
Citation: Zhang, B.; Liu, M.; Li, R.;

Liu, J.; Feng, L.; Zhang, H.; Jiao, W.;

Lang, L. Evaluation of Urban

Microscopic Nighttime Light

Environment Based on the Coupling

Observation of Remote Sensing and

UAV Observation. Remote Sens. 2024,

16, 3288. https://doi.org/10.3390/

rs16173288

Academic Editor: Yunhao Chen

Received: 5 July 2024

Revised: 18 August 2024

Accepted: 29 August 2024

Published: 4 September 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Evaluation of Urban Microscopic Nighttime Light Environment
Based on the Coupling Observation of Remote Sensing and
UAV Observation
Baogang Zhang 1, Ming Liu 2,*, Ruicong Li 2 , Jie Liu 2, Lie Feng 2, Han Zhang 2, Weili Jiao 3 and Liang Lang 2

1 Laboratory of Building Environment and New Energy Resources, Faculty of Infrastructure Engineering,
Dalian University of Technology, Dalian 116024, China; zhangbaogangtj@163.com

2 School of Architecture and Fine Art, Dalian University of Technology, Dalian 116024, China;
liruicong927@163.com (R.L.); liujie2000y09@163.com (J.L.); fenglie2021@163.com (L.F.);
zhanghan01082000@163.com (H.Z.); langbright621@dlut.edu.cn (L.L.)

3 Aerospace Information Research Institute, Chinese Academy of Sciences (CAS), Beijing 100094, China;
jiaowl@aircas.ac.cn

* Correspondence: liumingyitj@163.com

Abstract: The urban canopy refers to the spatial area at the average height range of urban structures.
The light environment of the urban canopy not only influences the ecological conditions of the canopy
layer region but also serves as an indicator of the upward light influx of artificial nighttime light in
the urban environment. Previous research on urban nighttime light environment mainly focused on
the urban surface layer and urban night sky layer, lacking attention to the urban canopy layer. This
study observes the urban canopy layer with the flight and photography functions of an unmanned
aerial vehicle (UAV) and combines color band remote sensing data with ground measurement
data to explore the relationship between the three levels of the urban nighttime light environment.
Furthermore, a three–dimensional observation method is established for urban nighttime light
environments based on a combination of three observation methods. The research results indicate
that there is a good correlation between drone aerial photography data and remote sensing data
(R2 = 0.717), as well as between ground–measured data and remote sensing data (R2 = 0.876). It also
shows that UAV images can serve as a new path for the observation of urban canopy nighttime light
environments because of the accuracy and reliability of UAV aerial data. Meanwhile, the combination
of UAV photography, ground measurement, and remote sensing data provides a new method for the
monitoring and control of urban nighttime light pollution.

Keywords: nighttime light environment; light pollution; unmanned aerial vehicle; remote sensing;
ground light environment measurement

1. Introduction

Night lighting is one of the essential infrastructures for people to engage in night-
time life. Good nighttime lighting can improve pedestrian safety, promote nighttime
economic growth, and create beautiful nighttime landscapes [1]. Urban nighttime lighting
is also considered an important element in attracting residents and tourists after dark [2].
However, the rapid growth of urban nighttime lighting has also had negative impacts on
astronomical observations [3], ecological environment [4–6], human health [7–9], energy
consumption [10,11], traffic safety [12], and other aspects. Research has shown that as
of 2016, over 80% of the global population lived under the influence of nighttime light
pollution, which has become a global problem [13].

Remote sensing technology and ground measurement methods are widely utilized
in the examination of urban environments. Nighttime light remote sensing can capture
images of vast geographical areas and accumulate data over extended periods, forming
multi–year time series [14–18]. Ground measurements can obtain precise and high–quality
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environmental information along with a rich set of data parameters, making them suitable
for small–scale studies of nighttime light environments. However, influenced by the mea-
surement range of the instruments, accessibility, and efficiency of manual measurement,
only the surface layer of the Earth can be observed [19–21]. Remote sensing technology
has the advantages of high data collection efficiency, wide data coverage, good stability,
and strong data consistency. However, because the observation points of remote sensing
satellites are in the night sky layer, they can only receive light emitted towards the night
sky layer [22,23]. The two main methods of observing nighttime light environments are
primarily macroscopic observations through satellites in the night sky layer and through
instruments at the Earth’s surface layer [24,25]. The urban canopy is the transitional zone
between the artificial light environment of the Earth’s surface layer and the light environ-
ment of the night sky layer. The urban canopy light environment is mainly influenced by
urban uplight, spill light, and reflected light. Previous studies on urban light environments
have mainly focused on the urban surface layer and the urban night sky layer, lacking
attention to the urban canopy layer. Therefore, observation and research on the urban
canopy layer will help to further study the impact of urban artificial light at night [26].

Unmanned Aerial Vehicle (UAV) technology, as an emerging method for environmen-
tal monitoring, offers advantages such as ease of use, flexibility, wide observation range,
and the ability to capture high–resolution images [27]. It finds widespread applications in
research fields such as agriculture [28–30], ecological environment [31,32], marine areas [33],
disaster relief [34,35], air monitoring [36], and urban planning [37,38]. In terms of nighttime
light environment observation, compared to ground measurements and remote sensing,
UAVs have the advantage of real–time collection of high–resolution data. The flexibility
of flight allows UAVs to capture and record specific area details with greater precision.
Importantly, UAVs can provide aerial data with high altitude, similar to that of aircraft
photography. Furthermore, due to the ability to change positions and angles, UAVs can
obtain data from various perspectives and altitudes, offering a more comprehensive and
multi–angle observation. In recent years, UAVs have been applied in the research of urban
nighttime illumination. Bouroussis et al. utilized UAV images to assess lighting conditions,
leveraging the flexibility of UAVs in three–dimensional space. They introduced three
UAV measurement forms tailored to different lighting conditions and conducted aerial
observations and lighting evaluations across various scenes, including highways, parking
lots, and individual buildings [39]. Massetti et al. employed a UAV equipped with a SQM
and digital cameras to estimate ground surface brightness. They investigated the correla-
tion between nighttime images and ground brightness measured by downward–mounted
optical devices. The sky quality data collected by the UAV showed a significant correlation
with nighttime ground brightness, suggesting that UAVs equipped with sky quality meters
can effectively assess light pollution areas on the ground [40]. Tabaka utilized UAVs to
assess the luminous flux emitted upward by two types of spherical individual lamps, with
and without covering the upper surface [41]. Li et al. used UAVs to observe hourly light
dynamics in cities at night. The observation results aligned with the measurements from
ground–sky mass meters, demonstrating the effectiveness of UAVs as tools for studying
urban nighttime lighting dynamics [42]. Bahia et al. proposed a method for generating
ground illuminance maps using UAVs. They constructed a three–dimensional model of a
road using overlapping aerial images, visualized and analyzed road illuminance, and estab-
lished a regression model between RGB data captured by UAVs and ground illuminance
data [43]. In another study, the comparison of Jilin–1 satellite images with nighttime color
UAV images revealed that the correlation of the blue channel was consistently the lowest,
while the correlation of the red channel was the highest in the RGB channel comparison
between Jilin–1 and UAV. This discrepancy may be attributed to Rayleigh scattering in the
atmosphere, where shorter wavelengths of light scatter more, making remote sensing more
challenging for monitoring blue light [44].

The nighttime light environment in cities can be divided into three levels based on the
spatial location, including the urban surface layer, urban canopy layer, and urban night sky
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layer [45]. The urban canopy layer refers to the spatial region at the average height range
of urban structures. This layer’s light environment can reflect the upward light flux of
the urban nighttime environment. Assessing the upward light flux in the urban nighttime
environment is helpful in understanding the extent of light pollution and its potential
impact on astronomical observations, wildlife, and human health, such as the survival and
migration of birds. Previous research on urban nighttime environments has mainly focused
on micro–scale ground measurements at the surface layer and macro–scale remote sensing
observations of the night sky layer. UAVs can fly freely at different altitudes, angles, and
positions without being restricted by terrain. Using UAVs enables the observation of the
urban canopy layer light environment, filling the gap in observing intermediate layers
in the urban nighttime environment. The existing research on the application of UAV in
nighttime light environment research mainly uses UAV direct observation or combines UAV
observation with ground measurement. There is relatively little research combining ground
measurement, remote sensing observation, and UAV observation. This study focuses on the
nighttime light environment of certain campuses at Dalian University of Technology. The
study’s objectives are as follows: (1) To explore the feasibility of using UAVs to evaluate
urban nighttime lighting from an aerial perspective. (2) To explore a nighttime light environ-
ment observation method that combines both sky and ground perspectives, investigating
the coupling relationship between macro remote sensing observation, mesoscopic UAV
photography, and micro ground measurement methods. (3) To construct a regional light
environment map and identify regional areas of improper lighting use

2. Materials and Methods
2.1. Study Area and Time

Dalian is at the southern end of the Liaodong Peninsula in Liaoning Province, China.
The research area is located on the main campus of Dalian University of Technology
in Dalian, Liaoning Province, China (Figure 1). The study area is an irregular area of
approximately 1.012 km2. The southeast part of the campus is selected as the main research
area, which includes functional areas such as teaching, offices, dormitories, sports fields,
commercial areas, green spaces, and transportation roads, with complete lighting facilities
in the area.
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Figure 1. Study area.

The nighttime lighting environment on campus is affected by the time the dormitory
lights are turned off, which is different from the changes in nighttime lighting environment
in cities. To ensure the accuracy of the measured data, the horizontal window illumination
of four typical functional areas on campus, including teaching, activities, commerce, and
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dormitories, is measured from 19:00 to 23:00 on 31 March 2023. According to previous
studies [19], it is found that the horizontal view window has the highest correlation with
remote sensing data. The specific measurement methods (see Figure 2) and references are
presented in the main text. This study preliminarily judges the nighttime light environment
and thus determines the measurement time period as from 19:00 to 21:30. This study mainly
focuses on weekdays to explore patterns and methods. All measurements are ensured to
be conducted under the same time periods and conditions to ensure the consistency and
comparability of the data. This study primarily aims to preliminarily explore the three–
dimensional measurement methods for the urban micro–scale nighttime light environment.
From Figure 3, the nighttime illumination on campus changes relatively smoothly between
19:00 and 23:00, gradually decreasing between 21:00 and 22:00, and rapidly decreasing
between 22:00 and 23:00. In summary, the time between 19:00 and 21:30 is selected as the
measurement time, which has relatively stable changes.

The actual measurement date is selected between April and May, and the detailed
time is shown in Table 1. To eliminate the influence of factors such as weather, air pollution,
and moon phases on the research results, clear, cloudless, moonless nights with similar air
quality are selected for this study [46].
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Table 1. Actual measurement date and basic atmospheric and climatic conditions.

Items Date Time Weather Sunset
Time

Average
Temperature

(◦C)
AQI Cloud

Cover

Ground measurement 7 April 2023 19:00–22:00 clear 18:17 8 51 cloudless
Ground measurement 8April 2023 19:00–22:00 clear 18:18 11.5 90 cloudless
Ground measurement 12 April 2023 19:00–22:00 clear 18:23 13.5 44 cloudless
Ground measurement 16 April 2023 19:00–22:00 clear 18:27 12 44 cloudless

UAV aerial photography 9 May 2023 19:30–22:00 clear 18:52 19.5 57 cloudless
UAV aerial photography 10 May 2023 19:30–22:00 clear 18:53 19 48 cloudless
UAV aerial photography 11 May 2023 19:30–22:00 clear 18:54 19 52 cloudless

Note: AQI stands for Air Quality Index.
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2.2. Research Data and Methods
2.2.1. Remote Sensing Data

In this study, the remote sensing data of Sustainable Development Science Satellite–1
(SDGSAT–1) were used to study the urban nighttime light environment at the micro–scale.
The early remote sensing data from satellites such as DMSP and VIIRS typically have
resolutions of several hundred meters to several kilometers (see Figure 4). It has the
characteristics of low resolution and fuzzy remote sensing images. It can only analyze
the urban nighttime light environment at a macro–scale, and it is difficult to analyze the
nighttime light environment of the specific functional areas of the city at the micro–scale.
The spatial resolution of SDGSAT–1 data is 40 m. Under the support of SDGSAT–1 remote
sensing data, the city can be partitioned at a scale of 40 m to form a smaller scale of urban
space, such as campus, residential, urban square, commercial block, and so on. In this
paper, the campus area is selected as the scope of this study and is divided into different
areas, such as the campus square, stadium, and teaching buildings. The scale of aerial
measurement is based on the resolutions of the SDGSAT–1 and Luojia–1 satellites (see
Figure 4 and Section 2.2.3). Combined with UAV aerial data and remote sensing data, the
regression equation is established to explore the night light environment stereo observation
method at the micro–scale of the city. This study takes the micro–scale campus interior
space as the research object and has a strong fitting degree with the urban micro–space.
Therefore, the research conclusion of the campus micro–scale nighttime light environment
can be applied to the nighttime light environment of the whole city micro–scale.
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SDGSAT–1 is the world’s first scientific satellite dedicated to serving the United
Nations’ 2030 Sustainable Development Agenda [48]. In this study, data from three color
bands (RGB) captured in Dalian on 29 March 2023 are used, with a resolution of 40 m. The
original remote sensing data digital values (DN values) are transformed into physically
meaningful radiance values through radiometric calibration. The calibration formula
provided by CBAS is as follows:

L = DN × Gain + Bias, (1)

where L represents the radiance at the sensor entrance pupil, measured in W/m2/sr/µm.
DN represents the count value of the image after relative radiometric calibration. The
absolute radiometric calibration coefficients for the low–light sensor in the exploration band
are shown in Table 2, sourced from the SDGSAT–1 satellite user manual. The radiometric
calibration coefficients are derived from the SDGSAT–1 satellite user manual.
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Table 2. The radiometric calibration coefficients and detection spectral bands of SDGSAT–1.

Bands Gain Bias Detection Spectral Bands

R 0.00001354 0.0000136754 600~894 nm
G 0.00000507 0.000006084 506~612 nm
B 0.0000099253 0.0000099253 424~526 nm

2.2.2. Ground–Measured Data

The measurement area is divided into 130 m × 130 m grid units. Each grid serves as
a primary measurement point, and the primary measurement points are further evenly
divided into four secondary measurement points (Figure 5). The final step involves calcu-
lating the Arithmetic Mean of the actual measurements from multiple secondary points and
using this Arithmetic Mean as the value for the primary measurement point. The layout
rule of measurement units is that the maximum spacing between each unit shall not exceed
3 grid sizes, and the minimum spacing shall not be less than 1 grid size (Figure 6).
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Figure 6. Layout of measurement units (The measurement points, that is, the numbers, are evenly
distributed throughout the campus at a resolution of 130 m).

The instruments used for ground measurements include the CL–500 lux meter and
the CCD panoramic camera (equipped with a fisheye lens). The measurement method
adopts the night light environment measurement window division method from the
patented “Urban Night Light Pollution Test Method”. At each measurement point, three
observation windows of the urban space are considered, including an upper window
(where the measurement sensor is parallel to the ground, observing the night sky zenith
light environment upwards), a horizontal window (where the measurement sensor is
perpendicular to the ground, observing the light environment in the outward line of sight),
and a lower window (where the measurement sensor is parallel to the ground, observing
the ground light environment downwards) [49]. The instruments are set at a height of 1.6 m,
corresponding to the height of the human eye. The obtained data from the measurements
include horizontal illuminance (El), upper illuminance (Eu), and lower illuminance (Ed),
where El represents the mean of eight measurements in the horizontal direction (Figure 5d).
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2.2.3. UAV Measurement Data

This study uses the DJ Phantom 4 UAV, which supports both JPEG and DNG image
formats. The parameters for the drone image are ISO–1600, f/2.8, and 1/4 s. In this study,
the UAV flies to an altitude of 100 m relative to the ground (with a height limit of 120 m),
and the JPG images captured vertically downwards are used as aerial data for the UAV
(Figure 7). The UAV aerial photography points are located according to the measured
grid mentioned above, and the aerial photography points correspond vertically to the
ground–measured secondary measurement points.
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Using MATLAB R2022b software to extract the Digital Number (DN) values of the
pixels in the R, G, and B channels of an image, the color luminance (L) of R, G, and B is
calculated based on the CIE–XYZ color space system as follows:

L = R + 4.5907G + 0.0601B, (2)

The luminance formula L = R + 4.5907G + 0.0601B is derived from the 1931 CIE–RGB
color space standard, which specifies the spectral tristimulus values for the standard colori-
metric observer. The coefficients within this equation correspond to the relative luminous
contributions of the red, green, and blue components to human vision. Specifically, within
the 1931 CIE–RGB system, the luminance ratios for equal quantities of the primary colors
are defined as L(R):L(G):L(B) = 1.0000:4.5907:0.0601. This ratio illustrates that the green
component has a substantially greater influence on perceived luminance, approximately
4.59 times that of the red component, while the contribution of the blue component is
minimal. The equation L = R + 4.5907G + 0.0601B encapsulates the relative luminance of a
color, with R, G, and B denoting the tristimulus values and L representing their weighted
sum, indicative of the overall brightness perception [50].

The luminance of the four secondary measurement point aerial photos is assigned to
the primary measurement points. And the aerial images are cropped into the following
three scales: 65 m (L65), 40 m (L40), and 20 m (L20) to study the relationship between aerial
data and ground–measured data at different scales (Figure 8).
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3. Result and Analysis
3.1. Data Analysis
3.1.1. Ground–Measured Data and Remote Sensing Data

To investigate the relationship between ground–based measurements and remote
sensing data, regression analyses are conducted between ground–based measurements
and the R(Sr), G(Sg), and B(Sb) bands of SDGSAT–1. The fitting degrees of the three bands
with El are as follows: Sr > Sg > Sb (Figure 9). The fitting degrees of the three observation
windows with Sr are as follows: horizontal > down > up (Figure 10).
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3.1.2. Ground–Measured Data and UAV Aerial Photography Data

The limitations of measurement distance and environmental factors on ground–measured
data may lead to inconsistency between the ground–measured range and the UAV aerial
photography range. To study the relationship between ground–measured data and UAV
aerial images, regression analysis is performed on the ground–measured data with UAV
aerial images at three scales of 65 m, 40 m, and 20 m, respectively.
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The fitting degrees between ground illuminance data and drone aerial photography
data are as follows: horizontal > down > up (Figure 11). The fitting degrees of three–view
illuminance data with different scales of drone data are: L65 > L40 > L20 (Figure 12).

Remote Sens. 2024, 16, x FOR PEER REVIEW 9 of 19 
 

 

3.1.2. Ground−Measured Data and UAV Aerial Photography Data 
The limitations of measurement distance and environmental factors on 

ground−measured data may lead to inconsistency between the ground−measured range 
and the UAV aerial photography range. To study the relationship between ground−meas-
ured data and UAV aerial images, regression analysis is performed on the ground−meas-
ured data with UAV aerial images at three scales of 65 m, 40 m, and 20 m, respectively. 

The fitting degrees between ground illuminance data and drone aerial photography 
data are as follows: horizontal > down > up (Figure 11). The fitting degrees of three−view 
illuminance data with different scales of drone data are: L65 > L40 > L20 (Figure 12). 

   
(a) Regression graph of El and L65 (b) Regression graph of Eu and L65 (c) Regression graph of Ed and L65 

Figure 11. Regression relationship between illuminance data and L65. 

   
(a) Regression graph of El and L65 (b) Regression graph of El and L40 (c) Regression graph of El and L20 

Figure 12. Regression relationship between El and UAV data. 

3.1.3. UAV Aerial Photography Data and Remote Sensing Data 
To investigate the relationship between drone aerial data and remote sensing data, 

regression models are established. These models consider the brightness of drone aerial 
photography as the dependent variable and the three bands of remote sensing data as 
independent variables (Figure 13). In terms of the fitting degree between remote sensing 
data and drone aerial photography data, Sr > Sg > Sb. 

   
(a) Regression graph of L65 and Sr (b) Regression graph of L65 and Sg (c) Regression graph of L65 and Sb 

Figure 13. Regression relationship between UAV data and remote sensing data. 

  

Figure 11. Regression relationship between illuminance data and L65.

Remote Sens. 2024, 16, x FOR PEER REVIEW 9 of 19 
 

 

3.1.2. Ground−Measured Data and UAV Aerial Photography Data 
The limitations of measurement distance and environmental factors on 

ground−measured data may lead to inconsistency between the ground−measured range 
and the UAV aerial photography range. To study the relationship between ground−meas-
ured data and UAV aerial images, regression analysis is performed on the ground−meas-
ured data with UAV aerial images at three scales of 65 m, 40 m, and 20 m, respectively. 

The fitting degrees between ground illuminance data and drone aerial photography 
data are as follows: horizontal > down > up (Figure 11). The fitting degrees of three−view 
illuminance data with different scales of drone data are: L65 > L40 > L20 (Figure 12). 

   
(a) Regression graph of El and L65 (b) Regression graph of Eu and L65 (c) Regression graph of Ed and L65 

Figure 11. Regression relationship between illuminance data and L65. 

   
(a) Regression graph of El and L65 (b) Regression graph of El and L40 (c) Regression graph of El and L20 

Figure 12. Regression relationship between El and UAV data. 

3.1.3. UAV Aerial Photography Data and Remote Sensing Data 
To investigate the relationship between drone aerial data and remote sensing data, 

regression models are established. These models consider the brightness of drone aerial 
photography as the dependent variable and the three bands of remote sensing data as 
independent variables (Figure 13). In terms of the fitting degree between remote sensing 
data and drone aerial photography data, Sr > Sg > Sb. 

   
(a) Regression graph of L65 and Sr (b) Regression graph of L65 and Sg (c) Regression graph of L65 and Sb 

Figure 13. Regression relationship between UAV data and remote sensing data. 

  

Figure 12. Regression relationship between El and UAV data.

3.1.3. UAV Aerial Photography Data and Remote Sensing Data

To investigate the relationship between drone aerial data and remote sensing data,
regression models are established. These models consider the brightness of drone aerial
photography as the dependent variable and the three bands of remote sensing data as
independent variables (Figure 13). In terms of the fitting degree between remote sensing
data and drone aerial photography data, Sr > Sg > Sb.
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3.2. Data Comparative Analysis
3.2.1. Ground–Measured Data and UAV Aerial Photography Data Comparative Analysis

From the fitting graph of the data above, it can be observed that there are a few
prominent outlier data points. Using the same X–axis to represent the locations and
plotting the illuminance (E) and luminance (L) data separately on the Y–axis, a coordinate
system is established graphically to compare the variation trends between the UAV data
and ground measurements data (Figure 14). From the graph, it is evident that El and L65
exhibit opposite variation trends at measurement points 5, 8, and 11. Specifically at point
5, L is lower while E is higher. Observing the drone image of this point (Figure 15), it is
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noted that the measurement is located at the eastern edge of the study area. Among the five
measurement points, 5A and 5D represent outdoor sports areas with high campus lighting
intensity, while 5B and 5C represent urban roads and residential areas with low nighttime
lighting intensity. In the ground measurements of 5B and 5C regions, due to environmental
constraints such as slope and greenery (Figure 16), it is not feasible to obtain lighting
information for the residential areas through ground measurements, resulting in an overall
higher measured value for that measurement point. However, drones are not affected by
ground environment limitations and can capture most of the lighting information within
the measurement points.
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Figure 15. UAV aerial photography of measurement point 5.

By observing the drone images of points 8 and 11 (Figure 17), both areas have intricate
layouts of buildings and greenery, leading to the internal segmentation of the regions into
multiple sections by buildings and vegetation. These sections exhibit distinct lighting
conditions, potentially influenced by diffuse light from building facades, commercial
lighting, and road illumination. During single–point ground lighting measurements, the
covered area is limited due to obstructions caused by buildings and vegetation, making
it challenging to comprehensively collect lighting information. Conversely, employing
drones for aerial surveys provides an overhead view of the entire area, circumventing the
aforementioned issues and yielding a more comprehensive understanding of the lighting
conditions across the region.
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3.2.2. Ground–Measured Data and Remote Sensing Data Comparative Analysis

Using the same X–axis to represent measurement points and plotting illuminance (E)
and radiance values (Sr) data on the Y–axis, a coordinate system is established to graph-
ically compare the trends between actual measurements and remote sensing (Figure 18).
Combining information from the previous curve fitting graphs, it is evident that E and
R exhibit opposing trends at points 1 and 11. At point 1, E is higher, and Sr is lower.
Observing the drone image for this point (Figure 19), it is apparent that the primary light
source is the outward scattering of indoor lighting from buildings. This can be captured
through drone aerial photography and ground measurement instruments. However, the
satellite’s higher spatial position, compared to the previous two satellites, weakens its
ability to capture the vertical facades of buildings (Figure 20). These reasons lead to the
remote sensing observations at point 1 being lower than the actual ground illuminance.
The reasons for differences observed at point 11 are the same as described earlier.
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3.3. Inversion Map

By establishing a mathematical relationship between remote sensing data and ground
truth measurements, an inversion model for urban nighttime light environments on the
ground is constructed. In the inversion results, the ground data obtained from the inversion
model combine the advantages of both remote sensing and actual measurements. Com-
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pared to the ground truth data, the inverted data offer the advantages of broader coverage
and higher regional data consistency. In contrast to remote sensing radiance data, the
inversion results possess advantages such as photometric calibration and high accuracy.

Based on the analysis in the preceding text, after excluding data from measurement
points 1 and 11, curve fitting is performed for the two types of actual measurement data
with Sr. The optimal curve fitting for E and Sr is illustrated in Figure 21a. The mathematical
inversion model for El and Sr within the study area is as follows:

El = −14.773 + 15.287 × Sr −3.606 × Sr
2+ 0.298 × Sr

3 (3)

The optimal curve fitting for L65 and Sr is depicted in Figure 21b. The mathematical
inversion model for L65 and Sr within the study area is as follows:

L65 = 51.43 + 250.725 × Sr − 27.058 × Sr
3 (4)

Utilizing the data visualization functionality of ArcGIS, the inverted map of ground
illumination and the inverted map of canopy top brightness within the study area are
plotted (Figure 22).
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3.4. Analysis of Campus Nighttime Light Environment and Verification of Inversion Results

The nighttime lighting environment of outdoor public spaces affects the safety and
comfort of pedestrians after dark [51]. The lighting attributes that influence the above
perceptions mainly include illuminance, color temperature, uniformity, glare, etc. [52].
Portnov et al. found a positive correlation between FoS, light level, and uniformity in
their study [53]. Saad et al.’s research shows that by using warmer light and increasing
the uniformity of light, 30–50% of road lighting energy can be saved while maintaining a
reasonable level of safety perception [54].

From the above research, it can be seen that illuminance and illuminance uniformity
are important factors that affect the safety and comfort of pedestrians at night. This section
is based on inverted maps, with illumination and uniformity as the main parameters
to analyze the nighttime light environment on campus. Meanwhile, by conducting on–
site research and comparing the inversion results with the actual light environment, the
accuracy of the inversion results is verified.

3.4.1. Verification of Campus Nighttime Environmental Illumination and Inversion Results

Applying the natural breaks method [55], the data are segmented into eight intervals,
and visual representation is conducted using ArcGIS. Figure 23 illustrates the distribution
of excessive and insufficient lighting within the study area. Combining this with real–world
imagery provides a more intuitive understanding.
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Area A is located on the north boundary of the campus and adjacent to the urban road,
and its high grid environmental illumination is mainly affected by urban road lighting and
commercial lighting. Area B is mainly used for transportation, with Dalian Management
College located above it. From the actual photos, Dalian Management College uses a large
amount of outdoor landscape lighting and building lighting, resulting in excessive lighting
intensity in Area B. Area C is the campus cafeteria and outdoor football field. The square
in front of the cafeteria and the football field both use lamps with a large lighting range
and high lighting intensity, and there is no obstruction around or above the area, resulting
in excessive environmental illumination in the area. Area D is adjacent to urban roads,
and the reason for its high environmental illumination is the same as Area A. Area E is
an outdoor plaza with extremely high illuminance from the lighting fixtures, and their
diffusion extends quite extensively. Despite having some green cover in this area, the
height of the fixtures significantly surpasses the vegetation layer, resulting in excessively
high illuminance. Area F, identified as an outdoor sports facility, similarly exhibits elevated
nighttime illumination.

In areas with insufficient lighting, Area G corresponds to residential quarters where
some road lighting is damaged, resulting in inadequate illumination. Area H and I are
green landscape areas that experience lower nighttime utilization, leading to reduced
illumination. Area J is a construction area with limited nighttime lighting facilities.

In summary, areas with excessive lighting are mainly affected by the lighting intensity
of the surrounding environment, followed by areas with high lighting intensity and a lack
of occlusion measures. Most of the areas with excessively dark lighting are areas that are
rarely used at night, such as greenery and vacant spaces. Some dormitory areas lack road
lighting, resulting in excessively dark lighting.

At the same time, from the actual images corresponding to the inverted map in
Figure 22, it can be seen that the areas that are too bright and too dark in the inverted map
are consistent with the actual lighting environment, indicating that the inversion results
are in good agreement with the actual lighting situation.

3.4.2. Uniformity of Campus Night Environment Illumination

The ‘Lighting Measurement Methods’ GB/T 5700—2023 specify that the definition
of lighting uniformity is the ratio of the minimum illuminance to the average illuminance
on the defined surface [56]. This definition is suitable for the study of light environments
in local areas or small ranges but not applicable to large–scale studies measured by grid
scales. This paper defines the absolute value of the difference between the illuminance of
the central grid and the average illuminance of the adjacent eight grids as the illuminance
difference value of the central grid (e–point illuminance difference = |(Ea + Eb + Ec + Ed
+ Ef + Eg + Eh + Ei)/8 − Ee|, Figure 24). It represents the uniformity of illuminance in
a 3 × 3 grid area. The higher the illuminance difference value, the worse the uniformity
of illuminance in that range. The lower the illuminance difference value, the better the
uniformity of illuminance within that range.
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The natural breaks method is applied to divide the Ed data into five intervals. Figure 25
illustrates the distribution of Ed within the study area. Contrasting Figure 25 reveals an
overlap between areas with high Ed values and those experiencing excessive lighting.
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These areas not only exhibit relatively higher illumination intensity but also demonstrate
significant differences in lighting environment compared to their surrounding areas. This
indicates the presence of an uneven distribution of lighting within the studied region.
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3.4.3. Influence Factors of Environmental Illuminance and Illuminance Uniformity

From the above two sections, it can be seen that the lighting intensity within a single
grid not only affects the environmental lighting of the grid itself but also affects the environ-
mental illumination and uniformity of illumination within the surrounding grids, caused
by light diffuses into the surrounding area through various propagation methods [57].
Secondly, the lighting method and lighting fixtures can also affect the environmental illumi-
nance and uniformity of illumination. As shown in Figure 23, the lighting fixtures used in
areas C and E have high intensity, dense lighting arrangements, and a lack of obstruction
around them.

4. Conclusions

This paper combines ground measurements, unmanned aerial photography, and
remote sensing to propose an integrated urban light environment measurement method that
combines sky, land, and sea perspectives. Vertically corresponding layered nighttime light
environment maps are created (Figure 26), providing a new approach for the monitoring
and management of urban light pollution. The corrected data exhibit a high degree of
consistency, indicating that drones are an effective tool for measuring the urban nighttime
light environment. At the same time, unmanned aerial photography also provides a new
pathway for observing the urban canopy and nighttime light environment.

There are certain limitations and deficiencies in this study, such as the need for manual
operation in unmanned aerial photography, which reduces the accuracy of the captured im-
ages and increases labor costs. The density of measurement points needs to be determined
based on the study area.

In future research, measurements will be conducted within the urban area, increasing
the measurement range and the diversity of measurement area functions, to verify the
universality of the integrated sky–land nighttime light environment measurement method
for urban nighttime light environments. Furthermore, the color images of unmanned aerial
photography are combined with remote sensing images to further explore the characteristics
of urban nighttime light environments, such as color temperature. Based on the integrated
sky–land urban light environment measurement method, the impact of the nighttime light
environment on human health, wildlife, and ecosystem processes and proposed mitigation
strategies for urban light pollution are analyzed.
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