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Abstract: Rayleigh lidar equipped on airborne floating platforms has received increasing attention
in recent years due to the demand for exploring the middle atmosphere. However, the inevitable
attitude fluctuation of the platform affects the measurement accuracy of the photon profile, which
greatly affects temperature retrieval. Here, an extensive theoretical analysis model of geometrical
transformations between the actual altitude and detection distance under attitude fluctuations was
constructed by taking pitch, roll, and observation angles into consideration. Based on this model and
measured attitude angles, the influence of platform fluctuation on lidar measurement was analyzed
by calculating the deviations between temperature retrieval results and the NRLMSISE-00 model at
different observation angles, which demonstrated that the altitude displacement from the variation
of pitch angle is a crucial factor in causing temperature retrieval error, especially at large observation
angles. Then, an attitude compensation method was designed to eliminate the impact of fluctuations,
incorporating the merits of good robustness. Under the observation angle of 45◦ and average pitch
angle of around 4◦, the maximum temperature deviation after attitude compensation was reduced
from 21.29 K to 0.366 K, a reduction of around two orders of magnitude, indicating that the method
can significantly improve the measurement accuracy of Rayleigh lidar.

Keywords: Rayleigh lidar; floating platform; measurement accuracy; fluctuation; attitude compensation

1. Introduction

Lidar is a versatile technique to measure various atmospheric properties, e.g., clouds,
aerosols, relative humidity, wind field, density, and temperature [1]. Rayleigh lidar, which
is based on the mechanism of elastic Rayleigh scattering between light and atmospheric
molecules, provides a robust approach to characterizing the middle atmosphere over 30 km
altitude where the effect of aerosols is negligible [2–17]. Rayleigh lidar has high spatial
and temporal resolution, high signal-to-noise ratio (SNR), and long detection distance, and
is independent of atmospheric composition in detecting density, temperature, etc. [18].
At present, Rayleigh lidar equipped on different platforms is playing an increasingly
important role in studying the middle atmosphere to meet the significant demand in
military, climatology, and weather prediction.

Ground-based Rayleigh lidar is currently the most widely used form and enables
high-resolution observations. Examples include the Arctic Lidar for Middle Atmosphere Re-
search (ALOMAR) in Norway [13], the operational ground-based lidars of the observatories
at the Maïdo observatory, La Reunion [14,15], and the Compact Rayleigh Autonomous Li-
dar (CORAL) in Tierra del Fuego, Argentina [16]. The study on lidar atmospheric sounding
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in China started later, but with huge efforts, several Rayleigh lidars have been built and are
now operating in Hefei, Beijing, Wuhan, etc. [2,5]. In addition, the National Space Science
Center of the Chinese Academy of Sciences conducted vehicle-mounted Rayleigh Doppler
lidar experiments in 2016, which showed the capability of rapid transfer among observation
sites [4,11,12]. However, to overcome long detection distance, large optical attenuation, and
strong background noise, high-energy laser, large-aperture telescope, narrow-linewidth
molecular filter, etc., are necessary to obtain high-SNR echo signals for the ground-based
lidar, which leads to high complexity and great cost. Besides, ground-based lidar cannot
realize round-the-clock observations because of weather issues.

In addition to enhancing the laser power and aperture of the receiving telescope,
another effective option to boost the lidar return signal is to shorten the distance between
the lidar and the target area. It can be realized by lidar equipped on floating platforms since
the light attenuation in the troposphere is greatly reduced. The Balloon Lidar Experiment
(BOLIDE) has demonstrated the advantage of better data quality compared to ground-based
instruments of the same size [10]. The powerful Airborne LIdar for Middle Atmosphere
research (ALIMA) instrument onboard the German High Altitude and LOng range (HALO)
research aircraft has been in operation since September 2019 [17]. Such facilities also offer
the possibility of flexible atmospheric detection in a large area and overcome the defects
of weather-sensitive ground-based lidar to guarantee continuous monitoring. However,
compared with the ground-based lidar, fluctuations of the floating platforms originating
from complicated dynamic disturbances in the atmosphere lead to unstable directions
of the laser beam. Such fluctuation-induced pointing instability should be considered to
ensure the accuracy of the retrieval procedure.

The density and temperature retrieval method for Rayleigh lidar was proposed by
Hauchecorne and Chanin [19]. This method sets the initial seed value at the top of the
detection range and integrates the relative density profile downward to obtain the tempera-
ture profile in terms of the static equilibrium equation and the ideal gas state equation. It
has been pointed out that the deviation derived from the top seeding temperature varies
the entire temperature profile, and the variation decreases with height. Knobloch et al. [20]
synthetically evaluated the deviations of retrieval results caused by the attenuation from
Rayleigh extinction, ozone absorption, background noise, signal-induced photon noise,
and nonlinearity of the photon-counting detectors, but the platform fluctuation was not
mentioned. To the best of our knowledge, the only literature that incorporated platform
instability was in [21], which discussed the temperature measurement accuracy at different
roll angles of a ship platform. It should be mentioned that the oscillation model of Rayleigh
lidar was simplified into a sinusoidal function for convenience, and considering the roll
angle only is insufficient for floating platforms since the fluctuation of pitch angle tends to
be more pronounced. According to [22], continuous variation of the heading angle results
in circular rotation of the laser beam in the horizontal plane. Ideally, this rotation does
not produce changes in atmospheric density in the laser beam path, so the impact of the
heading angle can be ignored.

This paper focuses on analyzing the deviation of temperature retrieval generated by
the laser beam-pointing uncertainty based on airborne floating platforms. A comprehensive
model between the actual altitude and the detection distance was constructed by taking the
pitch angle, roll angle, and observation angle into consideration simultaneously. The verti-
cal displacement due to attitude change was theoretically analyzed from both the aspects
of single-pulse signal and integrated photon number profile. By adopting attitude angle
data of a flight test, the measurement accuracy was evaluated by comparing the retrieved
temperature with the NRLMSISE-00 model. To eliminate the influence of both the roll and
pitch fluctuations, an attitude compensation method was proposed and the effectiveness
was verified under different observation angles, integration time, and attitude data.
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2. Materials and Methods
2.1. Rayleigh Lidar Equation

Given the integration time ∆t and pulse repetition frequency frep, the photon count
profiles under a certain number of laser pulses can be expressed as follows:

NR(λ, R) =
Eλ

hc
· [σ180(λ, R)n(z, R)∆R] · A

R2 ·
[
η(λ)TtTrT2(λ, R)G(R)

]
· ∆t · frep, (1)

where NR(λ, R) is the number of received photons at wavelength λ from the detection
distance R, E is the pulse energy, h is Planck’s constant, and c is the light speed. The laser
beam encounters scattering and absorption by molecules during atmospheric propagation.
The Rayleigh backscattering cross-section is σ180(λ, R) = 6.16 × 10−32 m−2 [20], n(z, R) is
the number density of atmospheric molecules and ∆R is the range resolution. The number
of received photons depends on the solid angle of the receiving telescope with the aperture
of A. Additionally, the total optical attenuation is determined by the system parameters
and atmospheric transmission, where η(λ) is the quantum efficiency of the single-photon
detector, Tt and Tr are the optical efficiencies of the transmitter and receiver, respectively,
T(λ, R) is the single-pass atmospheric transmittance, and G(R) is the geometric overlap
factor. Since Rayleigh scattering is elastic, the double-pass transmission coefficient can be
simplified to the square of a single-pass one [23]. Besides, it is assumed that the transmitter
and receiver of the lidar is coaxial in this paper, therefore, G(R) is equal to 1. Table 1 lists
the simulation parameters of the lidar system.

Table 1. Simulation parameters of lidar system.

System Parameter Value

Laser pulse energy E/mJ 40
Telescope diameter A/mm 350

Detection quantum efficiency η(λ) 0.5
Total optical transmittance Tt·Tr 0.4

Range resolution ∆R/m 100
Field of view/µrad 165

Divergence angle of laser/µrad 80

Considering that the physical quantities is dependent on the pointing angle, Equation (1)
can be rewritten as [21]:

NR(λ, z) = ρ(z, R) · ∆R · C
R2 , (2)

where NR(λ, z) is the number of received photons at the actual altitude z, ρ(z, R) is the
atmospheric density, and C indicates the angle-independent physical quantities. The actual
observation angle of lidar varies with the oscillation of the platform, which results in
variation of atmospheric density along the laser beam path, and consequently, NR(λ, z)
changes. The relationship between z and R will be described in Section 2.2.

2.2. General Fluctuation Model

When a lidar mounted on an airborne floating platform is conducting atmospheric
exploration, the attitude and spatial position of the lidar are affected by external excitation
disturbances such as wind and atmospheric turbulence. In order to describe the spatial
position and motion state of the lidar, we build the carrier coordinate system (o-xbybzb)
and geographic coordinate system (o-xgygzg), and their relative relationship is shown in
Figure 1.
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The origins of both coordinate systems coincide with the gravity center of the carrier.
oxb is positive to the right along the horizontal axis of the carrier, oyb is positive to the front
along the vertical axis of the carrier, and ozb is perpendicular to the vertical axis of the
carrier and it is positive to up. The o-xgyg plane is parallel to the ground level, where oxg
is horizontal and points east, oyg is horizontal and points north, and ozg points towards
the zenith. The angular position of the carrier coordinate system relative to the geographic
coordinate system, including heading angle (ϕ), pitch angle (θ), and roll angle (γ), can be
used to represent the carrier attitude. The geographic coordinate system can rotate in three
dimensions in the order of ϕ (around ozg) → θ (around oxg) → γ (around oyg), and then
coincides with the carrier coordinate system. Similarly, the backward process (−γ → −θ
→ −ϕ) can realize the conversion from carrier coordinate system to geographic coordinate
system. The relationship between the two coordinate systems is as follows:xg

yg
zg

 = Ag
b(γ, θ, ϕ)

xb
yb
zb

, (3)

where Ag
b(γ, θ, ϕ) is the transformation matrix from the carrier coordinate system to the

geographic coordinate system, which is expressed as follows:

Ag
b(γ, θ, ϕ) =

cos ϕ − sin ϕ 0
sin ϕ cos ϕ 0

0 0 1

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 cos γ 0 sin γ
0 1 0

− sin γ 0 cos γ

, (4)

The change in heading angle only involves a circular rotation of the laser beam in the
horizontal plane but does not affect the vertical parameters. Next, the heading angle is set
to zero, and the simplified equation can be obtained as follows: xg

yg
zg

 =

 cos γxb + sin γzb
sin θ sin γxb + cos θyb − sin θ cos γzb
− cos θ sin γxb + sin θyb + cos θ cos γzb

, (5)

Considering the observation angle, a lidar polar coordinate system is designed based
on the lidar coordinate system o-xb

′yb
′zb

′, as shown in Figure 2. The line-of-sight distance,
azimuth, and zenith angles of the target are represented by R, α, and θ0, respectively. It
is worth noting that there is a translation transformation between the lidar coordinate
system o-xb

′yb
′zb

′ and the carrier coordinate system o-xbybzb because of rigid connection,
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as shown in Figure 1. The displacement can be ignored since it is much smaller than the
range resolution, and then the following equation is obtained:xb

yb
zb

 =

R sin θ0 sin α
R sin θ0 cos α

R cos θ0

, (6)
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Through Equations (5) and (6), the relationship between the altitude z and R is given
by the following:

z = zg = R cos θ cos γ cos θ0 − R cos θ sin γ sin θ0 sin α + R sin θ sin θ0 cos α, (7)

Considering a special mounting method that θ0 is always in the yb-o-zb plane, α is always
zero, and θ0 is the observation angle, Equation (7) can be simplified into the following:

z = R cos θ cos γ cos θ0 + R sin θ sin θ0, (8)

According to Equation (8), the laser beam path varies at different pointing angles.
Under the condition that θ0 = 0◦ and only θ or γ is concerned, the schematic diagram is
shown in Figure 3a. Without platform fluctuation, the lidar points to the vertical direction,
the altitude z is equal to the recorded distance R, and the atmospheric density along the
beam path is ρ(O)~ρ(Q). If the platform fluctuation is only related to pitch angle or roll
angle, the geometric path is formulated as z = Rcosθ or z = Rcosγ. That is, the lidar pointing
changes to the direction of OP or OP’. The positive and negative nature of the angle does
not affect atmospheric density detection since ρ(P) = ρ(P′). Correspondingly, the density in
the altitude scale changes from ρ(O)~ρ(Q) to ρ(O)~ρ(N). It is noteworthy that ρ(Q) is not
equal to ρ(N) because the atmospheric density decreases as the altitude increases, which
affects the subsequent temperature retrieval.

Suppose that θ0 ̸= 0◦ and only θ is considered, the pointing of the lidar is shown in
Figure 3b. If the platform does not fluctuate, the lidar points to an angle of θ0 from the
vertical direction, the altitude of z equals Rcosθ0, and the atmospheric density along the
transmission path is ρ(O)~ρ(K). When the platform fluctuates, the lidar points to OP or OP’,
the actual altitude is z = Rcos(θ0−θ), and the corresponding density in altitude scale changes
to ρ(O)~ρ(M) or ρ(O)~ρ(N). Under the condition that θ0 ̸= 0◦ and θ = 0◦, the pointing of
lidar is shown in Figure 3c. The lidar also points to an angle of θ0 from the vertical direction
if the platform does not fluctuate. Otherwise, the lidar pointing changes to OP or OP′, the
actual altitude is calculated by z = Rcosθ0cosγ, and the corresponding density in altitude
scale changes to ρ(O)~ρ(N). Similarly, a bias is introduced to temperature retrieval.
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2.3. Temperature Retrieval

The temperature profile is retrieved from the density profile by substituting the ideal
gas law (Equation (9)) into hydrostatic equilibrium (Equation (10)).

p = ρRdT, (9)

p =
∫ ∞

z
ρgdz, (10)

where g is the acceleration of gravity, Rd is the gas constant of dry air, and T is the atmo-
spheric temperature at altitude z.

By choosing the reference altitude z0 (generally the upper limit of the detection
altitude), the temperature T(z) at altitude z can be obtained by integrating from z to z0.

ρ(z)RdT(z) =
∫ ∞

z
ρ(z)gdz = ρz0RdTz0 +

∫ z0

z
ρ(z)gdz, (11)

T(z) =

(
ρz0Tz0 +

1
Rd

∫ z0
z ρ(z)gdz

)
ρ(z)

, (12)

where ρz0 and Tz0 are the atmospheric density and atmospheric temperature at the reference
altitude, respectively.

To evaluate the influence of laser pointing variation on temperature retrieval results,
the lidar signal is simulated based on the atmospheric density acquired from the NRLMSISE-
00 model [24]. The lidar attitude angle is required to accomplish angle conversion and
obtain the corresponding atmospheric density profiles. According to Equation (1), the pho-
ton profile incorporating a certain number of laser pulses can be taken as input to produce
the atmospheric temperature profile. By comparing the retrieval result with the NRLMSISE-
00 model, the temperature deviation caused by platform oscillation is calculated.

2.4. Attitude Compensation

The real-time measurement of platform attitude enabled by an in-situ navigation
device lays the foundation of attitude compensation. The procedure is shown in Figure 4.
Firstly, the measured attitude-angle data is selected according to integration time, and the
abnormal angles are eliminated twice by the Interquartile Range method (IQR) [25]. Then,
the interval between the maximum angle and minimum angle in the processed data is
judged to ensure that the attitude data after removing the abnormality is concentrated.
Considering that a small interval criterion will greatly reduce the amount of data, and
a large one will affect the accuracy of attitude compensation, a compromised value of
1◦ is adopted in this paper. If the interval is larger than 1◦, the selected set of measured
angles is in the stage of large oscillation, which is supposed to be deserted and chosen
again. Otherwise, the actual observations can be approximated by the sum of average
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attitude angle and jitter. It should be noted that jitter is the difference between two adjacent
data points of the recorded attitude angle, which can be ignored after the abnormalities
are eliminated. Therefore, the actual observations can be further replaced by the average
attitude angle, and substituting into Equation (8) gives the actual vertical altitude. At this
point, the attitude compensation is achieved by applying the actual altitude for density and
temperature retrieval.
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3. Results
3.1. Theoretical Analysis of the Effects of Attitude Fluctuation
3.1.1. Effect on Acquisition of Single-Pulse Echo Signal

The relative position of the transceiver equipped on a floating platform changes in
both horizontal and vertical directions during laser transmission. Supposing that s = 70 km
is the maximum detection distance and v = 10 m s−1 is the movement speed of the platform,
the horizontal displacement of the transceiver is 2sv/c = 4.7 mm, which can be ignored
compared with the telescope diameter of 350 mm. The vertical displacement can be
calculated by this formula:

V_θ0 = l · [cos(θ0 + t × β)− cos(θ0)], (13)

where V_θ0 indicates the vertical displacement, l = 2.5 m is the length of the lidar, and β is
the maximum rate of attitude change of the platform, which is around 1.6◦/min according
to the measurement results.

As shown in Figure 5, with the increase of settled observation angle, the laser beam
path becomes closer to the horizontal plane, and the vertical displacement caused by
attitude change becomes larger. The maximum displacement is merely 0.543 µm. In terms
of the field of view, it can be considered that the acquisition process of a single-pulse echo
signal is not affected by the attitude fluctuation of the floating platform.
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to 12:00 on 5 April 2022 (time resolution: 1.2 s) at 109.4825°E longitude and 19.1743°N 
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3.1.2. Effect on Photon Number Profile within the Integration Time

Assuming the integration time ∆t = 30 s, the vertical displacement within the detection
distance can be expressed as follows:

V(R, θ0) = R · [cos(θ0 + ∆t × β)− cos(θ0)], (14)

where V(R, θ0) is the vertical displacement under observation angle θ0 and detection
distance R.

The results are shown in Figure 6. Similarly, the vertical displacement becomes larger
with the increase of settled observation angle, and it becomes more obvious at the far field
of the detection range. The maximum vertical displacement caused by attitude fluctuation
reaches 977.4 m at the maximum detection distance. This factor is critical to temperature
retrieval accuracy and cannot be ignored.
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3.2. Verification Based on Measured Attitude Data
3.2.1. Data Description

The measured inertial navigation data of a floating platform was collected from 00:00
to 12:00 on 5 April 2022 (time resolution: 1.2 s) at 109.4825◦E longitude and 19.1743◦N
latitude, as shown in Figure 7. According to Figure 7a, the platform reached stable operation
at an altitude of 19 km. The data of pitch angle and roll angle during stable operation
were adopted to analyze the temperature retrieval deviation caused by the fluctuation of
the platform.
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Figure 7. Measured altitude and attitude data of the floating platform. (a) Inertial navigation altitude
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3.2.2. Accuracy Check of Retrieval Results

When the settled observation angle is 0◦ and the platform does not oscillate, the
retrieval results are shown in Figure 8. Figure 8a presents that the retrieval results consist
of the model basically. In the altitude range of 30–45 km, the temperature increases
gradually with altitude on account of the ozone absorption of UV radiation, while the
temperature continuously decreases with altitude in the range of 45–70 km. It is worth
noting that the positive or negative sign of the deviation in Figure 8b only represents
the direction in which the retrieval results deviate from the model. The maximum and
average deviations in the range of 30–60 km are 0.342 K and 0.099 K, respectively, by
selecting the temperature of 70 km as a reference. The reason for the bias is that the
average molecular molar mass is set to an empirical value of 28.9644 g mol−1 when using
atmospheric density to retrieve atmospheric temperature. However, during modeling, the
number density of each component was adjusted to realize a smooth transition from the
mesosphere to the lower thermosphere [24], leading to a decrease in average molecular
molar mass (less than the empirical value) above the altitude of 62.5 km. At the time
of 23:30:00 on 1 May 2021 and the geographical location of 40.3◦N latitude and 117.6◦E
longitude in the NRLMSISE-00 model, the average mass of the largest molecule at 70 km is
reduced by 1.5‰ compared to that at 30 km [21,26]. In the altitude range of 30–70 km, the
minimum and maximum temperatures of the model are 221.89 K and 274.12 K, respectively,
corresponding to temperature deviations of 0.333 K and 0.411 K, respectively, under the
ratio of 1.5‰. Therefore, the maximum temperature deviation in the retrieval results of
0.342 K is reasonable.
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3.2.3. Deviation between the Retrieved Temperature and Model with Attitude Fluctuation

Suppose the integration time is 30 s, a set of measured pitch angles (θ = 3.62◦, σθ = 0.37◦)
and roll angles (γ = −0.64◦, σγ = 0.06◦) is selected and substituted into Equation (8) to get the
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corresponding atmospheric density profiles, and then the photon number profiles are ob-
tained. According to the retrieval algorithm, the combined photon number profile is taken
as input, and the vertical altitude calculated from the settled observation angle without
considering attitude fluctuation is adopted to generate the atmospheric temperature profile.

Figure 9 shows the comparison of temperature profiles between the retrieval results
and the NRLMSISE-00 model at different observation angles. When the observation angle
is 0◦, the retrieved temperature is positively biased relative to the model, and the average
and maximum deviations are 0.65 K and 0.76 K, respectively; When the observation angle
is 30◦, the retrieved temperature is negatively biased relative to the model, and the average
and maximum deviations are 10.04 K and 12.47 K, respectively; When the observation
angle is 45◦, the retrieved temperature is also negatively biased relative to the model, and
the average and maximum deviations are 17.39 K and 21.29 K, respectively. Hence, the
larger the observation angle, the greater the deviation in retrieved temperature.
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Figure 9. Comparison of retrieved temperature and the NRLMSISE-00 model. (a–c) are the temper-
ature profiles at θ0 = 0◦, θ0 = 30◦, and θ0 = 45◦, and (d–f) are the deviations between the retrieved
temperature and the NRLMSISE-00 model at θ0 = 0◦, θ0 = 30◦, and θ0 = 45◦, respectively.

As shown in Figure 7b,c, the average pitch angle varies from −7.5◦ to 5.5◦ and the
average roll angle varies from −3.5◦ to 2.5◦ under stable operation. Within the variation
range of attitude angle, the temperature retrieval deviations of the altitude of 30 km at
different pitch and roll angles are calculated, as shown in Figure 10. Horizontally, if the
pitch and roll angles are fixed, the larger the observation and deviation angles in the
retrieved temperature, which is consistent with the results in Figure 9. With a certain
observation angle and roll angle for each subgraph, the temperature deviation rises with
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the increase of pitch angle. However, with a certain observation angle and pitch angle
for each subgraph, the temperature deviation changes slightly with the variation of roll
angle. When the observation angle is 45◦ in Figure 10c, the temperature deviation increases
by about 17 K when the pitch angle changes from 0◦ to −3◦, whereas the temperature
deviation increases by about 0.7 K when the roll angle changes from 0◦ to −3◦. Therefore,
the altitude displacement from variations of pitch angle is a significant factor in causing
temperature retrieval inaccuracy, especially at large observation angles.
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Figure 10. Deviations in temperature retrieval with the average pitch angle varying from −7.5◦ to
5.5◦ and average roll angle varying from −3.5◦ to 2.5◦ at θ0 = 0◦ (a), θ0 = 30◦ (b), and θ0 = 45◦ (c).

Next, a deeper investigation is performed to study the effects of pitch angle on the
temperature deviation according to the measured attitude angle, as shown in Figure 11.
With a certain settled observation angle for each subgraph, the temperature deviation
rises with the increase of pitch angle. When the observation angle is 0◦ in Figure 11a,
the retrieved temperature is positively biased relative to the model and the maximum
temperature deviation is less than 3 K. Here, the positive and negative nature of the angle
does not affect the density. When the observation angle is 30◦ in Figure 11b, the sign of angle
results in inequality in density, which consequently affects the deviation in temperature
profiles. If the pitch angle is positive, the laser points towards the zenith direction, and the
density is undervalued along the same beam path, leading to negative bias of the retrieved
result relative to the model, and vice versa. The maximum temperature deviation reaches
35 K at the maximum average pitch angle of −7.5◦. When the observation angle is 45◦ in
Figure 11c, the temperature deviation increases with a larger pitch angle, and the maximum
temperature deviation is up to 65 K.
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3.2.4. Deviation between Retrieved Temperature and Model after Attitude Compensation

The attitude compensation method is described in Section 2.4. To avoid excessive
reduction of data after eliminating the abnormal angles twice by the IQR method, the
removal amount is controlled within 20% of the total. If more than five angles are abnormal
data within the integration time of 30 s, the selected measurement data is considered to
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be at the stage of large fluctuation and data will be re-selected. After this process, the
filtered pitch (θ = 3.86◦, σθ = 0.15◦) and roll angles (γ = −0.65◦, σγ = 0.01◦) are acquired. By
substituting into Equations (1) and (8), the photon number profile is obtained. Taking the
photon number profile as the input, the actual vertical altitude calculated via the average
attitude angle is adopted to generate the atmospheric temperature profile. Figure 12
illustrates the consequence of attitude compensation for temperature retrieval results
with observation angles of 0◦, 30◦, and 45◦. From the vertical perspective, the effect of
attitude compensation is remarkable. Among all three observation angles, the temperature
deviations after attitude compensation are at the level of 0.1 K (maximum value: 0.366 K).
Note that when the observation angle of the lidar is 0◦ and the platform does not oscillate,
the maximum deviation is 0.342 K, as demonstrated in Section 3.2.2. The slight difference
of 0.03 K is introduced after attitude compensation. Undoubtedly, this error is acceptable.
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between the retrieved temperature and the NRLMSISE-00 model at θ0 = 0◦, θ0 = 30◦, and θ0 = 45◦,
respectively.

4. Discussion

In the following context, the robustness of the attitude compensation method proposed
in this paper is discussed. Firstly, the temperature deviations at θ0 = 45◦ under different
integration times without attitude compensation were calculated. Taking the integration
time of 30 s used in Figure 9 as a reference, the data of 60 s, 180 s, 300 s, and 600 s were
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intercepted again. Since the attitude changes under different integration times, the retrieval
bias and the statistical attitude data are summarized in Table 2. The results show that
without attitude compensation, there will be a large retrieval deviation no matter how long
the integration time is, and the retrieval deviation will depend more on the pitch angle.
By comparing Row 2 and Row 5 in Table 2, when the average pitch angle is constant, the
larger the average roll angle, the larger the retrieval deviation. Then, the effect of attitude
compensation was estimated at integration time periods from 30 s to 600 s and different
average pitch angles of around 4◦ and 5◦, respectively. The compensation method based
on average attitude angle can effectively eliminate the influence of platform fluctuation on
temperature retrieval, as shown in Figure 13a,b. After attitude compensation, the maximum
deviation of the retrieved results was less than 0.38 K, and the average value was less than
0.11 K. Simultaneously, the standard deviations of the measured pitch angle under different
integration times were calculated to analyze the relationship between the compensation
results and the dispersion of the attitude data. For example, when the average pitch angle
was about 4◦, the standard deviation was 0.15◦, 0.13◦, 0.07◦, 0.08◦, and 0.14◦ under the
integration time of 30 s, 60 s, 180 s, 300 s, and 600 s, respectively, which was consistent
with the trend of retrieval deviation. The maximum deviations after attitude compensation
can be effectively suppressed for attitude data with different dispersion. Therefore, the
compensation method has good robustness to different integration times and is not sensitive
to the dispersion of attitude data.

Table 2. Retrieval deviation without attitude compensation and corresponding statistical magnitude
under different integration times.

Integration
Time

Max
Deviation

Average
Deviation

Average Pitch
Angle σθ

Average
Roll Angle σγ

30 21.29 17.39 3.62 0.37 −0.64 0.06
60 23.3 19.08 4.02 0.48 −0.66 0.06
180 22.93 18.77 3.94 0.31 −0.67 0.04
300 22.89 18.75 3.936 0.25 −0.69 0.05
600 23.31 19.1 4.02 0.22 −0.77 0.01
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Figure 13. Deviations between retrieved temperature and the NRLMSISE-00 model at θ0 = 45◦ after
attitude compensation. (a) Maximum and (b) average deviations under different integration times
when two average pitch angles of around 4◦ and 5◦ are considered. (c) The maximum and average
deviations under different average pitch angles when integration time is 30 s, regardless of the sign
of the angle.

Furthermore, to verify the robustness of different attitude data, the maximum and
average deviations after attitude compensation at average pitch angles of 4◦, 5◦, −6◦, and
−7◦ were obtained as shown in Figure 13c. The positive or negative sign of the pitch
angle only represents the direction of the laser change. If the pitch angle is positive, the
laser points towards the zenith direction, and vice versa. Since the measured attitude
data lacked pitch angle data that is greater than 6◦ (violent fluctuations), the integration
time was set to 30 s. The results showed that the maximum and average deviations of the
retrieved results were less than 0.38 K and 0.11 K, respectively. The maximum deviation
after attitude compensation can be effectively suppressed for attitude data even in violent
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fluctuations. Similarly, the standard deviations of the pitch angles in each group of data
were calculated to analyze the relationship between the compensation results and the
dispersion of the attitude data. The standard deviations were 0.15◦, 0.14◦, 0.17◦, and 0.23◦

under the average pitch angles of 4◦, 5◦, −6◦, and −7◦, respectively, which also matched
the trend of retrieval deviation.

5. Conclusions

In this paper, the influence of laser pointing uncertainty of Rayleigh lidar carried by
airborne floating platforms on atmospheric temperature detection was studied. A relational
model between the actual altitude and the detection distance was constructed by taking the
pitch angle, roll angle, and observation angle into consideration. The vertical displacement
caused by attitude change was analyzed by theoretical calculation from the aspects of single-
pulse signal and integrated photon profiles. The accuracy of the temperature retrieval was
acquired by comparing the retrieved results under the observation angles of 0◦, 30◦, and 45◦

with the NRLMSISE-00 model. Finally, the attitude compensation method was designed,
and its favorable effects on temperature retrieval were illustrated. The conclusions are
summarized as follows:

(1) The vertical displacement caused by attitude change becomes larger with the increase
of settled observation angle. For single-pulse echo signals, the maximum vertical
displacement is negligible, so that it is not affected by attitude fluctuations of the
platform. For photon profiles consisting of multiple echo signals within a certain
integration time, the maximum vertical displacement cannot be ignored in the tem-
perature retrieval process.

(2) When the attitude (pitch and roll angle) is constant, the larger the observation angle,
the greater the average and maximum deviation in the temperature retrieval. When
the measured pitch angle is θ = 3.62◦ and the roll angle is γ = −0.64◦, the maximum
temperature deviations are 1 K, 12.47 K, and 21.29 K at the observation angles of 0◦,
30◦, and 45◦, respectively. The results demonstrate that vertical displacement is a
crucial factor in causing temperature retrieval inaccuracy.

(3) When the observation angle is fixed, the temperature deviation rises with the increase
of attitude angle. In particular, the altitude displacement caused by variations of
pitch angle is a significant factor in causing temperature retrieval inaccuracy. When
the observation angle is 0◦, the retrieved temperature is positively biased relative
to the model, and the maximum temperature deviation is less than 3 K. When the
observation angles are 30◦ and 45◦, the sign of angle results in density inequality
and then affects the deviation in temperature profiles. Under the condition that the
observation angle is 45◦, the maximum temperature deviation is up to 65 K when the
average pitch angle is −7.5◦.

(4) The effect of attitude compensation is remarkable. At the observation angles of 0◦, 30◦,
and 45◦, the average temperature deviation after attitude compensation is 0.1 K, and
the maximum temperature deviation is 0.366 K. Similar results can be obtained under
different integration times. In addition, the method is not sensitive to the variation of
attitude data.

In conclusion, it is necessary to conduct attitude compensation for lidar equipped
on airborne floating platforms before temperature retrieval to ensure accuracy. The com-
pensation method proposed in this paper has good robustness and is not sensitive to the
dispersion of attitude, which is believed to be helpful in lidar signal processing.
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