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Abstract: Deep learning-based super-resolution (SR) techniques play a crucial role in enhancing
the spatial resolution of images. However, remote sensing images present substantial challenges
due to their diverse features, complex structures, and significant size variations in ground objects.
Moreover, recovering lost details from low-resolution remote sensing images with complex and
unknown degradations, such as downsampling, noise, and compression, remains a critical issue.
To address these challenges, we propose ConvMambaSR, a novel super-resolution framework that
integrates state-space models (SSMs) and Convolutional Neural Networks (CNNs). This framework
is specifically designed to handle heterogeneous and complex ground features, as well as unknown
degradations in remote sensing imagery. ConvMambaSR leverages SSMs to model global dependen-
cies, activating more pixels in the super-resolution task. Concurrently, it employs CNNs to extract
local detail features, enhancing the model’s ability to capture image textures and edges. Furthermore,
we have developed a global–detail reconstruction module (GDRM) to integrate diverse levels of
global and local information efficiently. We rigorously validated the proposed method on two distinct
datasets, RSSCN7 and RSSRD-KQ, and benchmarked its performance against state-of-the-art SR
models. Experiments show that our method achieves SOTA PSNR values of 26.06 and 24.29 on
these datasets, respectively, and is visually superior, effectively addressing a variety of scenarios and
significantly outperforming existing methods.

Keywords: remote sensing; state-space models; convolutional neural networks; super-resolution

1. Introduction

High-resolution (HR) remote sensing imagery is of great importance in urban planning
and management [1], agricultural resource optimization [2], biodiversity conservation [3],
climate change research [4], environmental monitoring [5], and other fields. For instance, in
environmental monitoring, HR imagery can identify changes in land cover [6], vegetation
health [7], and water resources [8], which can assist in evaluating ecological trends and
assessing the effectiveness of environmental protection efforts.

However, the acquisition of high-resolution remote sensing images is often constrained
by technical and financial limitations. The image super-resolution technique employs an
advanced algorithm to reconstruct the relatively low-resolution (LR) image from the HR
image, thereby offering a cost-effective and efficient means of acquiring HR images.

In recent years, single-image super-resolution (SISR) techniques have emerged as a
significant area of research [9,10]. The core objective of this technique is to recover an
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HR image from a single LR image. Offering advantages such as cost-effectiveness and
efficiency, SISR techniques have attracted extensive academic attention [11], especially
deep learning-based methods [12], which have made significant progress in reconstructing
images with detail and clarity. Deep learning-based SISR methods rely on training a large
number of LR/HR image pairs to build mapping models. In addition, the performance of
super-resolution networks can be significantly improved by introducing techniques such
as residual connections [13], dense connections [14], generative adversarial networks [15],
and attention mechanisms [16]. Despite the success of SISR techniques in many fields,
their application in remote sensing images still faces many challenges. Ground objects in
remote sensing images exhibit complex structural characteristics, significant size differences,
and a substantial amount of noise, in addition to highly localized features [17]. These
characteristics present significant challenges for the application of SISR to remote sensing.

Despite the advancements in SISR methods, several fundamental challenges remain
unresolved, particularly in capturing long-range dependencies and handling complex and
unknown degradations in remote sensing images. These challenges highlight the need for
a more sophisticated approach that can overcome the limitations of both CNN-based and
Transformer-based models.

Typical CNN-based SR methods include SRCNN [18], RRDBNet [14], and EDSR [19].
SRCNN is the first CNN-based image SR method that learns an end-to-end nonlinear
mapping from LR to HR images through a three-layer convolutional network. RRDB-
Net combines the advantages of residue-in-residue and dense block residue-in-residue
structures and is widely used in high-magnification super-resolution and generative ad-
versarial training. EDSR improves super-resolution performance by removing the batch
normalization layer and increasing the depth and width of the network. Although these
CNN-based SR methods have significantly improved in performance, they are constrained
by the receptive field due to the limitations of convolutional operations, which impede
their ability to capture global contextual information [20]. Furthermore, while the superior
efficiency of convolutional parallel operations makes them well-suited for deployment
on resource-constrained devices, these methods face significant challenges in processing
remotely sensed images with complex structures and diverse features. These factors present
significant challenges to the super-resolution reconstruction of remote sensing images.

Transformer-based deep learning models have achieved state-of-the-art performance
in a variety of computer vision applications [21–24], which have demonstrated an efficient
ability to capture global background information by utilizing the self-attention mecha-
nism [25], Transformer-based SR methods have also evolved significantly. Despite its
global receptive field, Transformer [26] exhibits quadratic complexity in processing in-
put sequences, which presents a challenge when dealing with common large-size image
restoration tasks. SwinIR [20] represents a state-of-the-art approach to SISR tasks based on
Swin Transformer [27]. In comparison with purely convolutional structures and ViT-based
architectures, SwinIR is more efficient in public datasets such as DIV2K. Nevertheless,
certain studies have demonstrated that the performance of a single Transformer may not
be superior to that of a CNN due to the compression of image blocks into a 1D sequence,
which may result in the loss of structural information [28]. Conversely, the incorporation of
efficient attention techniques, such as the window-shift attention mechanism [27], often
entails the compromise of a globally effective receptive field, indicating that there is a
trade-off between the global receptive field and efficient computation.

The challenge in modeling long-range dependencies stems from the inherent lim-
itations of convolutional operations, which are restricted by their local receptive fields.
Transformer models, while capable of capturing global context, struggle with computa-
tional complexity and may lose structural information during the process of sequence
transformation. These issues necessitate a re-evaluation of existing methodologies and
drive the development of novel approaches.

Recently, state-space models derived from control systems have attracted attention
for their linear complexity in dealing with input sequences. In particular, the enhanced
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version of Mamba has become an efficient and effective backbone for developing complex
networks [29–33]. The discrete state-space equations in Mamba can be formalized into recur-
sive form and, when equipped with a specifically designed structured parameterization [34],
very long dependencies can be modeled. However, the standard Mamba [30] designed for
1D sequential data in NLP processes 1D image sequences recursively, which may result in
spatially close pixels being very far away in the spread sequence. This can lead to localized
pixel forgetting problems that are not suitable for image super-resolution scenarios.

To address the aforementioned challenges, this paper proposes a novel remote sensing
image super-resolution framework (ConvMambaSR) for hybrid models, offering a new per-
spective on efficiently modeling long-range dependencies while maintaining the integrity
of local details in remote sensing images. The framework is comprised of three principal
steps: shallow feature extraction, deep feature extraction, and upsampling. In the deep
feature extraction stage, ConvMambaSR employs an elaborate residual state-space group
(RSSG) and residual convolution group (RCG) to capture high-dimensional features at
different levels. Subsequently, GDRM is employed to facilitate the efficient integration of
local details and global contextual information.

The principal contributions of this paper are summarized as follows:

1. ConvMambaSR is proposed as a hybrid model combining CNN and Mamba. It
employs a dual-branch architecture: the CNN branch extracts local features and
processes spatial information, while the Mamba branch captures global features and
long-range dependencies.

2. A global–detail reconstruction module is introduced within ConvMambaSR, designed
to integrate local details from the CNN with global contextual information from
the Mamba. This module enhances the synergy between the branches by merging
local features with global information, thereby improving model performance across
various tasks.

2. Related Works
2.1. Advances in SISR and Applications to Remote Sensing

Recent advancements in SISR have been driven by both Convolutional Neural Net-
works and Vision Transformers.

CNN-based methods have achieved significant milestones, starting with the SRCNN
model proposed by Dong et al. [18], which pioneered deep learning in SR. Shi et al. [35]
introduced subpixel convolution, while Ledig et al. [36] incorporated ResNet and GANs
into SISR, resulting in models like SRGAN [36] and ESRGAN [37]. Attention mechanisms
were introduced by Zhang et al. [16], leading to advanced models such as RCAN [16] and
HAN [38]. Despite their success, these CNN-based models often struggle with modeling
long-range dependencies [20,39].

Vision Transformers, introduced by Dosovitskiy et al. [40], reshaped visual tasks by
treating images as sequences of patches. The Swin Transformer [27] reduced computa-
tional complexity through window-based self-attention and became the backbone for many
visual tasks, including SISR. Liang et al. [20] developed SwinIR, and subsequent improve-
ments like HAT [41] and NGswin [42] achieved competitive reconstruction performance in
capturing long-range dependencies and cross-window connections.

In the realm of remote sensing, SISR has gained traction due to the challenges of
acquiring multiple images for Multi-Image SR (MISR) techniques [43]. Building on natural
image SR techniques, models like SRCNN were adapted to remote sensing by Ducournau
and Fablet [44], while other advancements include RDBPN [45], PMSRN [46], and hybrid
models like SWCGAN [47], HSTNet [48], and ConvFormerSR [49], enhancing spatial
resolution and spectral consistency in remote sensing images.

2.2. State-Space Models in Deep Learning

State-space models have recently gained prominence in deep learning, particularly
for their ability to address long-range dependency challenges by drawing on continuous
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state-space modeling from control systems [32,50,51]. A notable example is the Structured
State-Space Sequence model (S4) [50], which uses parameter normalization with diagonal
structures as an alternative to CNNs and Transformers for modeling long-distance depen-
dencies. Building on this, the S5 model [32] introduces multiple-input multiple-output
(MIMO) SSM and efficient parallel scanning, while the gated state-space layer [31] enhances
the expressive power of S4 by incorporating gating mechanisms.

Recently, Gu et al. [30] introduced a data-dependent SSM layer and the Mamba
language model backbone, which outperforms Transformers on large-scale real-world data
with linear scalability for sequence lengths. Mamba’s computational efficiency in image
processing highlights the potential of SSMs in image restoration, offering novel insights
and advantages over traditional deep learning models.

3. Methodology

In this section, we first introduce the overall structure of ConvMambaSR and then
describe its three important modules, namely RSSG, RCG, and GDRM.

3.1. Overall Structure of ConvMambaSR

As illustrated in Figure 1, ConvMambaSR is comprised of three stages: shallow feature
extraction, deep feature extraction, and high-quality reconstruction. In the shallow feature
extraction stage, ConvMambaSR first extracts shallowfeatures FS ∈ RH×W×C from the
low-resolution input image ILQ ∈ RH×W×3 through a 3 × 3 convolutional layer, where H
and W denote the height and width of the input image, respectively, and C denotes the
number of channels.
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Figure 1. Architecture of the proposed ConvMambaSR.

In the deep feature extraction stage, the deep features FD_m and FD_c are obtained by
parallel Mamba branching and CNN branching, respectively. These features are then fused
by the GDRM module.

In the high-quality reconstruction stage, global residual concatenation is employed to
integrate the low-level features with the deep-level features, thereby generating the input
FR for the high-quality reconstruction stage. Finally, the pixel rearrangement method [35]
is utilized for upsampling, resulting in the SR result ISR.

The SR process of ConvMambaSR can be expressed mathematically as

FR = G(FD_m, FD_c) + FS (1)

ISR = Up(FR) (2)

where Up(·) denotes the upsampling function and G(·) denotes the global–detail recon-
struction operation. ISR is the reconstructed super-resolution image.
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3.2. Residual State-Space Group
3.2.1. Vision State-Space Module

Transformer-based super-resolution networks typically partition the input into small
patches [52] or employ shift-window attention [20] to ensure efficiency. However, this
approach hinders interaction at the whole image level. In response, we introduce the Visual
State-Space Module (VSSM) [53] to the image super-resolution task, thereby enabling the
model to benefit from Mamba’s success in long-range modeling of linear complexity.

VSSM is capable of capturing long-range dependencies through the use of state-space
equations. As illustrated in Figure 2, which follows [53], the input feature Fin ∈ RH×W×C

will undergo processing through two parallel branches. In the initial branch, the feature
channel is expanded to βC through a linear layer, where β is a predefined channel extension
factor. This is followed by a depth-wise convolution, a SiLU [54] activation function, and a
2D Selective Scanning Module (2D-SSM) layer [55] and LayerNorm (LN). In the subsequent
branch, the feature channel is also extended to βC through a linear layer, followed by the
SiLU activation function. Subsequently, the features from both branches are aggregated
using the Hadamard product. Finally, the number of channels is projected back to C,
generating an output of the same shape as the input Xout:

F1 = LN(2DSSM(σ(DWConv(Linear(Fin))))) (3)

F2 = σ(Linear(Fin)) (4)

Fout = Linear(F1 ⊙ F2) (5)

where DWConv denotes the depth-wise convolution, σ denotes the SiLU activation function,
and ⊙ denotes the Hadamard product.

Linear

Linear

DWConv SiLU

SiLU

2D-SSM

L
ay

er
N

or
m

Linear

Figure 2. Structure of VSSM, which is a component of the RSSB.

3.2.2. Two-Dimensional Selective Scan Module

Standard Mamba [30] captures information in scanned data during causal processing,
making it well-suited for sequential NLP tasks but less effective for noncausal data-like
images. We introduce the 2D Selective Scanning Module, as shown in Figure 3. Two-
dimensional image features are converted into 1D sequences and scanned in four directions,
and long-range dependencies are captured using the discrete state-space equation. Finally,
the sequences are merged and reshaped to restore the 2D structure.

DC D

A B

A B C D

A C B D

C B A

D B C A

Figure 3. Structure of 2D-SSM, which is a component of the VSSM.

3.2.3. Residual State-Space Block

Since SSM deals with flattened feature maps as one-dimensional token sequences,
it has been demonstrated that the number of neighboring pixels in the sequence can
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be significantly influenced by the flattening strategy [55]. When employing the four-
direction unfolding strategy proposed by [53], only four nearest neighbors are accessible
for anchor pixels. This discrepancy between spatial proximity in a two-dimensional feature
map and temporal proximity in a one-dimensional token sequence can result in local
pixel forgetting. Furthermore, SSMs typically incorporate a substantial number of hidden
states to accommodate long-range dependencies, and there is a notable degree of channel
redundancy in the activation results of different channels [55]. To address these issues,
we propose the incorporation of a Channel Attention Block (CAB) within the residual
state-space block (RSSB) framework. In this manner, SSMs can assist in alleviating the local
pixel forgetting issue by extracting local features through convolution. Furthermore, it can
be configured to prioritize the learning of diverse channel representations while avoiding
channel redundancy by selecting key channels through subsequent Channel Attention.

As illustrated in Figure 4, given a feature map FA ∈ RC×H×W , CAB is first compressed

by a compression factor γ1 to obtain features with shape R
c

γ1
×H×W . Thereafter, a channel

expansion is performed to recover the original shape. By first compressing and then
expanding the channel dimensions, the model can efficiently learn the different channels’
nonlinear interactions while constraining the model complexity. Subsequently, Channel
Attention (CA) [56] is introduced. CAB is calculated as follows:

FB = W1σ(W0(FA)) (6)

FC = FB ⊗ S(W3σ(W2(FB
avg))) (7)

where σ denotes the StarReLU [57] activation function, expressed as

StarReLU(x) = s · (ReLU(x))2 + b (8)

where s ∈ R and b ∈ R are scalars of scale and bias, respectively. W0 ∈ R
c

γ1×C, W1 ∈ RC× C
γ1 ,

W2 ∈ R
c

γ2×C, W3 ∈ RC× C
γ2 , FB

avg denotes global average pooling over the features FB, S(·)
denotes the sigmoid function, ⊗ denotes matrix multiplication, and γ1, γ2 denote two
different compression factors.

Conv

StarReLU

Conv

Conv

StarReLU

Conv

Global
Pooling

S

C
W

H

Figure 4. Structure of CAB, which is a component of the RSSB.

As illustrated in Figure 5, given the input deep features Fl−1
D_m ∈ RH×W×C, we first

use LayerNorm, followed by the Visual State-Space Module [53] to capture spatial long-
range dependencies, using a learnable scaling factor s ∈ RC to control the jumps from the
information obtained from the connections. At this point, the RSSB can be expressed as

Fl
D_m = VSSM(LN(Fl−1

D_m)) + s · Fl−1
D_m (9)

Fl
D_m = CAB(LN(Fl

D_m)) + s′ · Fl
D_m (10)
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where s and s′ denote different learnable scaling factors.
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Figure 5. Structure of RSSB. A series of RSSB forms the RSSG in the Mamba branch depicted in
Figure 1.

Ultimately, the RSSG can be expressed as

RSSGk = RSSGk−1 + WFl
D_m(F

l−1
D_m(...F

1
D_m(RSSGk−1)...)) (11)

where RSSGk and RSSGk−1 denote the kth RSSG and k − 1th RSSG, respectively. Fl
D_m is the

lth RSSB. W is a convolutional layer that serves to enhance the translational equivariance
of the Mamba layer.

3.3. Residual Convolution Group

It has been demonstrated that deep convolutional networks can enhance super-
resolution performance [16,19]. Accordingly, as illustrated in Figure 6, we constructed
RCGs with successive residual units to capture the details of LR images. A given RCB can
be expressed as

Fl+1
D_c = Fl

D_c + W1σ(W0(Fl
D_c)) (12)

where σ denotes the leaky ReLU activation function.
The N RCBs are connected to form an RCG module expressed as

RCGk = FN−1
D_c + W1σ(W0(FN−1

D_c )), N ≥ 1 (13)

F0
D_c = RCGk−1 (14)

where RCGk is the kth RCG feature map.

Conv LReLU Conv

Residual Convolution Block(RCB)

… RCB

Figure 6. Structure of RCG, which corresponds to the CNN branch in Figure 1.

3.4. Global–Detail Reconstruction Module

CNN is capable of fully exploiting spatial and channel information in the receptive
field, yet it is deficient in explicitly modeling inter-channel relationships [58]. In contrast,
Mamba is capable of fully utilizing long-range and global information, although it is
challenging to capture local details due to the absence of spatial generalization bias. Con-
sequently, we devised GDRM intending to fuse the deep features of varying dimensions
extracted by CNN and Mamba. The structure of GDRM and MSSA is depicted in Figure 7.

GDRM can be expressed as

FGDRM = W1(SimAM(FD_m)) + W2(MSSA(FD_c)) (15)

where W1 and W2 denote the convolutional layers used to automatically learn the weights
of different features extracted by the CNN and Mamba.
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SimAM

MSSA

Conv

Conv
3x3

1x7

7x1

1x13 13x1

1x17

17x1

1x1

(a) GDRM (b) MSSA

Figure 7. Structure of GDRM and MSSA. GDRM merges CNN and Mamba branch features.

MSSA and SimAM denote multiscale spatial attention and 3D attention based on
energy functions, derived from SegNeXt [59] and SimAM [60].

We employed depth-wise strip convolutions to approximate standard depth-wise
convolutions with large kernels. This approach is advantageous because strip convolution
is lightweight. To simulate a standard 2D convolution with a 7 × 7 kernel size, we only
require a pair of 7 × 1 and 1 × 7 convolutions. In contrast, remote sensing scenes frequently
exhibit strip-like features, such as rivers and farmlands. Consequently, strip convolution
can be employed as a supplement to grid convolutions [61–63], with the MSSA facilitating
the extraction of strip-like features by the CNN branch.

The MSSA formula is expressed as follows:

FD_MSSA = FD_c ⊗ Conv1×1(
3

∑
i=0

Scalei(DWConv(FD_c))) (16)

where FD_c and FD_c denote the CNN branch input features and Mamba branch input
features received by the GDRM in the deep feature extraction stage. FD_MSSA denotes the
output of the MSSA. DWConv denotes depth-wise convolution, and Scalei, denotes the
ith branch.

The SimAM formula is expressed as follows:

µ =
1
M

M

∑
i=1

Fi (17)

σ =
1
M

M

∑
i=1

(Fi − µ)2 (18)

Einv =
(F − µ)2

4(σ + λ)
+ 0.5 (19)

Fe = S(Einv) · F (20)

where µ denotes the mean value of all neurons in the channel, xi denotes the value of the ith
neuron, M denotes the total number of neurons in the channel (i.e., H×W, which denotes
the spatial dimensions of the channel), σ denotes the variance of all the neurons in the
channel, S(·) denotes the sigmoid function, F denotes the input feature map, Fe denotes
the output feature map, and λ is a set of hyperparameters.

3.5. Loss Function

We optimized ConvMambaSR for image super-resolution using L1 loss, which is the
most common loss function in super-resolution tasks. Given a training set

{
Ii

LR, Ii
HR

}N
i=1,

the loss can be expressed as

1
N

N

∑
i=1

∥∥∥ConvMambaSR(Ii
LR)− Ii

HR

∥∥∥
1

(21)
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4. Experiments
4.1. Datasets

In order to validate the effectiveness of our model, we conducted experiments on
two datasets, the RSSCN7 public remote sensing dataset [64] and our own RSSRD-KQ
remote sensing dataset.

The RSSCN7 dataset contains 2800 images of remotely sensed scenes from seven typical
categories, namely grasslands, farmlands, industrial areas, rivers and lakes, forests, resi-
dential areas, and parking lots. Each category has 400 images from Google Earth, sampled
at four scales of 100 images each. Each image is 400 × 400 pixels in size. The variety of
scene images taken in different seasons and weather conditions and sampled at different
scales made this dataset quite challenging. The LR images of RSSCN7 were obtained by
bicubic interpolation. This dataset is divided into two equal parts, one is used as a training
set with 1400 images, and the other is used as a test set, where 20% of the training set is
used as the validation set.

The RSSRD-KQ dataset is situated within the Sanjiangyuan region of Qinghai Province,
China. The HR images were captured by a DJI Phantom 4 RTK drone, equipped with
a visible-light sensor, which served as the data collection platform for conducting aerial
photography over two days, from 21 to 22 April 2024. To minimize the impact of solar
radiation and atmospheric conditions on the imagery, the flights were conducted during
the midday hours of 12:00 to 14:00 under clear sky conditions. The drone was flown at
an altitude of 30 m, with a spatial resolution of 0.82 cm and a flight speed of 2.3 m per
s. The total area of the test site that was imaged was 100 square meters. Its geographical
coordinates are 33°44′36′′N to 33°44′42′′N and from 98°59′30′′E to 98°59′38′′E. The RSSRD-
KQ LR images were obtained by unknown degradation of the blind super-resolution
task [65,66], which performs a series of randomly sequenced degradation operations,
including motion blurring, Gaussian blurring, random downsampling (nearest-neighbor
interpolation, bilinear interpolation, bicubic interpolation), simple scaling of the image,
addition of color, grayscale, or mixed Gaussian noise, addition of probabilistic JPEG
compression noise, and finally, addition of final JPEG compression noise processing before
random cropping. In this dataset, 90% of the 3162 images were randomly selected as the
training set images, 10% as the validation set images, and another 672 images outside the
region were used as the test set, making a total of 3834 images, each of which has a size
of 480 × 480 pixels. We used such HR/LR paired images for further analysis and model
training. Figure 8 shows sample examples of these two datasets.

RSSCN7

RSSRD-KQ

HR

LR

HR

LR

98°59’E

3
3°4

4
’N

(a)

(b)

Figure 8. HR/LR sample examples of the two datasets.
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4.2. Experiment Settings

In super-resolution tasks, the peak signal-to-noise ratio (PSNR) and structural similar-
ity (SSIM) [67] are commonly evaluated metrics. Assuming that the high-resolution image
is x and the reconstructed super-resolution image is y, they are calculated as follows:

MSE(x, y) =
1
N

N

∑
i=1

(xi − yi)
2 (22)

PSNR(x, y) = 10log10
1

MSE(x, y)
(23)

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
(24)

where µx and σx denote the mean and variance of x, respectively, σxy denotes the covariance
between x and y, and c1 and c2 are constants.

In addition, root-mean-square error (RMSE), spectral angle mapper (SAM) [68], and
relative dimensionless global error in synthesis (ERGAS) [69] are also used as the metrics
that are widely used to evaluate the quality of reconstructed remote sensing images. They
are calculated as follows:

SAM = cos−1 ∑ xy√
∑(x)2 ∑(y)2

(25)

RMSE =

√√√√ 1
N

N

∑
t=1

(xi − yi)2 (26)

ERGAS = 100
h
l

√√√√ 1
N

N

∑
i=1

(
RMSEi

µi

)2
(27)

where h and l denote the spatial resolution of the super-resolution image and the original
image, respectively, and N is the number of bands (channels).

We evaluate real-world images using the perception index (PI) [70], which combines
Ma et al.’s reference-free image quality metric [71] and NIQE [72] and can be expressed as

PI =
1
2
((10 − Ma) + NIQE) (28)

Higher PSNR and SSIM values indicate a better SR quality, while lower RMSE, SAM,
ERGAS, and PI values indicate a better reconstruction quality.

We implemented our SR model using PyTorch and performed all experiments on
an HPC platform equipped with an Nvidia A100 80G GPU. The model in the RSSCN7
dataset takes as input a randomly cropped LR image with a size of 48 × 48 pixels, while the
corresponding HR size is 192 × 192 pixels. The model in the RSSRD-KQ dataset takes as
input a randomly cropped LR image with a size of 64 × 64 pixels, while the corresponding
HR size is 192 × 192 pixels. During training, the batch size was set to 16 and the HR/LR
images were randomly rotated for data enhancement. The initial learning rate was set to
1 × 10−4 and reduced by a factor of 0.1 after 80 epochs. A total of 200 epochs were trained
using the Adam optimizer with β1 = 0.9 and β2 = 0.99.

Regarding the model parameter settings, we configured the number of RSSGs, RCGs,
and GDRMs to be 4. The parameter settings of the RSSBs in the RSSGs were consistent
with those of the MambaIR, including six VSSB modules and an SSM state expansion factor
of 16. The value of λ in SimAM in GDRM was set to 1 × 10−4, and the convolutional kernel
sizes of MSSA were 3, 7, 13, and 17, with corresponding padding of 1, 3, 6, and 8.
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4.3. Results

We performed comparative analyses with current state-of-the-art methods, including
Bicubic, SRCNN [18], SRGAN [36], EDSR [19], RRDBNet [14], RCAN [16], SwinIR [20],
HAT [41], SwinIR-NG [42], and MambaIR [55]. Visual comparison results on the RSSCN7
and RSSRD-KQ datasets are shown in Figures 9 and 10, respectively. Figure 9 shows the
full results, while Figure 10 focuses on the local zoomed-in details of the results from the
different models, where the subfigures within the red and green rectangles represent the
zoomed-in view of the yellow rectangle.

In the RSSCN7 dataset, the agricultural scene contains a variety of complex geographic
and artificial features, making detail and edge processing one of the key factors in evaluating
model performance. As shown in Figure 9, the image displays a farm field, with the upper
half showing plowed land and the lower half showing untreated land. ConvMambaSR
shows significant advantages, especially in detail reconstruction and edge sharpening.
The strip-like features commonly found in agricultural scenes require a model with high
resolution and detail retention. In contrast, the results of other models are often blurry,
failing to capture the boundaries and details of these features accurately, and they are
particularly poor at reconstructing strip-like features.

Bicubic

22.16/0.5851

SRCNN

22.13/0.5854

EDSR

24.41/0.6855

RCAN

24.53/0.6859

SwinIR

25.16/0.7063

SwinIR-NG

24.94/0.7007

RRDBNet

23.75/0.6717

HAT

25.33/0.7106

MambaIR

23.42/0.6586

ConvMambaSR(ours)

26.85/0.7339

LR

PSNR/SSIM

HR

∞/1
(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 9. Qualitative comparison of our model with other works (a–l) on the RSSCN7 dataset.

ConvMambaSR also shows significant advantages on the RSSRD-KQ dataset when
processing images that have undergone complex quality reduction. As shown in Figure 10,
the image displays four adult yaks and two young yaks. The LR image shows that after
complex texture reduction processing, the image contains very little local information.
Other models generally exhibit blurring phenomena when processing complex mass reduc-
tion images and lack sufficient detail extraction and reconstruction capabilities, resulting in
blurred details in the reconstructed images, which cannot effectively recover the overall
contours and shapes of the yak. In contrast, ConvMambaSR acquires the global receptive
field by fusing Mamba, which enables the extraction of more globally dependent features,
successfully reconstructs the overall contour and shape of the yak, and improves the
recognizability of the image. It is worth noting that MambaIR also achieves good results.
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Bicubic

24.12/0.3889

SRCNN

24.11/0.3765

EDSR

24.31/0.3891
RCAN

24.61/0.4000

SwinIR

24.28/0.3872

SwinIR-NG

24.25/0.3898
RRDBNet

24.34/0.3922

HAT

24.30/0.3876

MambaIR

24.42/0.3866

ConvMambaSR(ours)

24.95/0.4107

LR

PSNR/SSIM

HR

∞/1
(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 10. Qualitative comparison of our model with other works (a–l) on the RSSRD-KQ dataset.

In addition, a comprehensive quantitative evaluation of the model’s performance on both
datasets is shown in Table 1. The proposed ConvMambaSR model outperforms other models
in terms of PSNR, SSIM, RMSE, SAM, and ERGAS. Transformer-based models outperformed
CNN-based models in overall performance across both datasets. This superiority is especially
evident in agricultural scenes with complex geographic and artificial features as shown in
Figure 9. These results are consistent with previous research, such as the work on SwinIR [20],
which demonstrated that Transformer architectures generally excel in capturing fine details
and maintaining high-quality reconstructions compared with CNN-based approaches. The
introduction of the attention mechanism [16,41,42] plays a key role in RSISR, and models
based on the attention mechanism such as RCAN, HAT, SwinIR-NG, and ConvMambaSR
show excellent performance. It is worth noting that MambaIR shows excellent performance
under the RSSRD-KQ dataset, and the global receptive field brought by Mamba can better
help the model to improve its performance in complex degradation scenarios compared with
SwinIR, HAT, and SwinIR-NG. Furthermore, RCAN’s Channel Attention mechanism allows
it to adaptively adjust the features by taking into account the interdependencies between the
feature channels, allowing it to achieve excellent results on the RSSRD-KQ dataset as well.
Combining the excellent performance of MambaIR and RCAN and the achievements of other
models, in the RSSRD-KQ dataset, after the complex degradation of the image, there is a lot
of information between the global dependence and the channels, and the application of the
global receptive field and the Channel Attention can greatly improve the performance of the
model in complex degradation scenarios.

Figure 11 shows the performance of each model for the public dataset RSSCN7 in
seven categories: grassland, farmland, industrial areas, rivers and lakes, forests, residential
areas, and parking lots. The experiments show that grassland, rivers, and lakes have
the highest SR reconstruction accuracy, while residential areas, forests, and parking lots
have the lowest SR accuracy. The grassland and farmland scenes are mainly composed
of low-frequency components, and the relatively smooth texture leads to higher PNSR
accuracy, but in this case, the PSNR may not adequately reflect the real image quality
improvement, and the SSIM metrics are more in line with human visual perception. On the
other hand, residential areas, forests, and parking lots are full of complex details and contain
a large amount of high-frequency information. The recovery and reconstruction of this
high-frequency information is more challenging, resulting in a relatively low SR accuracy.

Overall, the SR performance of all deep learning models, except bicubic interpolation,
is consistent across all land cover categories. ConvMambaSR and SwinIR-NG perform well
across all categories.
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Table 1. Quantitative comparison results for the RSSCN7 dataset and RSSRD-KQ dataset. Bold data
indicate the best method.

Dataset Method PSNR (dB)↑ SSIM↑ RMSE↓ SAM↓ ERGAS↓

RSSCN7

Bicubic 25.50 0.6457 15.0848 0.1570 4.2513
SRCNN [18] 25.70 0.6551 14.7016 0.1534 4.1536
SRGAN [36] 25.96 0.6686 14.2594 0.1492 4.0402
EDSR [19] 26.00 0.6706 14.2090 0.1487 4.0256

RRDBNet [14] 25.98 0.6696 14.2405 0.1489 4.0346
RCAN [16] 26.00 0.6694 14.2109 0.1487 4.0257
SwinIR [20] 26.02 0.6727 14.1720 0.1483 4.0153

HAT [41] 26.04 0.6734 14.1480 0.1481 4.0092
SwinIR-NG [42] 26.04 0.6734 14.1453 0.1480 4.0084
MambaIR [55] 25.98 0.6697 14.2493 0.1490 4.0363

ConvMambaSR(ours) 26.06 0.6751 14.1029 0.1477 3.9985

RSSRD-KQ

Bicubic 23.74 0.3471 16.9950 0.1495 3.8872
SRCNN [18] 24.06 0.3541 16.2812 0.1435 3.7173
SRGAN [36] 24.06 0.3582 16.2846 0.1435 3.7155
EDSR [19] 24.18 0.3648 16.0725 0.1415 3.6685

RRDBNet [14] 24.19 0.3666 16.0470 0.1414 3.6614
RCAN [16] 24.27 0.3740 15.9059 0.1404 3.6290
SwinIR [20] 24.20 0.3672 16.0310 0.1412 3.6586

HAT [41] 24.21 0.3684 16.0068 0.1411 3.6530
SwinIR-NG [42] 24.20 0.3676 16.0305 0.1412 3.6587
MambaIR [55] 24.23 0.3663 15.9726 0.1407 3.6450

ConvMambaSR(ours) 24.29 0.3752 15.8632 0.1398 3.6205
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Figure 11. Performance of different land-cover categories on RSSCN7 dataset.

4.4. Effects of GDRM

To assess the efficacy of GDRM, we conducted ablation experiments utilizing CNN
and Mamba branches, respectively. The experimental outcomes are presented in Table 2.
The comparison demonstrates that GDRM exhibits superior performance compared with
the single-branch model. ConvMambaSR exhibits higher PSNR and SSIM values, as well
as lower RMSE, SAM, and ERGAS values. This indicates that ConvMambaSR effectively
fuses the local details of CNN and the global context information of Mamba. Furthermore,
we observe that the CNN branch outperforms the Mamba branch on the RSSCN7 dataset
but is inferior to the Mamba branch on the RSSRD-KQ dataset. This suggests that deep
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residual-based CNNs produce favorable results for the pixel-intensive SR reconstruction
task, despite the limited ability of CNNs to model long-range dependencies. However,
for complex degraded scenes, the substantial reduction in local details in the image leads
to a deteriorated CNN performance, whereas the global receptive field of Mamba en-
ables the extraction of more information. This indicates that the fusion of local details
and global features enables the model to achieve excellent performance in different SR
reconstruction tasks.

Table 2. Comparison of the proposed model with different branch models on the RSSCN7 dataset
and RSSRD-KQ dataset. Bold data indicate the best method.

Dataset Method PSNR(dB)↑ SSIM↑ RMSE↓ SAM↓ ERGAS↓

RSSCN7
CNN Branch 26.05 0.6740 14.1201 0.1478 4.0032

Mamba Branch 26.00 0.6704 14.2115 0.1487 4.0269
ConvMambaSR 26.06 0.6751 14.1029 0.1477 3.9985

RSSRD-KQ
CNN Branch 24.23 0.3698 15.9706 0.1408 3.6443

Mamba Branch 24.25 0.3706 15.9296 0.1405 3.6353
ConvMambaSR 24.29 0.3752 15.8632 0.1398 3.6205

Figure 12 presents a visual comparison of the RSSCN7 and RSSRD-KQ datasets
across different branches; the image below displays three adult yaks. It can be observed
that the performance is significantly enhanced following the fusion of the two branches
using GDRM. ConvMambaSR is able to perfectly reconstruct the strip-like features in the
farmland scene of the RSSCN7 dataset. Furthermore, ConvMambaSR is adept at effectively
mitigating the adverse effects of motion blur degradation observed in the RSSRD-KQ
dataset. Additionally, ConvMambaSR demonstrates satisfactory performance in terms of
SSIM metrics. The high SSIM values validate the fused model’s advantages in detailed
and global feature reconstruction and demonstrate that it outperforms the CNN or Mamba
branch alone in overall visual perception.

CNN Branch

26.02/0.7226

Mamba Branch

24.54/0.6892

ConvMambaSR

26.85/0.7339

LR

PSNR/SSIM

HR

∞/1

CNN Branch

23.81/0.3506

Mamba Branch

23.75/0.3494

ConvMambaSR

24.35/0.3903

LR

PSNR/SSIM

HR

∞/1

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 12. Qualitative comparison of our model with different branch models (a–j) on the RSSCN7
dataset and RSSRD-KQ dataset.
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4.5. Ablation Study on RCG Count

To further explore the impact of the number of RCGs on model performance, we
conducted an ablation study by varying the RCG count while monitoring the number of
parameters, FLOPs, PSNR, and SSIM.

The results in Tables 2 and 3 indicate that using only the Mamba branch, without any
RCGs, the model achieves a PSNR of 26.00 dB and an SSIM of just 1 RCG significantly
improves the performance, raising the PSNR t0.6704. Introducingo 26.05 dB and the SSIM
to 0.6742. This indicates that incorporating RCGs into the architecture enhances the model’s
ability to capture essential features, leading to better reconstruction quality.

Table 3. Performance metrics with varying RCG counts on the RSSCN7 dataset.

RCG Count #Para ms (M) FLOPs (G) PSNR (dB)↑ SSIM↑

1 6.72 175 26.05 0.6742
4 8.71 226 26.05 0.6742
8 11.37 294 26.06 0.6751
12 14.02 362 26.06 0.6751
16 16.68 430 26.07 0.6756
20 19.34 498 26.07 0.6759

As the number of RCGs increases, further improvements in both PSNR and SSIM
are observed. For instance, increasing the RCG count from 1 to 20 results in a PSNR
increase from 26.05 dB to 26.07 dB and an SSIM increase from 0.6742 to 0.6759. However,
these performance gains diminish with higher RCG counts, suggesting that while more
RCGs contribute positively to the model’s output, the marginal benefits decrease after a
certain threshold.

Moreover, the increase in the number of RCGs leads to a corresponding rise in the
model’s computational complexity, as evidenced by the growing number of parameters
and FLOPs. Therefore, it is crucial to balance the trade-off between the performance
improvements and the associated computational costs when selecting the optimal RCG
count, particularly for practical applications where efficiency is a critical consideration.

4.6. LAM Analysis and Feature Visualization

Local Attribution Map (LAM) [73] is a method based on Integrated Gradients [74]
designed to analyze and visualize the contribution of individual input pixels to the output
of deep SR networks. Additionally, LAM introduces a Diffusion Index (DI) to quantitatively
measure the extent of pixel involvement in the reconstruction process.
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Figure 13. Visualization results for different networks (a–h). Active Px indicates the number of
active pixels.
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With LAM, we can identify which input pixels contribute to the selected region.
As shown in Figure 13, the points marked in red are the pixels that contribute to the
reconstruction. It is evident that Transformer-based SwinIR [20] has a considerably larger
receptive field and activates a greater number of pixels with a wider distribution than
CNN-based EDSR [19]. However, SSM-based MambaIR [55] is capable of utilizing pixels
across a variety of regions within the entire image, thereby facilitating reconstruction and
activating the greatest number of pixels. The dual-branching structure of Mamba and CNN,
along with the design of GDRM, enables ConvMambaSR to leverage the strengths of both
SSMs and CNNs. Despite a reduction in the number of activated pixels, ConvMambaSR
is capable of utilizing the correct pixels globally for reconstruction, as evidenced by its
superior performance.

4.7. Complexity and Efficiency Evaluation

In order to quantitatively evaluate the complexity and computational efficiency of our
proposed models, we calculated the number of training parameters (#Params), the number
of floating-point operations (FLOPs), and the number of frames processed per second (FPS)
for the different models. The FLOPs are measured with an input size of 160 × 160 × 3. The
FPS is measured on an Nvidia A100 80G GPU. The scale factor was set to 4.

As demonstrated in Table 4, the CNN-based model exhibits the fastest inference
speed among all the deep learning models, a result that can be attributed to the superior
efficiency of the convolutional parallel operation. The inference speed of Mamba is consid-
erably faster than that of Transformer due to its linear complexity and efficient inference.
A comparison of Tables 1 and 4 reveals that the complexity and inference speed of our
proposed model are comparable to those of most other models, while the model perfor-
mance is markedly superior. This provides compelling evidence of the model’s potential
for practical applications.

Table 4. Comparison of model complexity and efficiency.

Model #Params (M) FLOPs (G) FPS

Bicubic - - 22557.1
SRCNN [18] 0.02 8 620.7
EDSR [19] 1.51 50 268.0

RRDBNet [14] 16.69 459 27.5
RCAN [16] 15.59 408 20.6

MambaIR [55] 4.65 123 10.3
HAT [41] 26.03 703 4.4

SwinIR [20] 16.57 456 0.5
SwinIR-NG [42] 19.35 460 0.4

ConvMambaSR(ours) 14.02 362 8.9

4.8. Real-World Image Testing

The performance of each model was evaluated using real-world images in RSSRD-KQ,
comprising a total of 48 images, each with a size of 480 × 480 pixels. The scale factor was
set to 3.

As illustrated in Table 5, ConvMambaSR exhibits the lowest PI relative to other deep
learning models. It is noteworthy that, similar to the outcomes of the preceding experi-
ments, MambaIR continues to achieve highly favorable outcomes. The global receptive
field introduced by Mamba is of significant benefit in addressing complex degradation
cases, offering a substantial advantage over Transformer and CNN. This indicates that the
presence of more information in the image is dependent on distance, and the enlargement
of the model’s receptive field will result in enhanced performance. The Mamba architecture
is capable of significantly improving the blind SISR of remote sensing images.
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Table 5. Quantitative comparison results for real-world images. Bold data indicate the best method.

Method PI↓

SRCNN [18] 8.6022
EDSR [19] 8.2448

RRDBNet [14] 8.1700
RCAN [16] 8.2068
SwinIR [20] 8.2149

HAT [41] 8.1619
SwinIR-NG [42] 8.2149
MambaIR [55] 8.1346

ConvMambaSR(ours) 8.0496

Furthermore, the experiments demonstrate that the degradation method employed
for RSSRD-KQ enables the model to learn certain degradation processes in the real world.
As shown in Figure 14, the image displays a high-altitude wetland scene, with some snow
covering the area, the phenomena such as motion blur and color fringes that are evident in
the original image captured by the UAV are partially resolved.

SRCNN

8.8034

EDSR

8.6035

RCAN

8.8221

SwinIR

8.5593

SwinIR-NG

8.6262

RRDBNet

8.5245

HAT

8.5258

MambaIR

8.6050

ConvMambaSR(ours)

8.2156

Original image

PI
(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 14. Examples of the proposed model with other works on real-world images (a–j).

5. Conclusions

This paper presents ConvMambaSR, a novel SISR method tailored for remote sensing
applications. ConvMambaSR leverages the complementary strengths of CNNs and SSMs,
effectively combining their abilities. Our experimental results reveal that a single model
architecture is often inadequate for addressing the diverse challenges posed by remote
sensing imagery, highlighting the necessity of integrating multiple models to achieve
superior results. To comprehensively capture both local and global information from
different branches, we introduce the global–detail reconstruction module, which fuses the
locality-capturing capability of CNNs with the global dependency modeling power of SSMs.
The experimental outcomes confirm the effectiveness of ConvMambaSR, demonstrating its
significant improvements over existing methods. ConvMambaSR demonstrates state-of-the-
art performance on the RSSCN7 and RSSRD-KQ datasets, outperforming existing methods
in visual quality. Specifically, the model achieves PSNR and SSIM scores of 26.06 and 0.6751
on the RSSCN7 dataset and 24.29 and 0.3752 on the RSSRD-KQ dataset. Notably, across the
seven representative categories within the RSSCN7 dataset, ConvMambaSR consistently
exhibits superior performance. Furthermore, the model significantly exceeds the inference
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speed of Transformer-based approaches, achieving 8.9 FPS. This combination of efficiency
and high performance underscores ConvMambaSR’s potential for a wide range of super-
resolution tasks, positioning it as a strong candidate for broader real-world applications.

Despite the promising results achieved with ConvMambaSR, there are several limi-
tations in the current study. One notable limitation observed through LAM analysis and
feature visualization is that, although the model inherits the global modeling capabilities of
SSMs and activates more correct pixels for reconstruction, there is still an issue with the
reduction in the number of activated pixels. Moreover, although the current approach is
effective, it is computationally intensive, leading to significant resource consumption. In
future research, we will explore further performance enhancements of hybrid models for
blind remote sensing SISR and optimize our approach to improve model efficiency.
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