since it is
based on the assumption that the relationship between variables is linear [25]. This makes
the method very sensitive to outliers, distorting the capacity of the method to identify
the pattern in the data [26]. Although some of the problems of PCA are partially solved
by either of the CEM, SAM, and/or the CNN methods, the strength of this method in
enhancing the spectral response of various minerals in conjunction with BR images is not
fully utilized, sustained, or integrated in these methods. Applying the concept of BR may
likely have an impact on the outcome of classification, if refined and integrated into any of
the methods.

The integration of machine learning into feature detection and image classification has
substantially overcome many challenges associated with traditional methods of mineral
detection. Specifically, the use of 2D-CNN has displayed strength in generating abstract
features during image classification [16,27]. However, the method convolves in only
two dimensions, neglecting the adjacent slice or channels, which may have affected the
efficiency of the feature extraction and classification due to the missing adjacent channel
relationship information. This may also increase the number of convolutional operations,
which may lead to an increase in the time of operation, since each channel has to be
convolved separately. These problems were somewhat addressed by the introduction of
3D-CNN into image classification. The work of [17,28] and other similar studies has shown
that 3D-CNN can effectively, efficiently, and rapidly detect and identify different types
of minerals in an alteration zone using hyperspectral images. Similarly, the integration
of both 3D and 2D-CNN by [29,30] has shown an improvement in accuracy against the
use of either 2D or 3D in isolation. However, the application of this method and the other
3D methods seem to work well only with hyperspectral data that have many channels
or spectra depths. In addition, these types of images contain a lot of noise and are very
expensive to acquire and computationally complex to handle.

Consequently, subsequent to a meticulous evaluation of the merits and demerits inher-
ent in the prevalent optical remote sensing methodologies employed for mineral mapping
and detection, this study endeavors to capitalize on the efficacy of 3D convolutional neural
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networks (3D-CNNs) for swift, effective, and efficient mineral detection. This strategic
approach involves the incorporation of a limited number of 3D convolutional layers, a
methodology elucidated in prior works such as [17,28] in order to minimize the risk of
misclassification by the 3D-CNN model, particularly in scenarios where minerals exhibit
analogous textures. Noteworthy is the deliberate selection of multispectral imagery over
hyperspectral counterparts, a decision rooted in the objective of mitigating operational
costs and time constraints. To counterbalance the potential drawback of limited spectral
depth inherent in multispectral imagery, this study proposes the augmentation of selected
band ratios (BRs) images and principal component (PC) bands to the multispectral image
bands. This augmentation strategy is underpinned by the demonstrated capacity of band
ratios to enhance the spectral response of iron minerals, as evidenced in various investiga-
tions [4,22,31]. Additionally, the inclusion of principal component bands is rationalized
by their efficacy in transforming highly correlated data into uncorrelated forms, thereby
maximizing variance, a trait documented in studies such as [21].

The investigation was carried out on iron deposits situated within the Awulale Met-
allogenic Belt (AMB). The choice of this metallogenic belt emanated from its historical
context, marked by notable volcanic activities within the belt [32].

2. Materials and Methods
2.1. Study Area and Geological Context

The study area is situated within the AMB, located in the western Tianshan Mountain,
Xinjiang Uygur Autonomous Region, NW China. Specifically, the selected areas encompass
three notable iron deposits positioned within the distinguished submarine volcanic-hosted
iron oxide deposits belt (AMB) in China [32]. Geographically, the AMB spans a longitudinal
range of approximately 82◦E–86◦E and a latitudinal range of 42◦20′N–44◦N, featuring
Silurian and Devonian volcanoclastic successions in both its northern and southern portions
(Figure 1a). In the western segment, the strata are dominated by Permian terrestrial clastic
and volcanic rocks, while the eastern part prominently showcases Carboniferous volcanic
and volcanoclastic rock formations. This geological context serves as the backdrop for
the three iron deposits under investigation, namely, the Zhibo, Dunde, and Beizhan iron
deposits, in conjunction with Chagangnuoer and Wuling iron deposits [33,34]. Notably, the
iron mineralization in the AMB is closely associated both spatially and temporally with the
Carboniferous volcanic rocks, which have been dated to around 310–330 Ma [35].

The Zhibo, Dunde, and Beizhan iron deposits, the focal points of this study, have
attracted scientific attention due to their classification as submarine volcanic-hosted iron
oxide deposits and their important economic value. The iron minerals in the ores within
these deposits are majorly magnetite, and their wall rocks are Carboniferous calc-alkaline
volcanic–volcanoclastic rocks, which are believed to have formed within a post-collisional
setting subsequent to the break-off of a subducted slab [36,37]. It is noteworthy that certain
research suggests that the formation may be attributed to subduction-related settings,
owing to the “arc-like geochemical features” of the rocks [38–40], rather than the occurrence
of slab “break-off”.

The primary host rocks of the Zhibo iron deposit are andesite, basalt, basaltic andesite,
and dacite compositions, with the ore district exhibiting the presence of intermediate-
mafic volcanic rocks in its proximity, intruded predominantly by diorite and granodiorite
formations (Figure 1c). The deposit is positioned within an oval-shaped collapsed caldera
covering an approximate area of 15 km2 [41]. However, Dunde’s distinctiveness within the
AMB lies in its remarkable mineralogical diversity. The deposit also contains large-scale
amounts of Zn as well as medium-scale amounts of gold in addition to the iron content. A
spectrum of minerals within the Dunde deposit includes magnetite, sphalerite, chalcopyrite,
and other minerals. Intrusive rocks in the Dunde deposit consist of K-feldspar granite
and diabase compositions (Figure 1b). The prevailing skarn predominantly comprises
diopside, with garnet as a secondary constituent [42], and the zinc and gold mineralization
are correlated with the products of superimposed mineralization on iron ore bodies during
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hydrothermal alteration related to granitic intrusions [43]. For the Beizhan deposit, the
exposed volcanic rocks include rhyolite and dacite, along with andesite tuff and basaltic
andesite formations in certain regions (Figure 1d). The intrusion of quartz-monzonite
porphyry and diabase over a surface length of up to 4 km has induced alterations in the
host rock, culminating in the mineralization of iron ore [33].
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2.2. Methodologies

The application of a spectral remote sensing approach for mineral mapping and
detection necessitated the integration of the rock and mineral samples’ spectra with satellite
images covering the study area. Therefore, the requisite data for this study comprise
multispectral images covering the study sites and rock samples representing the wall
rocks (andesite, basalt, basaltic andesite, dacite, basaltic tuff, basaltic crystal tuff, and
andesite tuff), iron ore (magnetite), intrusive rocks (diorite, granodiorite, granite, and
diabase), and skarn minerals (epidote, diopside, chlorite, and calcite) within the study
area, accompanied by their corresponding spectra and geographical positional information.
Additional samples for vegetation and glacier were obtained to capture the other land
covers within the study area.

2.2.1. Data Collection and Processing

ASTER data constitute multispectral data captured by the ASTER advanced multispec-
tral imager, launched in 1999 onboard NASA’s Terra spacecraft. With a spatial extent of
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60 × 60 km, the sensor acquires data within 14 different spectral bands, including 3 VNIR
bands (520–860 nm wavelength) at 15 m spatial resolution, 6 SWIR bands (1600–2430 nm
wavelength) at 30 m spatial resolution, and 5 TIR bands (8125–11,650 nm wavelength)
at 90 m spatial resolution. The ASTER Level 1 Precision Terrain Corrected Registered
At-Sensor Radiance (AST_L1T_00309142002052127_20150425012155_14799) image, encom-
passing visible near infrared (VNIR) and shortwave infrared (SWIR) bands (bands 1 to 9),
acquired on 14 September 2002, was employed as the primary dataset for this research.
The image was obtained from the EROS Data Center’s (EDC) Land Processes Distributed
Active Archive Center (LP-DAAC) after preprocessing operations for terrain correction and
calibration of at-sensor radiance were conducted on the image [46]. ENVI 5.5 facilitated
image preprocessing tasks, encompassing radiometric and atmospheric corrections, image
resampling, PCA, and band ratio computation. The atmospheric and radiometric correc-
tions were performed to mitigate the atmospheric interference and transforming radiance
images into reflectance [46], while the image resampling was implemented to align the
SWIR bands with a resolution of 15 m (matching the VNIR bands) in order to preserve the
essential resolution of the VNIR bands, crucial for enhancing the iron spectra.

Furthermore, a total of 103 rock samples comprising 34 iron ores, 34 skarns, 21 volcanic
wall rocks, and 14 intrusive rocks were collected. Additionally, 45 other land cover samples
were obtained, comprising 20 vegetation samples and 25 glacier samples. Disparities in
the sample counts among these components were primarily attributed to the inherent
variability in their occurrence within the study area (Figures A1–A4 in Appendix A). These
samples were extracted from the three study iron deposits. It is important to highlight that
the selection of samples deliberately accounted for diversity in both physical appearance
and structural characteristics, enabling a comprehensive representation of the different
components when determining the bands for band-ratio computations. Furthermore, the
selection of sampling locations was executed with precision based on the dominance of
each mineral or ore type within a 30 m buffer, corresponding to the pixel size of the ASTER
imagery. This approach aimed to minimize errors and enhance the sample size for image
patch preparation. Additionally, the eight surrounding pixels within the buffer distance
of sampling locations were incorporated as the center pixels for patch preparation. This
further increased the number of training samples and was instrumental in averting or
minimizing the occurrence of mixed pixels during the training or testing phases, thereby
enhancing the spectral purity of the collected data.

The rock samples were subjected to bidirectional spectrum data collection, a task facil-
itated by OreXplorer field spectrometer SM-5400 209-9428 (Spectral Evolution, Haverhill,
MA, USA). This high-resolution spectrometer operated within a spectral range of 350 to
2500 nm. The spectrometer has a spectral resolution of 2.7 nm to 5.8 nm across the various
wavelengths. Simultaneously, spatial coordinates for the collected samples were recorded,
ensuring precise geospatial information alignment. The spectral data underwent spectral
resampling to facilitate a meaningful comparison with the spectral information derived
from the ASTER images due to the few broader bands available in the ASTER image [47].
To harmonize the datasets, the average spectral profiles for each sample were resampled
within the ENVI software (ENVI 5.5), aligning them with the corresponding wavelength
ranges of the ASTER bands. This resampling process facilitated a detailed exploration of
the behavior, including absorption and reflection characteristics, of the Fe minerals, rock
intrusions, volcanic wall rock, and other background features, which guides the band ratio
and PC band selections.

2.2.2. Band Ratio Selection

A total of 15 distinct band ratios were thoughtfully selected for comprehensive exami-
nation, with the overarching objective of identifying potential ratios for integration into the
final imagery as inputs for the proposed model. For a comprehensive enumeration of the
various band ratios designated for scrutiny, refer to Table 1. It is imperative to emphasize
that each selected band ratio is specifically tailored to enhance the spectral response of a
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particular mineral. To elucidate, band ratios 5/3 + 1/2 and 4/8 were deployed to enhance
ferrous iron and iron oxide, respectively, based on the findings of [13,48]. An array of
additional band ratios, such as 2/3, (8/7)/((2 + 4)/8), (2/3)/((2 + 4)/8), and (2 + 4)/8, were
meticulously devised in alignment with the absorption and reflection bands characteristic
of iron minerals within the study area, with the explicit aim of intensifying the spectral
response of iron ores during the classification process. Band ratios selected to enhance
intrusions, skarn, and volcanic wall rock were also thoughtfully chosen for evaluation, as
detailed in Table 1.

Table 1. Computed band ratios for examination.

S/No. BR Usage Source

1 5/3 + 1/2 Ferrous iron enhancement [48]

2 5/6 Skarn (chloride and calcite)
enhancement [3]

3 4/8 Iron oxides enhancement [13]

4 (7 + 9)/8 Delineate skarn minerals (such as
calcite and chloride) [48]

5 (2 + 4)/8 Iron ore enhancement From the observed iron ore spectra

6 (6 + 9)/(7 + 8) Delineate skarn minerals [49]

7 (2 + 4)/3 Iron ores and intrusions from skarn and
wall rocks [6]

8 ((5 + 9)/7)/((6 + 9)/8) Skarn minerals enhancement [50]

9 2/3 Iron ore enhancement From the observed iron ore spectra

10 (8/7)/((2 + 4)/8) Iron ore enhancement Modified from [50]

11 4/7 OH-bearing minerals [51,52]

12 ((6 + 8)/7)/((7 + 9)/8) Distinguished skarn minerals [3,50]

13 2/1 Ferric iron [48]

14 4/2 Distinguished skarn from wall rocks
and intrusions [53]

15 (2/3)/((2 + 4)/8) Ores from other components From the observed iron ore spectra

2.2.3. Selection of Principal Components Bands

PC bands constitute an additional dimension of multispectral image derivatives em-
ployed in this study. The incorporation of PC bands as input data or as part of the input
data in convolutional networks consistently demonstrates effectiveness in reducing data
redundancy, enhancing classification accuracy, and minimizing processing time [27,54].
However, it is imperative to note that including only those PCs that emphasize specific
features of interest can result in a reduction in processing time compared with using all
PCs generated from the original input image. Consequently, this study leverages the
PC selection concept employed by [18,27]. This approach revolves around selecting PCs
that emphasize desired features, guided by the spectral information essential to those
desired features.

2.2.4. Design of Proposed 3D-CNN Model Architecture

The proposed model is engineered to process a stacked image comprising ASTER
image bands, BR images, and selected PC bands as its input. The architectural blueprint of
the proposed model is founded on the framework introduced by [17], which refines the
design put forth by [18]. The latter incorporates a few 3D convolutional layers, including a
residual layer, to enhance the generalization capacity, mitigate overfitting, prevent gradient
disappearance, and improve the learning rate. Notably, the proposed model adheres to a
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consistent use of a small receptive field (3 × 3 × 3) for all convolutional layers, as advocated
by [55]; this is particularly effective for spatiotemporal feature extraction, especially in
instances where the features possess limited spatial coverage. This uniformity in kernel
size across layers is posited to yield more precise results compared with disparate kernel
sizes for each layer [56]. The adoption of a small kernel size is necessitated by the mod-
est size of the input patch required, set at 7 × 7 × C, where “C” denotes the number of
bands (Figure 2). This configuration allows a 3 × 3 × 3 kernel to perform three convo-
lutions (without maximum pooling, stride, or padding), thereby expediting operations.
The choice of the 7 × 7 patch size aims to strike a balance between providing sufficient
contextual information and maintaining classification precision, especially considering
the 15 m × 15 m resolution of the resampled image and the nature of the deposits under
investigation. Additionally, pixels within a small spatial vicinity generally reflect the same
underlying material.
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The choice of the number of the hidden units used in the convolutional layer is pivotal,
as it governs the network’s capacity to learn complex representations by projecting input
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data into a higher-dimensional space. However, an excessive number of hidden layers may
result in learning extraneous patterns, enhancing training accuracy while exerting minimal
influence on the model’s testing performance. In light of this, the current model embraces
the paradigm of a shallow network with a small patch size, as advocated by [28,57]. The
choice of a small patch size is further influenced by the coarse resolution of the ASTER
images (30 m). Owing to the shallowness of the architecture, a residual layer is employed
to convolve the input image, with its output merged with that of the third convolutional
layer before progressing to the fully connected layer. This integration serves to smooth
the data, enhance model stability, and augment the generalization capacity of the dense
layer [17].

Given that the input image comprises stacked bands with disparate distributions, batch
normalization (BN) assumes the role of the initial operation on the input to standardize all
input channels to a uniform range. This normalization, computed for each channel (image
band), precedes the application of the non-linearization function in the convolutional
network. The ratio of filters between subsequent convolutions is set at 1:2, a configuration
proven effective in various studies, including those by [28,57]. Consequently, the initial
number of filters in the first convolutional layer is stipulated at 4. Finally, a SoftMax
classifier is employed after the fully connected layer to categorize outputs into specified
classes, with the probability of an input being classified as a particular class [27]. This
configuration resulted in a model with only 26,490 parameters. It is noteworthy that out of
the total parameters, a total of 26,398 are trainable, rendering the prediction of unclassified
pixels within the entire image notably faster. The model predicts the category of the central
pixel within a 7 × 7 patch, as the central pixel is considered the most representative of
the local context, while the surrounding pixels provide additional context to enhance
classification accuracy.

2.2.5. Model Training, Testing, and Evaluation

Following the preparation of training and testing data, 75% of the prepared image
patches, centered on each sample location and its surrounding eight pixels, were allocated
for training purposes, with the remaining 25% reserved for testing. Within the training
dataset, 95% of the samples were further designated for actual training, while 5% were
earmarked for validation. The classes were designated numerically from 1 to 6. Class 1 was
assigned to iron ore, and classes 2 through 6 corresponded to skarn minerals, intrusions,
volcanic wall rocks, vegetation, and glaciers, respectively. The number of training epochs
was set at 100 to facilitate a comprehensive examination of model stability.

Upon completion of model training and testing, overall accuracy (OA) and average
accuracy (AA) metrics were extracted to assess the model’s efficacy. The OA of each class
represents the classification accuracy for that specific class post-model testing. For each
class, the overall accuracy of classification is calculated by dividing the number of samples
correctly classified by the total number of samples in that class. The overall accuracy for all
classes is determined by dividing the sum of samples correctly classified across all classes
by the total number of samples tested. The average accuracy denotes the mean of overall
accuracy across all classes and is calculated by dividing the overall accuracy for each class
by the total number of classes. The values of these accuracy indicators signify how well the
model is trained and is capable of distinguishing features it was trained to do.

2.2.6. Evaluation of the Impact of BR Images and PC Bands on the Accuracy

The model was specifically configured to operate on a concatenation of multispectral
image bands, PC bands, and BR images. To comprehensively gauge the impact of these
image derivatives on the accuracy of iron mineral detection and the classification of other
minerals, the model underwent additional testing under various configurations: utilizing
solely the ASTER image bands, combining ASTER image bands with PC bands, employing
ASTER image bands in conjunction with BR images, and utilizing only PC bands and BR
images. This systematic evaluation allowed for a nuanced understanding of the contribu-
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tions of BR images and PC bands to the model’s accuracy. Accuracy indicators such as OA,
kappa statistics, and AA were employed to quantify the model’s performance (Figure A5
in Appendix A).

2.2.7. Comparison with Other Methods

To further validate the effectiveness of the proposed approach, we compared the
classification results with those from existing methods: (1) a 3D-CNN method proposed
by [28], which employs a few 3D convolutional layers (two convolutional layers and a
fully connected layer), uses a small image cube size (5 × 5), and has very few parameters
while taking full-image spectral bands as inputs; (2) a HybridSN model by [29], consisting
of three 3D convolutions, a 2D convolution, and three fully connected layers, using a
25 × 25 image cube size as input, resulting in a large number of parameters; (3) a 3D
inception model proposed by [58], which features four branches: the first branch has a
1 × 1 × 1 3D convolutional layer, the second branch has a 3 × 3 × 3 convolutional layer,
the third branch includes a 1 × 1 × 1 and a 5 × 5 × 5 convolutional layer, and the fourth
branch adds a 3 × 3 × 3 convolutional layer to the general inception architecture; and
(4) a 2D-CNN method (AlexNet) proposed by [59], consisting of five convolution layers,
three max-pooling layers, two normalization layers, two fully connected layers, and one
SoftMax layer. For our data, the AlexNet architecture was modified by reducing the input
size to 27 × 27 and omitting the first convolutional and pooling operations. The results
were compared in terms of OA, AA, and the kappa coefficient.

2.2.8. Experimental Setting

This study introduces an innovative methodology aimed at enhancing the dimension-
ality of multispectral satellite image data. The approach integrates relevant band ratios
and principal component bands into the existing image bands. Furthermore, it presents a
3D-CNN model characterized by a few convolutional layers, rapid convergence rate, and
relatively high accuracy. The proposed model was implemented using Python incorpo-
rating the Keras and TensorFlow libraries along with other modules such as “sio”, “os”,
and “matplotlib”. This implementation was conducted within a Jupyter Notebook envi-
ronment, a web-based open-source platform for code development and resource sharing.
The “Keras” package provides the building blocks for model configuration and training,
while the “sio” and “os” modules are used for handling external files. Data visualization
and the generation of prediction maps were achieved using the plotting functionalities
of “matplotlib”.

All experiments were conducted on an ASUS Zenbook laptop (ASUS Computer Co.,
Ltd., Shanghai, China) equipped with an 11th Gen Intel(R) Core (TM) i7-1195G7 processor
running at 2.90 GHz and 16 GB of RAM. During model configuration, the parameters were
specified as follows: a batch size of 32 patches, a learning rate of 0.001, a dropout rate of
35%, a regularization parameter (L2 parameter) set at 0.001, and kernel and filter sizes in
accordance with the specifications outlined in Figure 2. To ensure a thorough assessment of
model stability and convergence, the number of training epochs was set at 100. A SoftMax
classifier was introduced after the final fully connected layer to classify the outputs into
specified classes.

The model’s training, testing, and validation phases were conducted utilizing the
prepared image data of the Zhibo deposit. This image comprises 19 bands, encompassing
9 ASTER multispectral bands and 10 bands derived from the original image transfor-
mations (4 PC bands and 6 BR images). This image comprises 19 bands, encompassing
9 ASTER multispectral bands and 10 bands derived from the original image transforma-
tions (4 principal component bands and 6 band ratio images). The image dimensions are
516 rows by 663 columns, resulting in an image shape of 516 × 663 × 19. The ground
truth file was generated by associating the sample points’ coordinates with six distinct
classes, encapsulating both environmental and mineral/rock components of interest in
the study area. During the ground truth image generation process, sample points were
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buffered to encompass the immediate adjacent pixels (within 15 m) in all directions. This
data augmentation strategy aims to bolster the volume of training pixels available for
generating input patches. Importantly, this strategy does not compromise the quality of the
training data, as meticulous care was exercised during field sample collection to ensure
each sample was acquired in locations where a conspicuous dominance of the target class
was apparent within a 30 m proximity.

Subsequent to the data augmentation process, the ground truth image is systematically
compiled, and each class is assigned a unique identifier ranging from 0 to 6. The “0” identi-
fier denotes pixels unallocated to any specific class, signifying those to be classified after the
training and validation phases. Table 2 presents the summary statistics of the total number
of pixels for patch preparation for each category, which includes 949 training patches,
50 validation patches, and 333 testing patches. A visual representation of the selected
prepared patches for model training, testing, and validation is displayed as a false-color
composite in Figure A6 in Appendix A, using ASTER bands 3, 2, and 1 displayed through
the red, green, and blue filters, respectively. The four rock components appear visually
similar, making them difficult to distinguish with the naked eye, whereas vegetation and
glaciers are distinct from the others, allowing for easier classification with minimal error.
The evaluation of results was based on the assessment of OA, AA, and the kappa coefficient.

Table 2. Patches summary.

Class/Patches Category Class ID Number of Patches

Iron Ore 1 306

Skarn 2 306

Wall rock 3 126

Intrusion 4 189

Vegetation 5 180

Glacier 6 225

Total 6 1332

Training - 949

Testing - 333

Validation - 50

3. Results
3.1. Processed Samples Spectra

The average ASTER-resampled spectra for some of the selected samples are presented
in Figure 3. The resampled spectra of the iron ore exhibit pronounced absorptions within
band 3 and band 8, as depicted in Figure 3a. Remarkably, these spectral characteristics bear
a striking similarity to the spectra of skarn minerals, featured in Figure 3b. Notably, the
spectral profile of iron ore showcases nearly uniform reflectance between bands 5 and 6,
while skarn minerals manifest a distinct absorption between these two bands.

Conversely, the spectra of intrusive rock samples exhibit absorption in band 6, in
addition to the absorptions observed in band 3, and reflections are present in bands 5
and 7, as noticeable in Figure 3c. This spectral behavior can be attributed to the presence
of OH-bearing minerals within the composition of the intrusion rocks [60]. Given that
some of the intrusions are identified as granites within the study area, it is notable that
granites typically feature absorption features around 2200 nanometers in wavelength
(corresponding to ASTER band 7) [61]. Nonetheless, it is noteworthy that specific intrusion
samples (BZI-6, 7, and 11) do not display discernible absorption or reflection features across
the measured wavelength range (ranging from 400 to 2500 nanometers) for this study.
These particular samples exhibit spectral behavior analogous to granodiorite, mirroring
the observations in [62].
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Figure 3. Resampled spectral profile of the collected samples. In the case of iron ore (a), notable
absorptions are evident in bands 3 and 8, with prominent reflections observed in band 5. The majority
of skarn samples (b) exhibit a pronounced absorption feature in band 8, with minimal variation
observed between bands 2 and 3, yet uniform reflection is evident in bands 4 and 5. Certain wall rock
samples (d), including those from Dunde deposits (basaltic tuff), display distinct reflectance patterns.
The majority of the intrusive rock samples (c) exhibit absorptions in bands 3 and 6, accompanied by
reflections in band 5.

The spectral plots of the wall rock samples (Figure 3d) exhibit distinguishable spectra
between those sourced from Zhibo and Dunde (indicated by sample names beginning with
“Z” and “D”, respectively), reflecting the presence of subtly distinct wall rock types in
these areas. Specifically, Zhibo deposits predominantly feature andesite, basaltic andesite,
and basalt [39], while Dunde deposits comprise basaltic tuff, basaltic crystal tuff, and
andesite [44] (Figure 1b,c). This discrepancy in mineral composition contributes to the
observed dissimilarities in the spectra. Notably, wall rock spectra from Dunde (DD33-1
and DD-31-2, Figure 3d) closely resemble the spectra of skarn minerals. This resemblance
can be attributed to the presence of calcite, epidote, or chlorite in most basaltic tuffs in
Dunde (Figure A4 in Appendix A) [63], resulting in a spectral profile featuring a significant
absorption around 2330 nm wavelength (ASTER band 8). Coincidentally, these minerals,
integral to the basaltic tuff composition, also form part of the skarn minerals in the study
deposits [33,63], explaining the observed spectral similarity. Despite this, discrepancies
manifest in the VNIR range, where skarn exhibits absorption in band 3, contrasting with
the reflection observed in the wall rock (Figure 3b,d).
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The spectral profiles of ore samples demonstrate a pattern akin to that of intrusion
samples, with a notable distinction in the region between band 6 and band 7, where
intrusions exhibit reflection while ores maintain absorption. This divergence in bands 6 and
7 can be attributed to the presence of Al-OH in the mineral composition of both intrusions
and ores. The similarities observed suggest common mineral composition as gangue
components, owing to the formation of ore minerals between intrusions and wall rocks.

3.2. Selected Band Ratios

The analysis utilized scatter plots of two band ratios per plot (Figure 4) to evaluate
their efficacy in differentiating between mineral components. The plot of BR 4/8 against
5/6 (Figure 4a) demonstrated the capability of these ratios to distinguish between ores and
skarn minerals, with skarn minerals consistently displaying higher ratio values compared
with ores. Additionally, iron ore samples exhibited uniform reflectance between bands 5
and 6, while skarn minerals displayed distinct absorption between these bands.
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Figure 4. Band ratios assessment scatterplots. The initial four graphs (a–d) showcase selected band
ratios distinguished by clear boundaries between at least two distinct components. Nevertheless, it is
noteworthy that none of the individual band ratios exhibit a pronounced capability in effectively seg-
regating each component from the others. Plots (e–h) indicate an absence of well-defined boundaries
between two or more components.

The scatterplot of BR 2/3 against 4/7 (Figure 4b) indicates that these ratios collectively
differentiate between three components, with BR 2/3 greater than 1.023 indicative of iron
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ore or intrusion rock and inverse values suggesting skarn minerals. Incorporating BR
4/7 provided further discrimination, with intrusions possessing higher BR 4/7 values
compared with ore samples. Similarly, BR (8/7)/((2 + 4)/8) effectively separated ores from
intrusions (Figure 4c), and BR (2 + 4)/8 proved valuable in resolving classification confusion
between ores and wall rocks (Figure 4d), although it could not separate wall rocks from the
other classes. However, BR (6 + 9)/(7 + 8) exhibited limited capability in distinguishing
any one component from the others despite slight spectral pattern variations within the
ratio across different classes. BR (5/3 + 1/2) and BR 2/1 displayed heightened sensitivity,
making component differentiation challenging. Other tested band ratios encountered
difficulties in isolating skarn samples, possibly due to the presence of calcite and chlorite in
the skarn minerals across the study areas. Additionally, band ratios such as BR (2 + 4)/3
and (2/3)/((2 + 4)/8), aimed at enhancing iron content and differentiating iron ores from
other components, showed no apparent clustering for the same samples. Table 3 provides
the summary list of the selected BRs.

Table 3. Summary of the selected BRs.

BR Ore Skarn Intrusions Wall Rock Remark

5/6
√ √

Differentiate iron ores from skarns

4/8
√ √

Separate iron ore from skarn

2/3
√ √ √

Separate skarn from iron ore and intrusion

(8/7)/
((2 + 4)/8)

√ √
Separate iron ore from intrusions

4/7
√ √

Separate iron ore from intrusions

(2 + 4)/8
√ √ √ √

Separate iron ore from other components

3.3. Selected Principal Components Bands

The selection of the requisite PCs adheres to a concept widely adopted in various
research works, including those by [18,27]. This concept involves identifying PC bands
whose eigenvectors possess the highest opposing sign values corresponding to the major
absorption and reflection bands of the targeted component, thereby characterizing that
component. The eigenvectors matrix, detailed in Table 4, reveals that PC 3 exhibits moderate
negative contributions in bands 2 and 1 (−0.32 and −0.31, respectively), coupled with a
strong positive contribution in band 3 (0.67), which aligns with the reflection and major
absorption bands within the spectra of the iron ore samples. Consequently, PC 3 is deemed
a suitable selection for inclusion in the final set of image bands to be employed as input
into the model, as it appears to contain vital information conducive to the simple detection
of iron minerals.

Likewise, PC 4 demonstrates a moderate negative contribution in band 8 (−0.41) and
a positive contribution in band 4 (0.59) (as outlined in Table 4), aligning with the absorption
and reflection bands shared by the skarn and iron ore spectra. This characteristic makes
PC 4 potentially useful for enhancing iron oxides, as previously proposed by [13]. PC 5,
on the other hand, exhibits a positive contribution in band 4 (0.44) along with a negative
contribution in band 5 (−0.60). This nuanced behavior corresponds to the spectral signature
of volcanic wall rocks, which uniquely display absorption in band 4 followed by reflection
in band 5, distinguishing them from other components, which generally exhibit reflection
in both bands. Notably, PC band 7 displays its highest positive contribution from band 6
(0.63) and the most significant negative contribution from band 5 (−0.57), indicating the
spectral characteristics of skarn samples within the study area, where band 5 serves as an
absorption shoulder band, while band 6 functions as the primary absorption band.
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Table 4. The eigenvector matrix from the PCA of the nine ASTER bands (VNIR and SWIR).

Eigenvectors Band 1 Band 2 Band 3 Band 4 Band 5 Band 6 Band 7 Band 8 Band 9

PC 1 0.5547 0.5725 0.5841 0.0745 0.0604 0.0683 0.0695 0.0517 0.0453

PC 2 0.2119 −0.1415 0.0899 −0.5397 −0.3950 −0.3922 −0.3413 −0.3253 −0.3219

PC 3 −0.3287 −0.3098 0.6716 0.3413 −0.2152 −0.1120 −0.1800 −0.2223 −0.2963

PC 4 0.3354 −0.0532 0.3906 0.5891 0.1568 0.1203 −0.1589 −0.4132 −0.3873

PC 5 −0.0426 −0.2432 0.2046 0.4391 −0.6036 −0.3817 0.1846 0.4002 0.0052

PC 6 −0.6003 −0.6672 0.0657 0.0588 0.0917 0.1051 −0.3529 −0.1676 0.1207

PC 7 0.1629 −0.1326 0.0257 0.0261 −0.5661 0.6326 −0.3416 −0.0412 0.3400

PC 8 −0.1877 −0.1725 0.0155 −0.2053 −0.2049 0.4981 0.4797 0.0451 −0.6086

PC 9 −0.0540 0.0422 0.0015 0.0227 −0.1852 −0.0978 0.5619 −0.6924 0.3948

PC 3–5, and 7 are selected due to the opposite contributions observed from the bands corresponding to the
reflection and absorption of the targeted minerals.

3.4. Mineral Detection Using the Proposed Model

In this study, we applied a novel model for the detection and classification of min-
erals within the Zhibo deposit. The methodology involved a comprehensive approach
encompassing training, testing, and validation phases on stacked images of the deposit.
The model was optimized using the “Adam” optimizer, with “categorical cross-entropy”
serving as the loss function and “accuracy” as the evaluation metric. A best model was
selected for subsequent classification and prediction tasks, culminating in the production
of a classified image, as illustrated in Figure 5 (top center).

The classified image revealed the predominant presence of iron minerals in the north-
western region of the deposit, extending toward the southeast, particularly concentrated
at the contact zone between the intrusion and wall rocks. This observation aligns with
previous geological reports on the spatial distribution pattern of ore minerals within the
deposit [39]. Individual class classification results demonstrated noteworthy accuracy rates,
particularly with 100% accuracy achieved for iron ores, intrusions, vegetation, and glaciers.
Skarn minerals and wall rocks exhibited accuracies of 84.62% and 95.24%, respectively
(Table 5). The training phase lasted approximately 121.22 s, with subsequent prediction
and testing phases completed efficiently within 0.828 s, indicating robust convergence of
the model.

The classification result analysis reveals that the proposed methodology demonstrates
commendable performance metrics. The OA stands at 96.95%, with an AA of 94.87%
and a kappa coefficient of 95.93%. Notably, these results exhibit an improvement in the
OA, AA, and kappa coefficient of 1.03, 1.27, and 1.49, respectively, in comparison with
outcomes attained utilizing the 3D inception model introduced by [58] (Table 5). This
disparity underscores a significant achievement of the proposed model despite its linear
architectural design relative to the more complex parallel architecture of the 3D inception
network. Relative to a 3D-CNN model proposed by [28], which shares a similarly shallow
architectural design, the proposed model exhibits significant improvements of 9.17, 13.6,
and 13.15 in OA, AA, and kappa coefficient accuracy, respectively. The disparity under-
scores the efficacy of the proposed model, raising inquiries into its underlying mechanisms.
In contrast with the 2D-CNN model, our proposed model demonstrates improvements of
3.06%, 3.66%, and 4.06% in OA, AA, and kappa coefficient accuracy, respectively. Notably,
the 2D-CNN model surpasses the 3D-CNN model proposed by [28], potentially due to the
latter’s comparatively shallow network architecture, as highlighted in [28]. Comparatively,
against the HybridSN model [29], the proposed model exhibits a marginal shortfall of less
than 0.06 in both OA and AA, despite possessing significantly fewer parameters and a less
complex architectural design (Table 5).
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In summary, the proposed methodology and model demonstrate exceptional performance
in identifying and detecting skarn iron minerals within the Zhibo deposit, surpassing existing
methodologies in accuracy while maintaining a simpler and more efficient architecture.
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Figure 5. Classification maps using different methods, including the proposed method. Both the
HybridSN and the 3D inception method produced smoother results, suppressing smaller classes, as
can be observed in the vegetation and wall rocks [28,29,58,59].

Table 5. Comparison of the proposed method with the existing methods.

Accuracy (%)

Method Iron Ore Skarn Intrusion Wall Rock Vegetation Glacier OA AA Kappa

Proposed model 100 84.62 100 95.24 100 100 96.95 94.87 95.93

HybridSN 100 100 92.86 85.71 100 100 97.01 94.93 96.21

3D-CNN 75.00 76.92 92.86 42.86 100 100 87.78 81.27 82.78

3D Inception Model 100 92.31 100 95.24 100 98.08 95.92 93.60 94.44

AlexNet 100 61.54 100 85.71 100 100 93.89 91.21 91.87

3.5. Evaluation of the Impact of the BR Images and PC Bands

The strategic integration of band ratios and principal component bands alongside
the original ASTER image bands was undertaken not only to augment the number of
bands/channels within the input image but also to capitalize on the unique strengths of
these derivatives in enhancing discernible features. Therefore, the evaluation sought to
scrutinize the effects of incorporating BR images and PC bands into the original ASTER
image bands on mineral classification accuracy.
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The results (Figure 6 and Table 6) indicated that the inclusion of selectively chosen
band ratios alongside the original ASTER bands yielded an overall classification accuracy
of 87.02%, with an average classification accuracy of 79.15% across all classes. While
band ratios improved the classification of ores and volcanic wall rocks, they introduced
significant confusion in differentiating skarn from intrusions and wall rocks, resulting in
misclassification rates exceeding 80% for skarns and approximately 35% for intrusions.
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Table 6. Accuracy assessment results from five different input configurations.

Accuracy (%)

Image Used Iron Ore Skarn Intrusion Wall Rock Vegetation Glacier OA (%) AA (%) K (%)

Only ASTER bands 100 84.62 92.86 76.19 100 98.08 93.13 91.96 90.91

PCs + BR 100 53.85 64.29 76.19 100 96.15 87.78 82.39 83.81

ASTER bands + BR 100 15.38 64.29 95.24 100 100 87.02 79.15 82.60

ASTER bands + PCs 100 76.92 100 85.71 100 98.08 94.65 92.93 93.45

ASTER bands + PCs + BR 100 84.62 100 95.24 100 100 96.95 94.87 95.93

The proposed band combination has retained the best classification results for each of the classes.

Remarkably, utilizing solely ASTER bands as the input parameters yielded signifi-
cantly higher accuracy rates (OA = 93.13%, AA = 91.96%, and kappa = 90.91%) compared
with scenarios involving the incorporation of ASTER bands with band ratios or PC bands
with band ratios. The amalgamation of ASTER bands with selected PC bands yielded a
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slightly improved result, with an OA of 94.65%, AA of 93.45%, and kappa coefficient of
92.93%. However, this enhancement posed challenges in accurately classifying wall rocks,
as some were misclassified as skarn or intrusions. Nevertheless, the inclusion of PC bands
made a constructive contribution to both the overall and average classification accuracies.

The classified image derived from the combination of ASTER bands, PC bands, and
band ratios (Figure 6) presented more visually appealing and statistically more accurate re-
sults when compared with the four alternative band combinations explored in this study, as
summarized in Table 6. This particular combination notably amended the misclassification
of intrusions evident in both the northern and central regions of the classified image when
ASTER bands were used in conjunction with PC bands. Additionally, it addressed the
misclassification of skarns observed in both the western and southeastern portions of the
same image. This band combination further improved the classification accuracy beyond
what was observed when exclusively employing ASTER bands in conjunction with PC
bands. Specifically, the OA increased from 94.65% to 96.95%, reflecting a 2.3% improvement,
while the average accuracy rose from 93.45% to 94.87%, indicating a 1.42% enhancement.

4. Discussion
4.1. Spectral Analysis and Data Selection

Spectral analysis unveiled distinct absorption and reflection patterns among the dif-
ferent mineral components. The majority of samples in each class exhibited absorption in
band 8, likely due to the presence of calcite as a gangue mineral in the iron ore samples,
part of the skarn mineral composition, or a constituent of the basaltic tuff in the wall rocks.
This absorption, observed around 2330 nanometers, may be induced by the vibrational
effect generated by the C-O bond in calcite [61] or the Fe-OH bonding [48]. Similarities
between the spectra of the iron ore and skarn minerals (Figure 3a,b) suggest the presence of
iron minerals in the majority of the skarn samples, which efficiently absorb radiation within
the wavelength range of 500 to 1000 nanometers [50,64], particularly in the near-infrared
region spanning 780 to 860 nanometers corresponding to ASTER band 3. These observed
similarities and differences in electromagnetic radiation absorptions and reflections across
the nine ASTER bands among the various minerals and rock components underscore the
importance of band selection and derivation of ratios for accurate mineral identification
and characterization.

The scatter plots of the band ratios (Figure 4) illustrate the efficacy of different ratios
in distinguishing between mineral components with specific ratios, such as BR 4/8 and BR
2/3, showing consistent patterns in differentiating ores from skarn minerals. Similarly, the
scatterplot of BR 5/6 against 4/8 convincingly highlights the ability of these two band ratios
to distinguish ores from skarn minerals, with skarn minerals exhibiting higher ratio values
in both ratios compared with ores (Figure 4a). BR (5/3 + 1/2) and BR 2/1, specifically
identified by [48] for ferrous and ferric iron enhancement, could not perform this task
efficiently. Notably, these ratios exhibited no distinct boundary between components. This
may be attributed to the small and insignificant weight percentage of Fe in the skarn
samples from all the sites.

The PCs, derived from PCA, constitute a significant aspect of this research’s considera-
tion. These bands are deemed valuable due to their potential to mitigate data redundancy,
enhance classification accuracy, and simultaneously reduce processing time, as documented
in studies such as [27,54]. Nevertheless, it is imperative to acknowledge that certain PCs,
particularly those associated with higher PC bands, may contain minimal information and
exhibit very low variance, appearing similar to noise, as noted by [65]. To optimize the
model’s performance, PCs 3, 4, 5, and 7 emerge as the only PCs among the nine computed
PCs that contain pertinent information corresponding to the four components (iron ores,
skarn, intrusion, and volcanic wall rocks) of interest in this research and are selected for
inclusion in the image bands fusion.
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4.2. Methods Comparison

During mineral detection, high accuracy was observed in iron ore classification, at-
tributed to the complementary support provided by the multiple band ratio images in-
tegrated into the input data. However, relatively lower accuracy in distinguishing wall
rocks from skarn minerals may be due to the presence of calcite and chlorite, significant
constituents of both classes, particularly in the basaltic tuffs prevalent in the Zhibo de-
posit [39]. These mineral compositions posed challenges for the model, particularly when
using broader wavelength range images like the ASTER image utilized in this study.

Relative to other models evaluated, the proposed model exhibited superiority, empha-
sizing that the depth of a network does not always correlate with superior performance,
as deeper networks may capture extraneous patterns that may augment training accu-
racy but offer marginal benefits to testing performance [57]. The integration of residual
layers within the proposed model architecture was identified as a key contributor to its
superiority, enhancing generalization capacity, improving model stability, and mitigating
overfitting, thereby preventing issues such as gradient disappearance and augmenting
the learning rate [17,18,66]. Additionally, the utilization of larger patches in the other
methods (HybridSN, AlexNet, and the 3D inception model) leads to overgeneralization in
classification outcomes, resulting in smoother images that prevent subtle spatial variations
typical of skarn iron formations, characterized by the sharp contact zonation between ores
and surrounding rocks [38,67,68].

The close correspondence between the results from the proposed model and the Hy-
bridSN model underscores the pivotal role of PC bands in enhancing image classification
accuracy. However, the proposed method demonstrated superior performance in identify-
ing intrusive and wall rocks, with accuracies of 100% and 95.24%, respectively, compared
with 92.86% and 85.71%, respectively, achieved by the HybridSN method (Table 5). This
superiority may be attributed to the inclusion of band ratio images in the proposed model’s
input configuration, which aids in reducing confusion between wall rocks and iron ore
or skarn minerals and enhances the spectral response of intrusions. Nonetheless, the
HybridSN method exhibits slightly superior accuracy in skarn mineral classification.

4.3. Impact of Band Integration on Classification Accuracy

During the evaluation of the impact of the integration of PCs, band ratio images, and
original ASTER bands, the incorporation of BRs into the ASTER bands notably influenced
the classification outcomes, reducing misclassified pixels in the context of glaciers and
wall rocks and thereby enhancing the accuracy of the classified image, particularly in
glaciers and wall rock categorization. However, the remarkable results obtained while
using only ASTER bands as input relative to the use of either ASTER bands with band
ratios or PC bands with band ratios was unexpected, considering the anticipated favorable
contribution of band ratios to accuracy, given their documented potential to enhance the
spectral signatures of targeted features in prior studies [3,13,51–53]. Additionally, the
classified image resulting from the integration of PC bands with ASTER bands exhibited
notable visual and statistical improvements in mitigating misclassifications observed in
the classified image derived from ASTER bands in conjunction with band ratios (Figure 6).
However, this integration led to a reduction in the accuracy of wall rock classification, with
some wall rocks erroneously classified as skarn or intrusions. Consequently, the pursuit of
a solution through the simultaneous incorporation of all three sets of bands was prompted.

The results from the combination of all three sets of bands consistently retained the
highest classification accuracy among the various combinations explored, underscoring
the importance of considering the diversity of input channels in enhancing classification
accuracy. Further investigation is warranted to understand the specific mechanisms driving
this enhancement. However, the most plausible explanation for this enhancement could
be attributed to the notion that the accuracy of the 3D-CNN model escalates in tandem
with an increase in diversity afforded by a higher number of channels in the input layer.
This expansion enables the capture of interdependencies and relationships between the
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various bands or channels, as posited by [69]. Notably, combinations featuring only PC
bands showed reduced accuracy in classifying wall rocks and glaciers compared with com-
binations featuring only band ratios. This positive impact of different band combinations
on classification outcomes underscores the importance of considering the diversity of input
channels in enhancing classification accuracy.

5. Conclusions

This study introduces a novel 3D-CNN model architecture that incorporates the strate-
gic integration of band ratios and principal component bands alongside the original ASTER
image bands to enhance mineral detection accuracy. The proposed model architecture
presents a streamlined, efficient, and effective framework distinguished by a notable re-
duction in parameters compared with prevailing models in the field. The incorporation
of image derivatives notably improves classification accuracy and expedites model pre-
dictions. The fusion of image bands demonstrates synergistic advantages, resulting in
the highest observed overall and average accuracy when compared with the alternative
combinations of bands evaluated. Specifically, ASTER bands are found to play a pivotal role
in optimizing accuracy for skarn classification, while principal component bands notably
enhance intrusion classification accuracy. Additionally, band ratio images significantly
contribute to the accuracy of wall rock classification. Each composite input image con-
figuration achieves maximal accuracy for iron ore classification. Remarkably, the model
exhibits versatility in handling both high- and low-spectral-resolution images without
necessitating adjustments to kernel sizes. These findings underscore the importance of
considering the diversity of input channels in neural network models to enhance min-
eral detection accuracy, warranting further investigation into the specific mechanisms
underlying this enhancement.
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