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Abstract: The availability of a higher resolution fine spectral bandwidth in hyperspectral images (HSI)
makes it easier to identify objects of interest in them. The inclusion of noise into the resulting collection
of images is a limitation of HSI and has an adverse effect on post-processing and data interpretation.
Denoising HSI data is thus necessary for the effective execution of post-processing activities like
image categorization and spectral unmixing. Most of the existing models cannot handle many forms
of noise simultaneously. When it comes to compression, available compression models face the
problems of increased processing time and lower accuracy. To overcome the existing limitations,
an image denoising model using an adaptive fusion network is proposed. The denoised output is
then processed through a compression model which uses an optimized deep learning technique
called "chaotic Chebyshev artificial hummingbird optimization algorithm-based bidirectional gated
recurrent unit" (CCAO-BiGRU). All the proposed models were tested in Python and evaluated
using the Indian Pines, Washington DC Mall and CAVE datasets. The proposed model underwent
qualitative and quantitative analysis and showed a PSNR value of 82 in the case of Indian Pines
and 78.4 for the Washington DC Mall dataset at a compression rate of 10. The study proved that the
proposed model provides the knowledge about complex nonlinear mapping between noise-free and
noisy HSI for obtaining the denoised images and also results in high-quality compressed output.

Keywords: chaotic Chebyshev; artificial hummingbird optimization; bidirectional gated recurrent
units; hyperspectral image; denoising; compression

1. Introduction

Hyperspectral imaging (HSI) creates hundreds of tiny spectral bands using specialized
sensors and a large portion of the electromagnetic spectrum [1], which may be used to
analyze data about objects and landscapes. HSI methods have grown rapidly with the
development of remote sensing techniques. They typically cover the visible to infrared
response range and offer more common spectral data than the other types of images for
improved material component characterization. By capturing reflections from hundreds
of distinct electromagnetic spectrum bands, a hyperspectral image may be created [2,3].
The target’s detection efficiency and ability to blend in with the background can be sig-
nificantly enhanced by incorporating the difference between the target and background
in high-dimensional space into the evaluation system for camouflage efficacy [4,5] using
HSI technology.

Hyperspectral remote sensing (HSRS) has been one of these remote sensing technolo-
gies that has grown steadily due to its effectiveness. Typically, HSRS equipment is operated
from an aerial platform [6,7]. Following the capture of the image, a cube of data (hyper-
cube) including spectral and spatial data emerges. The resolution along with the number of
bands in the image make up the data cube’s dimensions [8]. A vector of reflections within
each electromagnetic band corresponds to each pixel within a hyperspectral image. This
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vector also conveys a spectral characteristic for each pixel within the hypercube [9]. In
order to create a hyperspectral cube, one can use one of four techniques: spectral scan-
ning, spatial–spectral scanning, snapshot hyperspectral imaging or spatial scanning [10].
However, because of thermal electronics and dark current, HSI is quickly impacted by
undesirable components like noise [11] such as impulse noise, Gaussian noise and sparse
noise. These inevitable noise corruptions affect the visual quality of the images. The task
of removing the HSI noise [12] has become a very relevant research topic in recent years.
HSI compression involves taking an input to reduce the volume of data to be transmitted.
In particular, compression [13] reduces the dimensionality in a way that enables the per-
fect reconstruction of the original scenes. Deep learning network-based compression [14]
methods are seen as very useful due to their learning abilities and capacity for noise re-
duction. Some of the models showing HSI denoising [15] and compression are discussed
below. Kong, X. et al. [16] presented a novel tensor-based HSI denoising approach by fully
identifying the intrinsic structures of the clean HSI and the noise. Specifically, the HSI is
first divided into local overlapping full-band patches, then the nonlocal similar patches
in each group are unfolded and stacked into a new third order tensor. This method is
designed to model the spatial–spectral nonlocal self-similarity and global spatial–spectral
smoothness simultaneously. This work concentrated more on spectral–spatial smoothing
than on noise suppression. Y.Q. Zhao et al. [17] proposed a HSI denoising method by
jointly utilizing the global and local redundancy and correlation (RAC) in spatial/spectral
domains. First, sparse coding is exploited to model the global RAC in the spatial domain
and local RAC in the spectral domain. Noise can be removed by sparse approximated
data with a learned dictionary. This work faced a major disadvantage of poor denoising
performance at stronger noise levels.

Zhao, S et al. [18] explained a spatial–spectral interactive restoration (SSIR) framework
by utilizing the complementarity of model-based and data-driven methods. Specifically, a
deep learning-based denoising module that includes both convolutional neural networks
(CNN) and Swin Transformer (TF) blocks is described. Though the analysis showed better
results, the performance of the model is limited to specific types of data. Wang, P et al. [19]
proposed a denoising method for HSI based on deep learning and a total variation (TV)
prior. The method minimizes the first-order moment distance between the deep prior of
a fast and flexible denoising convolutional neural network (FFDNet) and the enhanced
3D TV (E3DTV) prior, obtaining dual priors that complement and reinforce each other’s
advantages. The work demonstrated significant advantages compared to existing meth-
ods in quantitative and qualitative analysis and effectively enhanced the quality of HSIs.
The work lacked detailed analysis of more quantitative metrics. Accessible model-based
approaches depend significantly on carefully selected priors, computationally intensive
iterative optimization, and meticulous hyperparameter adjustment in order to produce
effective models [20,21]. The visual quality of the HSI is impacted by this noise, which also
reduces precision in band selection and classification [22,23]. Mohan et al. [24] proposed
a new and successful methodology for denoising, compressing and reconstructing HSI.
For denoising, the SqueezeNet model is trained on noisy images and tested in BGU-ICVL
dataset. The denoised images were delivered into the tunable spectral filter (TSF) algorithm
for compression. The compressed images were passed into dense attention net (DAN) for
reconstruction by reverse dual level prediction operation. However, the model’s perfor-
mance is not particularly spectacular. No proper tuning of hyperparameters and increased
training time for compression were the major limitations of this model.

Peng et al. [25] suggested an enhanced 3D TV (E-3DTV) regularization term used for
image compression and denoising. E-3DTV can determine sparsity based on subspace
support on gradient maps along all bands in an HSI. The algorithm was tested on the
Indian Pines dataset which naturally produces the correlation and difference between all of
these bands, which is how they accurately showed the insightful configurations of an HSI.
Large HSI images were not compressed properly using this model. An alternate method
for HSI compression was presented by Deng et al. [26] using a generative neural network
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(GNN), which derives the probability distribution for the actual data using random latent
coding. The complexity of the GNN determines the compression ratio and the well-trained
network serves as a representation of the HSI. However, the model takes a lot of time and
its overall performance due to GNN is assigned to a limited set of points only.

In order to integrate a convolutional neural network (CNN) with a transformer for
hyperspectral image (HSI) denoising, Pang et al. [27] developed a novel deep neural
network called TRQ3DNet. Two different branches, namely 3D quasi-recurrent blocks
and U-former blocks, were used in this network. The initial version was built on a 3D
quasi-recurrent block that included convolution and a quasi-recurrent pooling functioning,
which assisted in extracting both local as well as global spatial correlations throughout the
spectrum. The U-former block is present in the second branch and is used to take use of the
global spatial characteristics. However, compared to other models, the validation approach
is poor and the model required more time to execute. A spectrum signal compressor
utilizing the deep convolutional autoencoder (SSCNet) was created by La Grassa et al. [28],
which also examined the learning process and evaluated the compression and spectral
signal reconstruction. However, while using this technique, the image characteristics
will be lost. H. Pan et al. [29] studied denoising using adaptive fusion network where
they designed a coattention fusion module to adaptively collect informative features from
multiple scales, and thereby enhance the differential learning capability for denoising.

The detailed review of related works pointed out that the existing denoising models
struggle to include the contextual information while preserving the spectral and spatial
information. Image details from different scales could not ensure flexible exchange of
information. Also, the existing denoising techniques have limitations due to the variations
in data acquisition methods, resulting in local distortion of HSIs. The discussed traditional
HSI compression algorithms consider the characteristics of HSI in all aspects, but due to the
iterative methods used, the computational complexity is high and the compression quality
is poor. To solve the aforementioned issues, we propose an image denoising model using an
adaptive fusion network and a compression model which uses an optimized deep learning
technique called "chaotic Chebyshev artificial hummingbird optimization algorithm-based
bidirectional gated recurrent unit."
The major contributions of the work are as follows:

1. Creating an effective framework for HSI denoising using an improved adaptive fusion
network which helps to learn the complex nonlinear mapping between noise-free and
noisy HSI for obtaining the denoised images.

2. Presenting a model to compress the denoised image using the chaotic Chebyshev
artificial hummingbird optimization algorithm-based bidirectional gated recurrent
unit (CCAO-BiGRU) technique. The hyperparameters in the model have been tuned
by the optimization algorithm.

3. Extending evaluations of the proposed study in terms of quantitative and qualitative anal-
ysis to prove the performance compared to the other existing state-of-the-arts methods.

2. Materials and Methods
2.1. Simulation Setup and HSI Data Sets

The experimentation used three different benchmark HSI datasets. The first one is
the Indian Pines dataset, captured by an airborne visible/infrared imaging spectrometer
(AVIRIS) over the agricultural area of the Indian Pine test site, which is in north-western
Indiana. It has 220 spectral imaging bands, 16 classes and a spectral range of 0.4 µm to
2.5 µm. The second dataset used is the Washington DC Mall dataset which was collected by
the hyperspectral digital imagery collection experiment (HYDICE) over the urban region
Washington DC Mall in 1995. It has 210 bands, 7 classes and spectral range of 0.4 µm to
2.4 µm. The third dataset used is CAVE, captured by Apogee ALTA U260. It consists of
32 varied scenes. The images have a spatial resolution of 512 × 512 pixels composed of
31 bands in the 400 mm to 700 mm wavelength range in intervals of 10 nm. The entire
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implementation of this model was performed using the Python simulation environment.
The dataset description is given as follows [30] (Table 1).

Table 1. Dataset description.

Dataset No. of
Spectral Bands

Spectral
Range (µm)

Spatial Height
(Pixels)

Spatial Width
(Pixels)

No. of Classes Spatial
Resolution (m)

Indian Pines 220 0.4–2.5 145 145 16 20
Washington DC Mall 210 0.4–2.4 1280 307 7 3.2

CAVE 31 0.4–0.7 512 512 5 -

2.2. Proposed Method

In the proposed method, the denoising and compression of HSI is modeled in the plan
to create an effective model to obtain high-quality results compared to existing algorithms.
The first stage after the acquisition is image denoising using improved adaptive fusion
network. The denoised image is processed with compression in the next stage, and the
chaotic Chebyshev artificial hummingbird optimization algorithm-based bidirectional
gated recurrent unit is used to compress the HSI images. The proposed model is shown in
the following Figure 1.

Figure 1. Block diagram of proposed model.

2.2.1. Image Denoising

In the proposed model, different types of noise such as impulse noise, Gaussian
noise, deadline noise, complex noise, stripes noise and mixed noise with a combination of
Gaussian and impulse noise are applied to the input images. The improved adaptive fusion
network [22] is used to remove noise from the HSI images. This network includes sublayers
namely initial layer, coarse fusion network, fine fusion network and noise reconstruction.
These four stages are combined together to identify the noisy images. By subtracting the
noisy images from the observation data, noise-free data is generated.

Initial Layer and Coarse Fusion Network

The original HSI image is given to the initial layer of image denoising model as input.
Initially, the images are downsampled into 1/2 and 1/4 scales with the help of Gaussian
kernels. Here, multiple parallel convolutions are used to extract shallow features and
deep features are then collected by the coarse fusion network. The fusion of the different
scale information through several parallel adaptive instance (AIN) modules is performed
by this layer. There are two main steps for designing a coarse fusion attention network.
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In the first step, the receptive field can be equipped by multiscale structures to capture
more contents. In the second stage, the transfer of basic structure from low resolution
feature maps to high resolution feature maps is carried out by the AIN module. This can be
constructed by the AIN normalization technique, which is an efficient and compact model.
The normalized feature maps k ∈ S(K×X×D)can be performed by AIN normalization by
taking input k′ ∈ S

K
2 ×

X
2 ×2D. Here, the width and height of the feature map are represented

by X and K. The number of channels can be denoted by D. The downscale features
k′ should be identified. The current feature and downscale features are taken as inputs
for AIN normalization. At first, the downscale features k′ are converted into the size of
K× X× D by transposed convolution so as to have same dimensions of k. The parameters
of affine transform from the transformed k′ are calculated for each pixel (shift β and scale
γ) by using contextual semantic information in downscale features. Each feature map
is channel-wise normalized and pixel-wise affine transformed. At position (p,q,d), the
updated values in the feature map are mathematically expressed as in Equation (1).

knew
p,q,d = γp,q,d

( kp,q,d − µd

σd

)
+ βp,q,d (1)

Here, the mean of k in channel d is denoted by µd, the standard deviation of the
features in channel d is represented by σd. The µd can be mathematically calculated using
Equation (2).

µd =
1

KX

K

∑
p

X

∑
q

kp,q,d (2)

where σd is mathematically expressed as in Equation (3).

σd
2 =

1
KX

K

∑
p

X

∑
q

(
kp,q,d − µd

)2
(3)

Here, the generated pixel-wise parameters from k′ are noted as γp,q,d and βp,q,d which
can handle spatially variant noise in images adaptively. The application of the convolutional
layer is performed in knew, and for transferring feature information, the residual connection
is used more effectively.

Fine Fusion Network

The coarse fusion network output is passed to the fine fusion network as input and
multiple scale information refining is performed. The collection of multiscale information
is passed into deep networks. Exchanging information across parallel multiresolution
sub-networks is performed to conduct repeated multiscale fusion. The coattention fusion
module is created to adaptively focus attention on informative features from multiple scales
and improve the differential learning capability of network for image denoising. The fine
fusion network initialized with multiscale features is represented as

{
Z1

s , s = 1, 2, 3
}

. Here,
the spatial resolution index is denoted by s. The feature is represented as

{
Z2

s , s = 1, 2, 3
}

in the second layer. Each single feature representation is mathematically expressed in the
following Equation (4).

Z2
s = DB

(
g
(

Z1
1

)
, g
(

Z1
2

)
, g
(

Z1
3

))
(4)

Here, the coattention fusion module is denoted by DB and the transform function
is denoted by g(·). The identity connection can be obtained by input and output with
the same resolution. The feature maps from multiple scales in the same size are passed
into the coattention fusion module after transformation. The coattention fusion module
contains two stages, namely concatenation and split, and fusion and self-calibration. In the
first one, the trainable weights for feature fusion can be generated by receiving multiscale
features in the coattention fusion module. The input features W1, W2 and W3 are with
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size of D× K× X. The concatenation operation on three features can be mathematically
expressed in the following Equation (5).

V = Cat(W1, W2, W3) (5)

Here, the concatenation operation can be denoted by cat(·). The channel-wise details
t ∈ S3D×1×1 along spatial dimensions of V ∈ S3D×K×X are computed by global average
pooling. The compact feature v ∈ S

3D
s ×1×1 is generated by downsampling the convolutional

layer. The feature v is passed into three parallel upsampling layers and provided with three
feature descriptors, v1, v2 and v3, with dimension D× 1× 1. The three attention activation
vectors α1, α2 and α3 are applied to the softmax function v1, v2 and v3. In the fusion and
self-calibration stage, three attention activation function vectors are developed. The input
features are recalibrated using them as represented in the following Equation (6).

W = α1W1 + α2W2 + α3W3 (6)

The architecture of the improved adaptive fusion network is shown in Figure 2.

Figure 2. Architecture of the improved adaptive fusion network.

The self-calibration module is used to correct and combine the features, which is
represented in Equation (7).

Ŵ = KtdW (7)

Here, the self-calibrated convolution is denoted by Ktd(·). After fusion, the fused
feature maps are operated with filters to improve the feature representation ability by self
calibration convolution. This module transfers input features into firm descriptors and
develops a set of three weights to construct channel-wise dependence.

Noise Reconstruction

The multiscale features are combined together by coattention module at the end of
previous network. Then the residual noise images P∗M is learned. From the observation PM,
the noise-free image P̂ is evaluated by subtracting P∗M. The optimization of network and



Remote Sens. 2024, 16, 3258 7 of 29

reconstruction loss can be performed by loss Erec which is mathematically expressed as in
the Equation (8).

Erec = ||P̂− P1||1 (8)

Here, the estimated noise-free HSI is denoted by P̂ and the real noise-free HSI is
represented by P. The direction differences in spatial and spectral dimensions can give
additional complementary support for denoising. The global gradient regularizer to
describe the details of P̂ is expressed mathematically in Equation (9).

Egrad = ||∇k P̂−∇kP||22 + ||∇u P̂−∇uP||22 + ||∇t P̂−∇tP||22 (9)

Here, gradient operators along horizontal, vertical, and spectral directions are denoted
by ∇k, ∇u, and ∇t and the total loss function is mentioned in Equation (10).

E = Erec + λEgrad (10)

Here, the weight parameter of Egrad is denoted by λ and is set to 0.01 to balance the
loss terms.

2.2.2. Image Compression

The HSI image compression is performed using the chaotic Chebyshev artificial
hummingbird optimization algorithm-based bidirectional gated recurrent unit (CCAO-
BiGRU). The denoised image is directly given as input to the compression model.

Chaotic Chebyshev Artificial Hummingbird Optimization Algorithm-Based Bidirectional
Gated Recurrent Unit

GRU is used to solve vanishing gradient problems in RNNs (recurrent neural net-
works). The reset gate sm and update gate wm are included in the GRU cell model. The
activation gates depend on present and prior input. The hidden layers and input vectors in
GRU cell are represented by km and ym from the time slices m, k′m implies the candidate of
hidden state. The reset gate sm for m parts identifies the preceding data and the update gate
wm updates the hidden state with current HSI images. These parameters are represented in
Equations (11)–(14).

sm = σ(Zs.[km−1, ym]) (11)

wm = σ(Zw.[km−1, ym]) (12)

k′m = tanh(Zk′ .[sm ∗ km−1, ym]) (13)

km = (1− wm) ∗ km−1 + (wm ∗ k′m) (14)

Here, the hyperbolic tangent and sigmoid function is denoted by tanh(·) and σ(·). The
matrix multiplication and Hadamard product is represented by (·) and ∗. The concatenation
of two vectors and the weighted matrix learned by the GRU model are represented by Zw,
Zs and Zk′ , respectively.

The GRU model [31] can read the data in only one direction. So, in order to increase
data transmission, BiGRU layers have been added. The BiGRU model is used to improve
the transfer of data in both forward and backward directions. The hidden layer contains
two units with same input and connects with same output. The BiGRU forward and
backward direction is denoted in Equation (15).

Vt = [
−→
K
←−
K ] (15)

Here, the forward gated recurrent unit is denoted by
−→
K and backward gated recurrent

unit is denoted by
←−
K . The image can be compressed by the BiGRU model and after image

compression, it is passed in to artificial hummingbird optimization to receive the optimal
output. The artificial hummingbird is a new metaheuristic algorithm that has the ability
to fly and provide intelligent feeding methods of hummingbirds. There are three types
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of flight skills such as diagonal, axial and omnidirectional. These skills are employed
in foraging strategies. Next, three different strategies are employed, such as territorial
foraging, guided foraging, and migratory foraging. The architecture of the CCAO-BiGRU
model is shown in Figure 3. The mathematical equation of the artificial hummingbird
algorithm is described with the initial population of Z hummingbirds out of Vt = [

−→
K :
←−
K ]

individuals as shown in Equation (16).

Zp = E + s× (V − E), p = 1, 2, 3 · · · , M (16)

Here, the upper and lower bounds for C dimension are represented by E and V. The
random vector in the range of [0, 1] is denoted by s. The visited table of food sources is
represented in the following Equation (17).

USpq ={ 0; p ̸= q
null; p = q

, p = 1, 2, 3 · · · , M, q = 1, 2, 3 · · · , M (17)

Here, the value of USp,q becomes null for p = q, and USp,q becomes zero at p ̸= q. Here,
p stands for hummingbird visiting food sources q.

Figure 3. Architecture of the CCAO-BiGRU model.

In guided foraging, three flight directions such as diagonal, omnidirectional and axial
flight are utilized. The BiGRU preserves the spatial dimension of the original image which
helps to minimize the compression error. Also, the fine tuning of BiGRU using the proposed
CCAO algorithm compresses the image more efficiently using the best global solution. This
is accomplished through the balanced exploration and exploitation phase.

This CCAO-BiGRU model helps to compress the denoised images obtained from the
improved adaptive fusion network phase. The image compression leads to provide a
reduced size of the image without removing any quality of the images. After compressing
the images, the quality of the image can be enhanced by the CCAO deep learning-based
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optimization algorithm. The exploration and exploitation phase in this algorithm is utilized
to obtain better output. The loss function of the network model can be optimized through
the integration of the hybrid chaotic Chebyshev artificial hummingbird optimization al-
gorithm. A set of weights is applied to the network model to produce the high-quality
compressed images. These weights sometimes create loss functions that lead to reduce the
compressed image quality. This optimization algorithm is used to tune the hyperparame-
ters in the model by reducing the loss function. Thus, by using the hybrid optimization
model, optimal output can be produced with an enhanced quality of compressed images
by updating the positions of the chaotic Chebyshev function in the artificial hummingbird
algorithm. Thus, the compressed image quality can be further improved by integrating the
optimization algorithm. The pseudocode for CCAO is represented in the following Table 2.

Table 2. Pseudocode for CCAO algorithm.

Set the size of population = m
Set Miter,max
Update upper and lower population limits
Create the population using Equation (16)
While

(
ma ≤ Miter,max()

)
do

for (the direction change vector for each population) do
if (rand ≤ 1/3) then
implement diagonal flight Equation
else
if (rand ≤ 2/3) then
implement omnidirectional flight
else
implement axial flight
end if
end if
end for
for Each population foraging behavior update do
if (rand ≤ 0.5) then
Guided foraging implementation
else
Territorial foraging implementation
end if
if sa = 2m then
implement migration foraging
end if
end for
update positions
Return highest values of fitness
sa = sa + 1
Update random number in artificial hummingbird
Set random number by chebchaot function
end while

2.3. Performance Analysis

Several performance metrics are analysed, which are described in the following section.

2.3.1. PSNR

PSNR is used to evaluate the quality between compressed images and original images.
It is mathematically expressed in the following Equation (18).

PSNR =
1
γ

γ

∑
I=1

10× log10

(
max2

i
MSEi

)
(18)
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where γ shows the number of spectral bands, max2
i shows the maximum pixel value of the

ith band, MSEi indicates the mean square error (MSE) between the processed and original
image of the ith band.

2.3.2. SSIM

It is used to calculate connection between two images and the mathematically repre-
sented as in the following Equation (19).

SSIM =
1
γ

γ

∑
i=1

(
2µpi µqi + a1

)(
2σpiqi + a2

)(
µ2

pi
+ µ2

qi
+ a1

)(
σ2

pi
+ σ2

qi
+ a2

) (19)

µpi and µqi are the mean or average values of the images p and q , σpi and σqi are the
variances of p and q, a1 and a2 are the constants set to 0.0001 and 0.0009.

2.3.3. SAM

SAM compares test image spectra to a known reference spectra using spectral angle
and this method is not sensitive to illumination. The mathematical expression is given
below as in Equation (20).

SAM = arccos
(
⟨Ω, Ω′⟩
∥Ω∥2∥Ω′∥2

)
(20)

⟨Ω, Ω′⟩ indicates the dot product between the noisy and denoised spectra Ω and Ω′,
∥•∥2 indicates the binary norm.

2.3.4. RAE

The performance of the predictive model is evaluated by the RAE parameter and is
expressed using the following Equation (21).

RAE =
1

ηsηpηq

ηs

∑
i=1

ηp

∑
j=1

ηq

∑
k=1

|F ∗ (i, j, k)− f1(i, j, k)|
f1(i, j, k) (21)

ηs indicates spectral band count, ηp and ηq show the HSI spatial resolution and F ∗ (i, j, k)
and f1(i, j, k) are the points at the ith spectral band with coordinates (j, k).

2.3.5. Compression Ratio (CR)

It is described as the ratio of the original image size to the compressed image size, as
given in Equation (22).

CR =
Size of Original Image

Size of Compressed Image
. (22)

3. Results

This section presents the results of the various stages of proposed method. Section 2.3
explains the metrics used for performance evaluation and the results are displayed as
follows. The results of the proposed method have also been analysed by comparing with
the existing methodologies and described in the following section.

3.1. Evaluation of Indian Pines Hyperspectral Dataset

To analyze the proposed model, PSNR and SSIM are compared with different existing
models like GRU, MLPNN, DBN and DeepCNN [32] using the Indian Pines hyperspectral
dataset. Figure 4a,b depict the analysis of PSNR and SSIM parameters for existing and
proposed models. The performance analysis with values for PSNR and SSIM is represented
in Table 3.
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In Figure 4a, the existing models such as GRU, MLPNN, DBN and DeepCNN attained
PSNR values of 73.45 dB, 73.32 dB, 68.13 dB and 66.63 dB at a bpp value of 1.0. If the
bpp value is high, then the PSNR value also increases based on model performances. The
proposed model obtained a PSNR value of 77.31 dB at a bpp value of 1. The proposed model
gained higher PSNR values than other existing models. Figure 4b depicts the analysis
of SSIM parameters against the band number. The existing models GRU, MLPNN, DBN
and DeepCNN gained SSIM values of 0.9, 0.7, 0.6 and 0.09 at the number of band of 120,
respectively. Finally, at the band number at 120, the proposed model obtained a SSIM value
of 1.0. Figure 5 represents the analysis of SAM and RAE for different proposed and existing
models. The comparison table for SAM and RAE is given in Table 4.

Figure 4. Performance outcomes (a) PSNR vs. bit per pixel; (b) SSIM vs. band number.

Table 3. PSNR and SSIM analysis.

Models
PSNR vs. bpp SSIM vs. Band Number

0.2 0.4 0.6 0.8 1.0 40 60 80 100 120

Proposed 69.98 73.84 74.11 77.06 77.31 0.61 0.72 0.52 0.95 1
GRU 67.46 69.04 71.46 71.69 73.45 0.53 0.48 0.36 0.8 0.9

MLPNN 66.69 70.7 71.48 72.62 73.32 0.34 0.41 0.2 0.61 0.7
DBN 63.93 64.53 65.94 67.44 68.13 0.42 0.3 0.11 0.55 0.6

DeepCNN 61.7 62.76 62.84 64.68 66.63 0.02 0.05 0.07 0.08 0.09

Figure 5a depicts the performance outcomes of the SAM parameter for the proposed
model, which is compared with different existing models based on bpp range. Some of the
existing models, like GRU, MLPNN, DBN and DeepCNN, obtained values of 0.6, 0.36, 0.32
and 0.6 at a bpp value of 1.0, respectively. The proposed model obtained a value of 0.75 at a
bpp value of 1.0. In this analysis, the proposed model gives higher performances than other
models. Figure 5b signifies the evaluation of the RAE parameter for proposed and existing
models. The methods such as GRU, MLPNN, DBN and DeepCNN attained RAE values of
0.3, 0.35, 0.37 and 0.38 at a bpp of 1.0. The proposed model shows fewer errors and it gives
a RAE value of 0.29 at a bpp value of 1.0. As the proposed model gives better results than
the other existing models, it is proved to be an efficient technique for HSI compression.

Figure 6a,b signifies the analysis of MSE and CR for different existing and proposed
models. Table 5 depicts the comparison of MSE and CR.
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Figure 5. Performance evaluation (a) SAM vs. bit per pixels; (b) RAE vs. bit per pixels.

Table 4. SAM and RAE analysis.

Models
SAM vs. bpp RAE vs. bpp

0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0

Proposed 0.36 0.6 0.64 0.65 0.75 0.1 0.15 0.19 0.24 0.29
GRU 0.28 0.35 0.42 0.45 0.6 0.13 0.21 0.25 0.27 0.3

MLPNN 0.17 0.19 0.25 0.31 0.36 0.17 0.22 0.29 0.32 0.35
DBN 0.1 0.23 0.24 0.28 0.32 0.21 0.25 0.3 0.34 0.37

DeepCNN 0.01 0.05 0.07 0.09 0.6 0.23 0.27 0.32 0.35 0.38

Figure 6. Performance outcomes (a) MSE vs. spectral bands; (b) compression ratio (CR).

Figure 6a depicts the performance evaluation of MSE for proposed and existing
models. The existing models like GRU, MLPNN, DBN and DeepCNN attained MSE values
of 0.022, 0.03, 047 and 0.071 at a band number 120, respectively. The proposed model
shows an MSE value of 0.013 at the same band number. From this comparison analysis,
the proposed model succeeded in giving a lower error rate compared to existing models.
Figure 6b signifies the analysis of CR for proposed and existing models. The existing
models, such as GRU, MLPNN, DBN and DeepCNN, gained CR levels of 0.6, 0.52, 0.42 and
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0.33, respectively.The proposed model attained a CR of 0.72. In this analysis, the proposed
model gives higher CR values than other models without compromising the quality of
the images.

Table 5. MSE vs. band number and compression ratio comparison.

Models
MSE vs. Band Number

Compression Ratio
40 60 80 100 120

Proposed 0.0008 0.0011 0.0039 0.0054 0.013 0.72
GRU 0.0014 0.0022 0.0058 0.0084 0.022 0.6

MLPNN 0.0016 0.0026 0.0065 0.0084 0.03 0.52
DBN 0.005 0.0057 0.01 0.017 0.047 0.42

DeepCNN 0.009 0.008 0.014 0.024 0.071 0.33

Figure 7a,b signifies the outcome of PSNR for the proposed model and reflectance
graphs for different types of noise. The comparison table for PSNR analysis based on
the compression ratio is represented in Table 6. Figure 7a represents the analysis of the
PSNR parameter for the proposed model based on compression ratio. The PSNR value
is evaluated for a compressed image to measure the image quality. The PSNR increases
with the increase in compression ratio. The proposed model obtained a high PSNR value
of 82 dB at a compression ratio of 10. Figure 7b depicts the analysis of the reflectance
value versus different noises, such as complex noise, Gaussian noise, mixture noise, dead-
line noise, stripes noise, and impulse noise. The reflectance value is high at the lower
wavelength level.

Figure 7. Performance outcomes (a) PSNR vs. compression ratio; (b) reflectance vs. pixel position.

Table 6. Performance evaluation of PSNR with CR.

CR PSNR (dB)

2 67
4 70
6 71
8 75
10 82

Figure 8a–g [16] shows the analysis of the spectral reflectance curve for the proposed
model and existing models, based on the number of bands. Figure 8a–g, represents the
analysis of spectral reflection. Here, the original spectral reflectance curve is denoted
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in blue, and the orange curve represents the denoised spectral reflectance. The spectral
reflectance is analysed for several existing models, such as TV-regularized low-rank matrix
factorization (LRTV), low-rank matrix recovery (LRMR), automatic hyperspectral image
restoration (HyRes), noise-adjusted iterative low-rank matrix approximation (NAILRMA),
tensor-weighted nuclear norm minimization (TWNNM), and total variation regularized
low-rank tensor decomposition (LRTDTV), as well as for the proposed study. Thus, the
proposed model shows the best results compared to all other methods.

Figure 8. Cont.
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Figure 8. Performance outcomes of spectral reflection.

3.2. Evaluation of Washington DC Mall Dataset

The performance analysis for different parameters have been performed and are
described in the following section. Figure 9a,b signifies the analysis of PSNR and SSIM.
The performance comparison is represented in Table 7.

Figure 9. Performance outcomes (a) PSNR vs. bpp; (b) SSIM vs. band number.

Table 7. Showing PSNR vs. bpp and SSIM vs. band number.

Models
PSNR vs. bpp SSIM vs. Band Number

0.2 0.4 0.6 0.8 1 40 60 80 100 120

Proposed 69.03 69.93 75.93 76.32 79.16 0.7 0.8 0.6 1 1.2
GRU 66.8 67.57 72.9 73.64 74.29 0.6 0.5 0.4 0.9 1

MLPNN 65.73 66.57 72.41 73.5 77.17 0.53 0.5 0.3 0.7 0.8
DBN 63.73 64.48 67.56 69.07 69.6 0.5 0.4 0.2 0.6 0.7

DeepCNN 61.66 62.87 65.11 66.82 67.33 0.2 0.3 0.06 0.3 0.4

In Figure 9a, the existing models like GRU, MLPNN, DBN, and DeepCNN obtained
values of 74.29 dB, 77.17, 69.6 dB and 67.33 dB at 1.0 bpp, respectively. The proposed model
gained a value of 79.16 dB at 1.0 bpp. In Figure 9b, the existing models obtained SSIM
values of 1, 0.8, 0.7 and 0.4 for a band number 120, respectively. The proposed model
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showed a SSIM value of 1.2 for the same band number. Figure 10a,b depict the analysis of
SAM and RAE for the proposed and existing models, as shown in Table 8.

Table 8. Comparison table for SAM vs. bpp and RAE vs. bpp.

Models
SAM vs. bpp RAE vs. bpp

0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0

Proposed 0.09 0.109 0.13 0.16 0.35 0.12 0.17 0.2 0.22 0.27
GRU 0.07 0.09 0.11 0.13 0.317 0.14 0.19 0.23 0.25 0.28

MLPNN 0.04 0.06 0.08 0.118 0.282 0.16 0.21 0.25 0.27 0.3
DBN 0.049 0.068 0.082 0.113 0.256 0.2 0.23 0.27 0.28 0.33

DeepCNN 0.03 0.049 0.069 0.098 0.202 0.22 0.25 0.29 0.3 0.35

In Figure 10a, the existing models such as GRU, MLPNN, DBN and DeepCNN ob-
tained SAM values of 0.317, 0.282, 0.256 and 0.202 based on bpp range at 1.0, respectively.
The suggested model can attain the highest value of 0.35 at bpp 1.0. In Figure 10b, the
existing models gained RAE values of 0.28, 0.3, 0.33 and 0.35 at a bpp of 1.0, respectively.
The proposed model showed a very low RAE value of 0.27 at the same bpp. Figure 11a,b
depict the performance outcomes of MSE and compression ratio.

Figure 10. Performance outcomes (a) SAM vs. bpp; (b) RAE vs. bpp.

Figure 11. Performance evaluation (a) MSE vs. band number; (b) compression ratio.
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The comparison table for MSE vs. band number and compression ratio is represented
in Table 9.

Table 9. MSE vs. band number and compression ratio.

Models
MSE vs. Band Number

Compression Ratio
40 60 80 100 120

Proposed 0.001 0.0012 0.0025 0.0026 0.0065 1
GRU 0.0029 0.0029 0.0046 0.008 0.011 0.8

MLPNN 0.003 0.0035 0.0046 0.0055 0.0139 0.5
DBN 0.009 0.0117 0.016 0.022 0.026 0.4

DeepCNN 0.014 0.022 0.033 0.0343 0.043 0.3

In Figure 11a, the existing models obtained the following values: GRU obtained 0.011,
MLPNN attained a value of 0.0139, DBN obtained an MSE value of 0.026, and DeepCNN
attained a value of 0.043, all at band number 120. The proposed model could attain an
MSE value of 0.0065 at the same band number. In Figure 11b, GRU, MLPNN, DBN and
DeepCNN attained CR values of 0.8, 0.5, 0.4 and 0.3, respectively whereas the proposed
model obtained a CR of 1. Figure 12a,b depict the analysis of PSNR based on compression
ratio and reflectance curve for different noises. The comparison table for PSNR analysis
based on compression ratio is represented in Table 10.

Figure 12. Performance outcomes (a) PSNR vs. compression ratio; (b) reflectance vs. pixel position.

Table 10. Performance evaluation of PSNR vs. CR.

CR PSNR (dB)

2 66.64
4 71.2
6 73.7
8 75
10 78.4

In Figure 12a, the proposed model obtained a compression ratio of 10 at the PSNR
value of 78.4. In Figure 12b, the reflectance curve for different types of noise based on
wavelength is plotted.
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3.3. Evaluation of CAVE Dataset

The performance analysis for different parameters have been performed and are
described in the following section. Figure 13a,b signifies the analysis of PSNR and SSIM.
The performance comparison is represented in Table 11.

Table 11. Showing PSNR vs. bpp and SSIM vs. band number.

Models
PSNR vs. bpp SSIM vs. Band Number

0.2 0.4 0.6 0.8 1 3 9 15 21 27

Proposed 70.03 72.33 73.93 76.32 81.16 1.2 2.2 3.9 4.0 4.2
GRU 67.18 67.57 68.9 74.64 76.29 1.2 1.1 0.1 0.3 0.8

MLPNN 64.73 66.57 67.41 73.5 75.17 0.8 1.0 2.6 2.7 2.9
DBN 62.73 63.48 64.56 69.07 71.39 0.6 0.7 1.6 1.9 2.1

DeepCNN 59.26 62.55 63.11 68.82 69.33 0.09 0.1 0.3 0.5 0.7

Figure 13. Performance outcomes (a) PSNR vs. bpp; (b) SSIM vs. band number.

In Figure 13a, the existing models like GRU, MLPNN, DBN and DeepCNN obtained
values of 76.29 dB, 75.17, 71.39 dB and 69.33 dB at 1.0 bpp, respectively. The proposed
model gained a value of 81.16 dB at 1.0 bpp. In Figure 13b, the existing models obtained
SSIM values of 0.8, 2.9, 2.1 and 0.7, respectively, for a band number 27. The proposed model
showed a SSIM value of 4.2 for the same band number.

Figure 14a,b depict the analysis of SAM and RAE for proposed and existing models as
shown in in Table 12.

Figure 14. Performance outcomes (a) SAM vs. bpp; (b) RAE vs. bpp.
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Table 12. Comparison table for SAM vs. bpp and RAE vs. bpp.

Models
SAM vs. bpp RAE vs. bpp

0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0

Proposed 0.09 0.12 0.26 0.31 0.59 0.10 0.15 0.20 0.20 0.25
GRU 0.08 0.10 0.20 0.25 0.42 0.12 0.17 0.22 0.24 0.26

MLPNN 0.06 0.08 0.13 0.21 0.32 0.14 0.19 0.25 0.27 0.29
DBN 0.06 0.08 0.12 0.19 0.28 0.16 0.23 0.26 0.28 0.31

DeepCNN 0.03 0.04 0.09 0.12 0.18 0.18 0.23 0.26 0.28 0.33

In Figure 14a, the existing models such as GRU, MLPNN, DBN and DeepCNN ob-
tained SAM values of 0.42, 0.32, 0.28 and 0.18 based on a bpp range at 1.0, respectively. The
suggested model can attain the highest value of 0.59 at bpp 1.0. In Figure 14b, the existing
models gained RAE values of 0.26, 0.29, 0.31 and 0.33 at a bpp of 1.0, respectively. The
proposed model showed a very low RAE value of 0.25 at the same bpp.

Figure 15a,b depict the performance outcomes of MSE and compression ratio. The com-
parison table for MSE vs. spectral bands and compression ratio is represented in Table 13.

Figure 15. Performance evaluation (a) MSE vs. spectral bands; (b) compression ratio.

Table 13. MSE vs. spectral bands and compression ratio.

Models
MSE vs. Band Number

Compression Ratio
3 9 15 21 27

Proposed 0.001 0.0012 0.0035 0.0046 0.0085 0.35
GRU 0.0029 0.0039 0.0066 0.012 0.023 0.27

MLPNN 0.003 0.0045 0.016 0.018 0.021 0.24
DBN 0.009 0.0117 0.026 0.032 0.039 0.26

DeepCNN 0.014 0.022 0.033 0.043 0.063 0.25

In Figure 15a, the existing models obtained the following MSE values: GRU obtained
an MSE of 0.023, MLPNN attained a value of 0.021, DBN obtained an MSE value of 0.039,
and DeepCNN attained a value of 0.063 at a band number of 27. The proposed model could
attain an MSE value of 0.0085 at the same band number. In Figure 15b GRU, MLPNN, DBN
and DeepCNN attained CR values of 0.27, 0.24, 0.26 and 0.25, respectively, whereas the
proposed model obtained a CR of 0.35.
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3.4. Ablation Experiments

Ablation experiments are analyzed for the proposed model to provide deeper analysis
in terms of various metrics like PSNR, SSIM, SAM and RAE. Tables 14 and 15 represent
the ablation study of the proposed model using the Indian Pines and Washington DC
Mall datasets. Figures 16 and 17 show the performance analysis of proposed model
with coattention and AIN modules for the Indian Pines dataset and Washington DC Mall
dataset, respectively.

Table 14. Ablation study for the Indian Pines dataset.

Models PSNR SSIM SAM RAE

With coattention 74.158 0.883 0.8102 0.362
With AIN 70.157 0.8434 0.7905 0.391
Proposed 78.21 0.9967 0.8512 0.312

Figure 16. Performance analysis of proposed model with coattention and with AIN (a) PSNR;
(b) SSIM; (c) SAM; (d) RAE for Indian Pines dataset.
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Figure 17. Performance analysis of proposed model with coattention and with AIN (a) PSNR;
(b) SSIM; (c) SAM; (d) RAE for Washington DC Mall dataset.

Table 15. Ablation study for Washington DC Mall dataset.

Models PSNR SSIM SAM RAE

With coattention 75.214 0.8721 0.3812 0.3281
With AIN 72.21 0.8316 0.3205 0.351
Proposed 80.162 0.9928 0.4532 0.2901

3.5. Computational Complexity

The computational complexity of the proposed model and existing models for the
Indian Pines dataset and Washington DC Mall dataset is analysed in Table 16. The results
are graphically represented for the Indian Pines dataset in Figure 18a and for the Wash-
ington DC Mall dataset in Figure 18b. The processing time is considerably lower for the
proposed model.
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Figure 18. Comparison of computational complexity of proposed model with existing models for
(a) the Indian Pines dataset; (b) the Washington DC Mall dataset.

Table 16. Showing the comparison of computational complexity of proposed model with existing
models for the Indian Pines and Washington DC Mall datasets.

Dataset Models Processing Time
(S)

FLOPs
(G)

Parameters
(M)

Indian Pines dataset

Deep-CNN 0.432 332.45 138
DBN 0.375 221.9 87.67

MLPNN 0.289 657.8 90.54
GRU 0.153 543.9 88.76

Proposed 0.0712 311.21 56.32

Washington DC Mall dataset

Deep-CNN 0.4184 342.45 136
DBN 0.3427 121.09 78.67

MLPNN 0.2912 734.88 80.94
GRU 0.1238 632.01 76.44

Proposed 0.081 212.34 50.12
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3.6. Visual Analysis

In this analysis, some of the sample input images are taken and their application on
the proposed model is analysed qualitatively.

3.6.1. Sample Outcomes for Proposed Models Using Indian Pines Hyperspectral Dataset

Some of the sample denoised and compressed output images for the Indian Pines
hyperspectral dataset are shown in in Figure 19.

Figure 19. Samples of input images, denoised images and compressed images for the Indian Pines
HSI dataset.

The sample input images are collected from the Indian Pines hyperspectral dataset,
which are denoised and compressed by the proposed model. The image denoising was per-
formed by the improved adaptive fusion network, and image compression was performed
by CCAO-BiGRU.

3.6.2. Sample Compression Outcomes for Different Noises Using Indian Pines
Hyperspectral Dataset

Various types of noises are applied to the input images, such as impulse noise, Gaus-
sian noise, deadline noise, complex noise, stripes noise and mixed noise. The resultant
denoised and compressed images are shown in Figure 20.
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Figure 20. Compressed output with various types of noise applied to input images using the Indian
Pines hyperspectral dataset.

3.6.3. Sample Outcomes for Proposed Models Using Washington DC Mall Dataset

Some of the sample denoised and compressed output images for Indian Pines Wash-
ington DC Mall hyperspectral dataset are shown in in Figure 21.
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Figure 21. Samples of input images, denoised images and compressed images for the Washington
DC Mall HSI dataset.

The sample input images are collected from the Washington DC Mall hyperspectral
dataset, which are denoised and compressed by the proposed model. The image denoising
was performed by the improved adaptive fusion network, and image compression was
performed by CCAO-BiGRU.

3.6.4. Sample Compression Outcomes for Different Noises Using Washington DC Mall
Hyperspectral Dataset

Various types of noises [33] are applied to the input images, such as impulse noise,
Gaussian noise, deadline noise, complex noise, stripes noise and mixed noise. The resultant
denoised and compressed images are shown in Figure 22.
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Figure 22. Compressed output with various types of noise applied to input images using the
Washington DC Mall hyperspectral dataset.
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4. Discussion

The major aim of this research work is to denoise and compress the HSI
images [34,35] with less processing time and without compromising the image quality. Here,
several performance metrics are analysed for proposed and existing models. Taking the
results of quantitative and qualitative analyses [36] into consideration, it can be shown that
the proposed study provides better results. The two datasets, namely the Indian Pines dataset
and Washington DC Mall dataset, were considered for the study. In the first stage, the input
images were passed through an improved adaptive fusion network for noise removal. After
denoising, the images were compressed with the CCAO-BiGRU model without reducing the
quality of images [37,38]. Several drawbacks were noticed in the existing techniques, such
as poor accuracy in image compression, improper compression of large size images, and the
loss of important characteristics of images after compression. The proposed model obtained
a PSNR value of 77.31 dB, a SAM of 0.7, a RAE of 0.29 at bpp 1.0, a SSIM of 1, an MSE at
0.013 at band number 120, a CR of 0.72, and the PSNR value based on a compression ratio
at 10 is 82 for the Indian Pines dataset. For the Washington DC Mall dataset, the following
values were obtained: PSNR of 79.16 dB, SAM of 0.35, RAE of 0.27 at bpp 1.0, SSIM of 1.2,
MSE of 0.0065 at band number 120, CR of 1, and the PSNR value based on a compression ratio
of 10 is 78.4. The proposed model obtained better values of PSNR, SAM, SSIR and RAE for
both the datasets. It also gave a good plot of PSNR vs. CR curve which gives the impression
of it being a better compression model. In addition, visual analysis also provided good
results, which in turn proves the quality of the developed model. The proposed algorithm
is compared with different existing methods in terms of quantitative metrics and it showed
that the proposed model performs better compared to the existing models. The performance
accuracy of the proposed work indicates that this can be utilized for mineral mapping as well
as for agricultural applications. The PSNR values in [39] can be further improved using a
different activation function.

5. Conclusions

In this study, a novel image denoising and compression technique based on a deep
learning model is proposed to retain the overall quality of an image without limiting the
compression ratio. Here, three datasets, namely the Indian Pines dataset, the Washington
DC Mall dataset, and the CAVE dataset were considered for the study. In the first stage, an
improved adaptive fusion network is used to remove undesirable noise from the images.
In the second stage, the denoised image is passed into the compression phase. In the
compression stage, the images are compressed without compromising the quality using
the CCAO-BiGRU model. The performance metrics, such as PSNR, SSIM, MSE, CR, RAE
and spectral reflectance curve for various types of noise were analysed for the proposed
and existing models. From these analyses, we proved that the proposed model is a bet-
ter system compared to the existing models. In future research, the replacement of the
activation function in the proposed model (ReLU and sigmoid) with generalized divisive
normalization (GDN) can be performed to improve the PSNR value further. Additionally,
the proposed algorithm can be tested using real-time data.
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