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Abstract: This study explores the estimation of ground-level NO2 concentrations in Mexico City
using an integrated approach of machine learning (ML) and remote sensing data. We used the NO2

measurements from the Sentinel-5P satellite, along with ERA5 meteorological data, to evaluate a pre-
trained machine learing model. Our findings indicate that the model captures the spatial and temporal
variability of NO2 concentrations across the urban landscape. Key meteorological parameters, such
as temperature and wind speed, were identified as significant factors influencing NO2 levels. The
model’s adaptability was further tested by incorporating additional variables, such as atmospheric
boundary layer height. In order to compare the model’s performance to alternative ML models, we
estimated the ground-level NO2 using the state-of-the-art TimeGPT. The results demonstrate that our
baseline model has the best performance with a mean normalised root mean square error of 84.47%.
This research underscores the potential of combining satellite observations with ML for scalable air
quality monitoring, particularly in low- and middle-income countries with limited ground-based
infrastructure. The study provides critical insights for air quality management and policy-making,
aiming to mitigate the adverse health and environmental impacts of NO2 pollution.

Keywords: Earth observation; machine learning; sentinel-5P; NO2

1. Introduction

Nitrogen dioxide (NO2) is an air pollutant with negative implications for both human
health and the environment. According to recent data [1], short-term exposure to NO2
has been linked to mortality and morbidity. Short-term and long-term analysis provided
sufficient estimates for 43 combinations of mortality or hospital admissions by cause and
age, revealing that a 10 µg/m³ increase in 24-h NO2 is linked to higher all-cause (0.71%),
cardiovascular (0.88%), and respiratory (1.09%) mortality, as well as increased hospital
admissions for respiratory (0.57%) and cardiovascular (0.66%) diseases. Additionally,
the European Environment Agency (EEA) has attributed over 350,000 premature deaths
annually to air pollution, with NO2 being a critical component of this statistic [2]. NO2 not
only affects human health but also contributes to environmental degradation. It specifically
accelerates processes such as acidification and eutrophication, which harm ecosystems [3].

NO2 is primarily produced from combustion processes, including vehicular emissions,
industrial activities, and power generation. For instance, during the coronavirus infectious
disease 2019 (COVID-19) lockdown in Milan, Italy, reduced travel and factory activity led
to a notable drop in NO2 levels. By the end of March 2020, private transport was down
by 77%, commercial vehicles by 66%, factory emissions by 39%, and overall production
emissions by 20%, resulting in a one-third reduction in NO2 levels [4].

The accurate measurement of NO2 concentrations is essential for effective air qual-
ity management and policy-making. Traditional ground-based monitoring systems are
established as the authoritative method for NO2 ground-level atmospheric pollution, as
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established by the European Union (EU) [5]. While precise, this method suffers from
limited spatial coverage and high operational costs. This is particularly problematic in low-
and middle-income countries (LMICs), where financial and technical resources are often
scarce [2]. As a result, there is a pressing need for innovative methods that can provide
extensive and continuous air quality data. The development of satellite technologies has
introduced new ways of monitoring air quality. Satellites such as Sentinel-5P, equipped
with the TROPOspheric monitoring instrument (TROPOMI), offer high-resolution mea-
surements of atmospheric trace gases, including NO2 [6]. Although these technologies
are widely and openly available, they present many limitations. One of them is that the
measurements are performed at the tropospheric level. As proposed in previous works,
these satellite data, when combined with ground-based meteorological information and ad-
vanced machine learning (ML) algorithms, can produce reliable estimates of ground-level
NO2 concentrations [7,8].

This work is a continuation of previous works that studied the estimation of ground-
level atmospheric concentration of NO2 using only satellites and atmospheric models.

In our first study [7], we demonstrated the potential of these integrated approaches.
For instance, research conducted in the metropolitan city of Milan (MCM) used Sentinel-5P
data alongside ground meteorological measurements to train ML models, achieving a
normalised root mean square error (NRMSE) of 0.28. This study highlighted the capability
of combining satellite data with ground-based meteorological observations to produce
accurate estimates of NO2 concentrations at the urban scale, effectively capturing the
spatial and temporal variability of the pollutant. The model’s performance indicated that
integrating satellite data with local weather information could significantly enhance air
quality monitoring systems, providing more precise and actionable insights for urban
environmental management.

In our second study, we further explored the robustness of this approach by replacing
local meteorological measurements with the European Centre for Medium-Range Weather
Forecasts (ECMWF) Reanalysis v5 (ERA5) data, which offers a comprehensive and consis-
tent global dataset from the 1950s. Despite the change in data sources, the study maintained
a high level of model accuracy with an average NRMSE of 0.30. This consistency in perfor-
mance underscores the versatility of using ERA5 data as a reliable alternative when local
meteorological data are unavailable. The ability to achieve similar accuracy with reanalysis
data demonstrates the model’s adaptability and the potential for broader application in
various geographical settings, thereby making it a valuable tool for global air quality assess-
ment efforts. It is also worth noting that in the first study, we calculated the average NO2
for the MCM. For this second study, we calculated the punctual ground atmospheric con-
centration of NO2 for each of the 17 ground stations belonging to the Lombardy Regional
Environmental Protection Agency (ARPA), demonstrating that accuracy is also maintained
for point data [8].

Given that ground stations are already present in industrialised regions such as Europe
or North America, the main purpose of this study is to contribute to ground-level NO2
estimation in LMICs. In LMICs, the scarcity of ground-based air quality monitoring
stations [9] poses a significant challenge for policymakers. The high cost and maintenance
of these stations limit their deployment, leading to gaps in air quality data coverage. This
issue underscores the need for scalable, cost-effective solutions that can leverage remote
sensing and ML to monitor air pollution across large and diverse regions. For this reason,
we decided to evaluate the performance of previous models [7,8] in LMICs urban areas.
For this work, we decided to evaluate the performance in the metropolitan area of Mexico
City (MAMC), Mexico.

Mexico City, which is one of the largest and most densely populated urban areas in
the world [10], faces severe air pollution challenges [11]. The city’s geographical setting has
several effects on its air quality. The city is situated in a high-altitude basin, approximately
2240 m above sea level, surrounded by mountains. This topography acts as a natural barrier
that traps pollutants, limiting their dispersion and producing higher concentrations of air
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trace gases such as NO2. The weaker winds due to the surrounding mountains and the high
altitude, which increase solar radiation and stimulate ozone formation, make pollution
control particularly challenging in Mexico City [12].

In this research, we validate and expand the applicability of ML models previously
developed for estimating ground-level NO2 concentrations. This will allow us to consider
testing the model’s effectiveness in a new and different urban context. Additionally, to use
the model of prior studies, where we used ERA5 meteorological data parameters such as
ground temperature, wind speed, wind direction, precipitation, global radiation, and rel-
ative humidity, we retrained the model to add the variable atmospheric boundary layer
height (ABLH). Finally, we experimented with an alternative state-of-the-art tool called
TimeGPT [13]. We equally trained it using only data from the MCM, and we evaluated it
in both cities. This gives us a direct comparison between our model and the generative
pre-trained transformer (GPT) solution. It is important to note that although there are
significant elevation differences between the MCM and MAMC, which might seem relevant
to the study, we chose not to include this factor. The model was trained exclusively on data
from the MCM, which is a flat area, so incorporating elevation differences would not have
contributed to the model’s improvement.

Study Area: The Metropolitan Area of Mexico City

As mentioned previously, the MAMC is one of the largest and most densely populated
urban areas globally [10]. It has a population exceeding 21 million residents within its
metropolitan region [14]. It is situated in a high-altitude basin at approximately 2240 m
above sea level, encircled by mountains and volcanoes, which create unique air quality
challenges [15]. The city’s enclosing mountains contribute to frequent temperature inver-
sions, particularly during the winter months, which trap pollutants near the ground level.
According to the World Health Organisation (WHO) Air Quality Guidelines (AQGs), the
daily NO2 average should not surpass 25 µg/m3 for more than 4 days per year [16]. Unfor-
tunately, this is not the case for the MAMC, which has exceeded this limit several times
(Figure 1). According to the measurements retrieved from governmental ground stations
from the Mexican Sistema de Monitoreo Atmosférico (SIMAT) network, in 2019, this limit
was surpassed in 91 days, 62 days in 2020, 74 days in 2021, and in 2022, it surpassed by
79 days [17].

Figure 1. NO2 daily average concentrations from MAMC ground sensors (blue line). NO2 average
ground sensor measurement for the 2-h period of the Sentinel-5P satellite (13:00 to 15:00 LST).
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Additionally, Figure 1 shows the average NO2 measure for the 2-h period of the
satellite. For data seasonality, the winter months present higher levels of concentrations.
Moreover, the data trend is similar to that of the whole day NO2 average.

The geographical setup of the MAMC significantly contributes to air pollution is-
sues, particularly the accumulation of NO2. The city’s location in a high-altitude basin
surrounded by mountains to the west, south, and east traps pollutants close to the ground,
as the basin’s configuration restricts wind flow at ground level, preventing the dispersion of
pollutants. Figure 2 shows the urban and green areas of the MAMC. In this figure, we can
see that, as stated before, the west and south-east are conformed by the presence of green
areas. Consequently, understanding the spatial and temporal variations of NO2 within
such a complex urban environment needs the integration of data from multiple sources,
including satellite observations, meteorological data, and ground-based measurements.
This comprehensive approach is essential for developing robust predictive models that can
accurately reflect the intricate dynamics of air pollution in the MAMC.

Figure 2. Detailed map of the MAMC, showing roads, urban settlements, and green areas.

The methodology of the study was divided into three main phases. The initial phase
involved directly applying the pre-trained model, developed for the MCM, to a set of
ground sensor locations within the MAMC. This was carried out to test the pre-trained
model’s performance in a different geographical and environmental setting without any
modifications. In the second phase, the study incorporated the ABLH, along with the
previously considered meteorological variables, to retrain the model but also specifically
used data from the MCM. The inclusion of this additional variable was intended to enhance
the model’s performance and its generalizability to diverse urban environments. With it,
we address the unique topographical and atmospheric conditions that could be present in
regions different from the MCM. This approach ensures a comprehensive evaluation of the
model’s adaptability and robustness across different urban settings. In the final phase, we
compared our model’s performance with TimeGPT. Figure 3 shows the general workflow
to train, test, and select the model with the best performance by using the output’s RMSE.
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Figure 3. Workflow to train and test output from models to select the one with the best performance.

The results indicate promising model adaptability to the conditions of the MAMC,
with initial RMSE values lower or equal to the data’s standard deviation. This suggests
robust performance in handling varying pollution sources and atmospheric dynamics.
When retraining using data with the new atmospheric variables, the results show negli-
gible performance improvement, indicating that further reprocessing and retraining of
the original model is not needed. The model that was originally trained also performs
significantly better than the solution proposed using TimeGPT. This research underscores
the potential of integrating satellite observations and ML to create scalable and reliable
air quality monitoring systems. It is particularly beneficial for LMICs, where traditional
ground-based monitoring is limited. The findings aim to contribute to global efforts to
improve air quality management and protect public health.

The structure of this article is organised as follows: Section 2 provides a detailed
overview of the study area, data sources, and the methodology employed, including the
integration of remote sensing data and ML techniques. In Section 3, we present the results
of our analysis, highlighting the spatial and temporal patterns of NO2 concentrations
and the model’s performance metrics. Section 3 also discusses the implications of our
findings, emphasising the influence of meteorological factors and the potential applications
of our model in air quality management. Finally, Section 4 concludes the article with a
summary of key insights, the potential limitations of the study, and suggestions for future
research directions.

2. Materials and Methods
2.1. Ground-Based NO2 Measurements

Mexico is a country subdivided into 32 administrative states. The area covered by
the MAMC encompasses two states, the state of Mexico City and partially The State of
Mexico. Inside this area, ground-based NO2 measurements are sourced from the SIMAT
network, which historically operates a total of 32 air quality monitoring stations across
the MAMC. For this work, only 10 of these stations were used. A total of 22 out of the
32 stations were disregarded because either they stopped working after the year 2021 or
had inactive periods of more than 1 year. Figure 4 shows the area of interest (AoI) delimited
by a red contour. In blue are the Sentinel-5P satellite pixels, and in black crosses are the
locations of the NO2 ground stations. Similar to the MCM, the stations are dispersed, but
most of them are located in the central part of the MAMC. This means that there were no
stations present in the north and eastern parts of the AoI.

The NO2 ground stations provide hourly concentration data in micrograms per cubic
meter (µg/m3). This data is essential for the validation of our ground estimation model.
The dataset spanned from January 2019 to January 2023. In order to offer a comprehensive
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temporal coverage equivalent to the one used for the MCM, we used an average ground
measurement of the time of the satellite passage (Section 2.2). This means that we only
used a single average measurement of the NO2 average from 12:00–15:00 UTC-6.

Figure 4. Location of NO2 ground stations provided by Mexico City’s local authorities.

Ground-based NO2 measurements in the MAMC are conducted using chemilumines-
cence analysers, which are the standard instruments for measuring nitrogen dioxide levels.
These analysers detect NO2 via its reaction with ozone, which produces a chemiluminescent
reaction (light emission) that can be measured. The intensity of the emitted light is directly
proportional to the NO2 concentration, allowing for precise quantification. This method is
widely recognised for its accuracy and reliability in detecting NO2 at various concentration
levels [18,19].

In order to ensure data quality, SIMAT employs several validation and quality assur-
ance procedures:

• Regular maintenance and calibration: Ground stations undergo routine maintenance
and calibration to ensure the accuracy and reliability of the instruments.

• Data validation: Raw analyser data are subjected to validation processes to detect and
correct anomalies or errors.

• Intercomparison studies: In some cases, data from ground stations have been com-
pared and used following data from other monitoring networks and satellite observa-
tions to ensure consistency and accuracy [18].

As previously mentioned, to ensure the reliability of our ML model’s estimates of
ground-level NO2 concentrations, we employed a validation process using ground-based
sensor data. This involved systematically comparing the predicted NO2 values generated
by the model with the actual measurements obtained from a network of ground monitoring
stations distributed throughout the MAMC.
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2.2. Satellite Data: Sentinel-5P

For this study, Sentinel-5P data were employed to estimate ground-level NO2 concen-
trations in the MAMC. This satellite measures the NO2 tropospheric column with global
coverage and a daily temporal resolution. Figure 4 illustrates the NO2 pixels of the Sentinel-
5P TROPIMI as captured over the MAMC.

The Sentinel-5P satellite is part of the Copernicus program managed by the European
Space Agency (ESA) in collaboration with the Netherlands Space Office (NSO). This satellite
was launched with the primary goal of filling the data gap between the older missions,
such as OMI (Ozone Monitoring Instrument) from the National Aeronautics and Space
Administration (NASA) and the upcoming Sentinel-5 missions. Sentinel-5P carries a single
instrument, the TROPOMI, developed by the Netherlands Aerospace Centre (NLR) and
Airbus Defence and Space [6]. TROPOMI is a spectrometer that measures sunlight reflected
and scattered by the Earth’s atmosphere and surface. It covers a wide spectral range
from ultraviolet to shortwave infrared wavelengths, enabling the observation of a variety
of atmospheric constituents, including NO2, ozone, sulfur dioxide, carbon monoxide,
methane, and aerosols. This extensive spectral coverage is crucial for comprehensive
atmospheric analysis and allows for high-precision monitoring of air quality [6,20].

Since becoming operational, Sentinel-5P has consistently met or exceeded these accu-
racy requirements, demonstrating high reliability in its measurements [21]. The validation
of Sentinel-5P data involves several rigorous methods, including comparisons with ground-
based stations, aircraft campaigns, and inter-satellite comparisons. Ground-based valida-
tion compares satellite data with measurements from various ground-based instruments
such as multi-axis differential optical absorption spectroscopy (MAX-DOAS) instruments,
Pandonia Global Network, and OMI [22]. These ground-based stations provide high-
accuracy data that serve as a benchmark for validating satellite observations [21,23].

Aircraft validation involves comparing satellite data with measurements obtained
from aircraft campaigns. These campaigns utilise in situ instruments and remote sensing
instruments aboard aircraft to measure NO2 concentrations at different altitudes, provid-
ing a vertical profile that complements the satellite data. Intersatellite comparisons are
conducted by comparing Sentinel-5P data with measurements from other satellites that
monitor atmospheric NO2, such as OMI and GOME-2. These intercomparisons help in
understanding any systematic biases and ensuring consistency across different satellite
missions [24].

In addition to these validation methods, the Sentinel-5P mission team employs several
other approaches to assess data quality, such as internal consistency checks, trend analysis,
and intercomparison with models. The following table summarizes the validation methods
and their accuracy metrics [21]:

Sentinel-5P data are open and free to access by anyone with an internet connection.
The ESA makes it accessible through various platforms, including the following:

• Copernicus Data Space: Provides free access to Sentinel-5P data and other Copernicus
data products https://dataspace.copernicus.eu (accessed on 9 July 2024).

• ESA Earth Observation Data Services: Data and Information Access Services (DIAS)
provide a wide range of Earth observation data, as well as processing and analysis
services https://www.copernicus.eu/en/access-data/dias (accessed on 9 July 2024).

To obtain Sentinel-5P images for the MAMC, we utilised the Copernicus application
programming interface (API): https://documentation.dataspace.copernicus.eu/APIs.html
(accessed on 11 July 2024). Given the extensive dataset required—spanning four years and
totalling nearly 1.5 terabytes of data for the MAMC, we developed a specialised Python
pipeline to facilitate automated batch downloads. This pipeline was designed to enhance ef-
ficiency and ensure the completeness of data acquisition. The pipeline operates by allowing
users to specify the desired product, period, and area of interest. Upon receiving these pa-
rameters, it queries the Copernicus Hub, which responds with a comprehensive list of files
available for download. The program then cross-references this list with the files already

https://dataspace.copernicus.eu
https://www.copernicus.eu/en/access-data/dias
https://documentation.dataspace.copernicus.eu/APIs.html


Remote Sens. 2024, 16, 3320 8 of 21

downloaded to identify any missing data. Subsequently, it downloads the necessary files
one by one, ensuring that all required data are acquired without duplication or omission.
This approach marks a significant improvement over previous methods, such as using
DIAS services, as it leverages a free service without quotas or limitations. The efficiency of
this system is further highlighted by its ability to manage interruptions caused by the data
provider. Our pipeline addresses this by seamlessly resuming downloads from the point
of interruption, thus avoiding the time-consuming task of manually tracking download
progress. By automating the data acquisition process, this pipeline significantly reduces the
potential for human error and ensures that no data are missed. The systematic and reliable
nature of this method not only accelerates the download process but also ensures a higher
level of data integrity. This pipeline was crucial for our comprehensive analysis of NO2
concentrations across the MAMC, enabling us to achieve a continuous dataset with no time
gaps. This was necessary for accurate atmospheric modelling and analysis.

2.3. Meteorological Data: ERA5

ERA5 (https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-
levels accessed on 11 February 2024) provides detailed and high-resolution meteorological
data that are essential for understanding and modelling atmospheric processes affecting
NO2 dispersion. The ERA5 dataset includes hourly estimates of a wide range of atmo-
spheric parameters. For this study, the key meteorological parameters included near-surface
temperature at 2 m above the ground, wind speed and direction at 10 m above the ground,
surface relative humidity, total precipitation, and surface atmospheric pressure.

In addition to these parameters, which were used in past studies, we also included
the ABLH provided by the ERA5 reanalysis. The ABLH is the lowest portion of the
troposphere that is directly influenced by the surface beneath it. The thickness of this
layer, denoted as ABLH, is a crucial parameter in various applications such as air pollution
modelling and weather forecasting. In environmental contexts, the ABL height defines
the volume of air in which pollutants are dispersed. Hence, the precise determination of
the ABLH is vital for accurately modelling air quality, including the processes of pollutant
transport, dispersion, and removal. Moreover, ABL height serves as an essential scaling
factor for normalising boundary layer variables such as fluxes and vertical gradients of
wind, potential temperature, and moisture, which are critical for both model-based and
observational analyses. In addition, it plays a significant role in nonlocal turbulence
closures employed in climate and weather forecasting models, such as the National Center
for Atmospheric Research (NCAR) Community Climate Model and the National Centers
for Environmental Prediction (NCEP) medium-range forecasting model [25].

The time span of these parameters was from January 2019 to January 2023, and this
was accessed through the ECMWF Climate Data Store. The data were aggregated to match
the temporal resolution of the Sentinel-5P measurements, typically occurring around local
noon [26]. By aggregating ERA5 data into daily averages, we ensure that the data matches
the temporal resolution of the satellite observations. This alignment allows us to capture
the meteorological conditions that significantly impact NO2 levels. Temperature, wind,
humidity, precipitation, pressure, and ABLH are critical variables that affect the dispersion
and chemical reactions of NO2 in the atmosphere. By integrating these parameters, we can
enhance the predictive power of our models, allowing for more accurate estimations of
ground-level NO2 concentrations across different temporal and spatial scales.

2.4. Data Processing

Due to the nature of the data coming from different sources, the processing and
harmonisation required substantial effort. In order to achieve this, we utilised the prepro-
cessing algorithm developed in our previous work [8], which significantly facilitated the
handling of Sentinel-5P and ERA5 datasets. However, the ground sensors of the MAMC,
being new and structurally different from those used in Milan, required preprocessing from
scratch. In the following sections, we will describe the specific steps involved in processing

https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels
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the Sentinel-5P, ERA5, and MAMC ground sensor datasets. This comprehensive approach
ensures that the resulting datasets are robust, reliable, and ready for integration into the
modelling framework.

2.4.1. Satellite Data Processing

Sentinel-5P images are provided at Level 2 (L2). Although L2 already provides the
NO2 tropospheric column, some pixels must be removed to ensure the reliability of the
data. Initially, pixels with cloud coverage were excluded using quality assurance values
provided within the dataset, retaining only high-quality measurements (above 0.75 quality
assurance values). The quality assurance values we used are the ones suggested by the
ESA in their technical literature [23]. These preprocessing steps are critical for ensuring
the integrity of the data used in subsequent analyses, as cloud cover can significantly
distort satellite observations. By using the HARP tool from the atmospheric toolbox
(https://atmospherictoolbox.org/harp/ accessed on 28 October 2023) provided by ESA,
we filtered out the low-quality pixels, binned the data into a regular grid and reduced the
spatial extent to the interest area. These steps facilitate seamless integration with other
data sources.

In order to estimate the ground-level NO2 concentrations, we considered the time
resolution of the Sentinel-5P for the rest of the datasets. According to Figure 5, Sentinel-5P
overpasses occur between 13:00 and 15:00 local time (19:00 and 21:00 UTC). Therefore,
the ERA5 and ground sensor network measurements were averaged every day in these
2 h. Figure 6 illustrates the coefficients of variation for each of the ERA5 meteorological
variables during the satellite overpass period. We observe that all variables, except for the
wind components, exhibit less than 2% variation relative to their overall mean. The wind
‘U’ and ‘V’ components also have their first and third quartiles—representing 50% of the
data—below a 2% variation. This indicates that averaging data over these 2 h is appropriate,
as it captures a representative and stable sample of the meteorological conditions during
the satellite’s overpass.

Figure 5. Satellite passage times over the MAMC. The times are indicated in UTC-6.

https://atmospherictoolbox.org/harp/
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Figure 6. Coefficients of variation for each of the variables used in the ML model in the 2-h satellite
overpass period.

2.4.2. Meteorological Data Aggregation

ERA5 meteorological data were aggregated into two datasets. The first dataset was
synchronised with the temporal resolution of Sentinel-5P observations, leading us to
calculate the daily averages for each ERA5 meteorological parameter during the satellite’s
overpass time. This step is crucial for creating a consistent and comparable dataset that
accurately reflects the meteorological conditions influencing NO2 levels during satellite
observations. Additionally, daily aggregation smooths out short-term fluctuations, resulting
in a more stable dataset for modelling purposes.

The second dataset involved averaging hourly data from the time preceding the satel-
lite overpass. This process was completed in two steps. First, we calculated the average
ERA5 measurements from 00:00 to 13:00 local time. Next, we computed the average ERA5
measurements from 15:00 to 23:59 of the previous day. Once these two averages were
obtained, they were further averaged to produce a final attribute for each meteorological
value corresponding to the preceding period of the satellite overpass. This “previous day”
parameter was included because it is highly correlated with the NO2 ground measure-
ments [8].

2.4.3. Ground-Based Data Synchronisation

For the ground sensors of the MAMC, the process began with data acquisition and
initial formatting. Unlike the Milan sensors, which had a well-established data structure,
the MAMC sensors required the development of new preprocessing routines. This included
standardising the data formats and restructuring them to have the same input format as
those of the MCM to be used with the pretrained model.

The hourly ground-based NO2 measurements were averaged from 13:00 to 15:00 local
time to create daily values that matched the temporal resolution of the passage of the
satellite. Additionally, spatial interpolation using the nearest neighbours method was
employed to align the grid cells used for the satellite and meteorological data with the
ground measurements. Nearest neighbours are a straightforward interpolation technique
that assigns values to grid cells based on the closest observed data points. This method
ensures that the spatial variability of NO2 concentrations is adequately represented across
the study area, enhancing the robustness of the integrated dataset. By using nearest
neighbours, we maintained a computationally efficient approach that reliably interpolates
spatial data, ensuring a consistent and accurate representation of NO2 levels throughout
the study region [27].

As we mentioned in the previous paragraphs, the inclusion of NO2 values from
Sentinel-5P provides direct measurements of atmospheric NO2. These have the highest
correlation (Table 1) among all the features, making them essential for estimating ground-
level concentrations. Meteorological parameters, such as temperature, wind, humidity,
precipitation, and pressure, influence the dispersion and chemical reactions of NO2 in the
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atmosphere. Temporal variables help account for patterns in human activity and natural
processes that affect NO2 levels. By carefully selecting and engineering these features,
we enhance the predictive power of the models, allowing them to accurately capture the
complex interactions and dependencies that govern NO2 concentrations.

Table 1. Pearson correlation coefficients of ERA5 variables and Sentinel-5P with respect to ground-
level atmospheric NO2.

Variable
Metropolitan City of

Milan—Pearson
Correlation (ρp)

Metropolitan Area of Mexico
City—Pearson

Correlation (ρp)

Satellite NO2 0.75 0.55

Current values 1

Temp Celsius −0.58 −0.49
Surface Net Solar Radiation −0.56 −0.44
Surface Net Thermal
Radiation 0.13 −0.01

Surface Pressure 0.33 0.02
Total Precipitation −0.03 −0.08
Wind Dir −0.10 0.10
Wind Speed −0.17 −0.05
Boundary Layer Height −0.58 −0.45

Previous values 2

Temp Celsius −0.61 −0.43
Surface Net Solar Radiation −0.58 −0.29
Surface Net Thermal
Radiation 0.15 −0.11

Surface Pressure 0.33 0.02
Total Precipitation −0.08 −0.17
Wind Dir 0.28 −0.03
Wind Speed −0.13 −0.20
Boundary Layer Height −0.58 −0.21

1 Current values refer to those measured during the satellite’s 2-h passage time. 2 Prior values refer to those
measured during the 22 h prior to the passage of the satellite.

2.5. Feature Engineering

Feature engineering is a critical step in the development of ML models, involving the
selection and transformation of relevant variables to enhance model performance. In this
study, key features were selected from the Sentinel-5P satellite data and ERA5 meteorolog-
ical data based on the Pearson correlation coefficient for ground-level atmospheric NO2
measurements at the time of passage of the satellite. These features included NO2 column
density from Sentinel-5P, surface temperature, wind speed and direction, humidity, surface
pressure, precipitation, and ABLH from ERA5.

Table 1 presents the Pearson correlation coefficients for ground-level atmospheric NO2.
The first column lists the variable being measured, either Sentinel-5P or ERA5 meteoro-
logical data. The second column displays the Pearson correlation coefficient between this
variable’s average values across the MCM and the ground average NO2 measurements.
The third column shows the Pearson correlation coefficient for the same variables but for
the MAMC. As indicated in the table, the ERA5 meteorological variables and Sentinel-5P
data generally exhibit lower correlations with ground-level NO2 measurements in MAMC
compared to MCM. This suggests that the relationship between these variables and NO2
levels varies significantly between the two regions, possibly due to differing environmental
and atmospheric conditions. Even though the correlations for the MAMC are lower than
those for the MCM, we can observe that the selected variables are still the ones with the
strongest Pearson correlation coefficient.
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In order to reduce the number of variables and improve model performance, we
originally decided to use the Pearson correlation coefficient. We chose values with a
correlation higher than 0.5 as an absolute value. Although the ML model was not retrained
with the MAMC data, this information can be useful for analysing the results and explaining
possible behaviours. By taking these points in mind, the following variables were the ones
used to train the original model on the MCM:

• Ground NO2
• Satellite NO2
• Current Temp Celsius
• Current Surface Net Solar Radiation
• Current Surface Pressure
• Previous Temp Celsius
• Previous Surface Net Solar Radiation

2.6. Model Training and Validation

Originally, the MCM dataset was divided into training and validation sets using an
80–20 split. This was carried out in two ways: chronologically (with data from 2019 to
2022 used for training and data from 2023 used for validation) and randomly. As seen in
our previous work, the method that had the best results was random splitting. For our
model to be appropriately evaluated in the MAMC, we used the same testing dates as in the
MCM, evenly distributed across the testing period. Moreover, we applied normalisation
to ensure that the models were not affected by the different scales of the input features.
This involved standardising each feature to have zero mean and unit variance, which is
particularly important for models such as SVR and neural networks that are sensitive to
the scale of input data.

Based on the findings presented in Table 1, which indicate a strong correlation between
ABLH and the model output (greater than 0.5 for the MCM), we decided to enhance the
original model by incorporating data from the ABLH of ERA5 in our retraining process.

TimeGPT

Built on a transformer-based structure, TimeGPT (https://docs.nixtla.io) primarily
focuses on predicting future time steps based on historical data. A key feature is a self-
attention mechanism, enabling the model to weigh the importance of different time steps
in the input sequence, which helps capture the long-range dependencies common in time
series data [13,28].

The model undergoes two-phase training: pretraining and fine-tuning. In pretraining,
TimeGPT learns generic temporal patterns from a large dataset of diverse time series data.
Fine-tuning adapts the model to the unique characteristics of the target data, enhancing
forecasting accuracy. Time embeddings encode temporal information such as time of day,
day of the week, and seasonality, providing context for understanding temporal patterns.
The model also uses covariates, such as economic indicators or weather conditions, which
may influence the target variable [13,28].

The versatility of TimeGPT allows it to be used across various domains that require
accurate time series forecasting. For instance, meteorological departments can use TimeGPT
to forecast weather, temperature, and precipitation based on historical data. It can aid in
natural disaster prediction by forecasting events such as hurricanes and floods. In health-
care, TimeGPT can predict disease outbreaks by analysing temporal patterns in health
data [13,28].

In our study on NO2 concentrations in the MAMC, TimeGPT can significantly enhance
forecasting accuracy. The integration involves collecting historical NO2 measurements,
meteorological data (temperature, humidity, and wind speed), and satellite data from
Sentinel-5P as additional covariates. Fine-tuning adapts the model to local temporal
patterns and trends, improving its forecasting performance. Once trained, TimeGPT can
estimate ground-level atmospheric NO2 concentrations.

https://docs.nixtla.io
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3. Results and Discussion

As stated in Section 1, the first phase of this work consisted of testing and validating
the model trained using only data from the MCM from 1 January 2019 to 27 September 2022.
The features used for the training of this model were Satellite NO2, Current Temp Celsius,
Current Surface Net Solar Radiation, Current Surface Pressure, Previous Temp Celsius,
and Previous Surface Net Solar Radiation. The model that had the best performance was
a combination of multi-layer preceptor regressor and support vector regressor by using
Scikit-Learn (https://scikit-learn.org/).

Columns 1 and 2 of Tables 2 and 3 show the NRMSE for the MCM and for the MAMC
using the original model. As expected, the base model performs better in the Milano area
than in the MAMC. The reason for this is that (as mentioned in Section 2.6) the model was
trained exclusively with data from the MCM area. Even though the NRMSE of the MAMC
was higher than that of the MCM, the values are lower than those of the standard deviation
(more than 15% lower). This indicates that even if the atmospheric and topographical
conditions and the ground-level measurement sensors are different between these two
urban areas, the results are still within an acceptable range.

Table 2. NRMSE (%) obtained for the atmospheric NO2 ground-level estimation for each of the MCM
sensor locations.

Sensor ID NRMSE Original Model (%) NRMSE Retrained Model (%)

5504 59.90 65.06
5507 46.00 43.32
5517 50.52 69.04
5520 75.02 80.28
5531 52.42 49.86
5534 52.51 55.76
5547 45.92 38.54
5548 63.68 73.87
5549 50.97 49.35
5554 46.36 45.47
5609 57.35 61.38
9999 79.31 84.04

10,279 47.01 42.12

Mean 60.76 57.75

Table 3. NRMSE (%) obtained for the atmospheric NO2 ground-level estimation for each of the
MAMC sensor locations.

Sensor ID NRMSE Original Model (%) NRMSE Retrained Model (%)

ATI 122.33 90.59
BJU 89.70 89.91

CAM 93.94 94.72
CCA 87.30 89.64
CUA 102.85 96.94
CUT 121.62 100.23
FAC 109.46 96.28
FAR 84.47 86.35

GAM 88.84 100.75
IZT 99.86 99.46

Mean 84.47 86.35

Additionally, in the third column of Tables 2 and 3, we observe the NRMSE results for
the retrained model. The retrained model changes from the original in the sense that it was
trained with the ABLH and considers the years from 2019 to 2022 fully. This means that
the dataset now includes an additional variable with a high correlation with ground-level

https://scikit-learn.org/
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NO2 for the MCM. Although some of the stations have a lower NRMSE compared to the
original model, integrating the ABLH into our model does not contribute to lowering the
general error of the estimations.

Due to the negligible or nonexistent improvement observed with the retrained model,
we decided to utilise only the original model for the subsequent results. Figure 7 illustrates
the time series plots of the model estimations versus the actual ground truth measurements.
In blue, we can observe the ground measurements provided by the network testing dataset
of SIMAT, and in orange, we can see the estimations produced by our trained model for the
same dates. Consistent with previous studies [8], the overall trend in the estimation plots
closely mirrors that of the ground measurements. However, the largest errors were observed
on days with peak values, which proved more challenging to estimate accurately. This
pattern is also evident in the estimations produced by the MCM, where certain regions of the
plots show an underestimation by the model. This underestimation is particularly present
during periods when ground-level NO2 concentrations peak, as previously mentioned.

Figure 7. Original base model estimations for the MAMC at the time of passage of the satellite versus
ground truth at the time of passage of the satellite.
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The consistency in the results was also confirmed by the correlation between the
ground truth and the model’s estimation. These have an average Pearson correlation
coefficient of 0.55, a trend which can also be observed in Figure 8.

Figure 8. Scatter plot of NO2 ground-level measurements from SIMAT and the model’s estimations.

Land use delineates the activities and constructions on a given piece of land, identify-
ing the types of communities, environments, or settlements that are established. It includes
human efforts to exploit and adapt the landscape for various purposes. Consequently, land-
use change reflects the transformation of the natural landscape driven by human activities,
highlighting the land’s role and function in socio-economic contexts. This concept is often
utilised in mapping to classify land types and gain a better understanding of phenomena
occurring in specific urban areas. In our study, land-use classification aids in explaining
the behaviour of estimations at each ground station according to the type of activities
developed in a specific location of a city. For our work, we used the Global Intra-Urban
Land Use classification [29]. The following categories are proposed by this work:

• Open Space: Includes public open areas, vacant land, and water bodies. These
areas are designated for recreation or conservation or remain undeveloped, offering
ecological benefits and leisure opportunities.

• Non-residential Areas: Encompasses commercial, office, industrial, civic, and trans-
portation hubs and networks other than roads. These zones are utilised for business
activities, industrial operations, public services, and transport infrastructure.

• Atomistic Settlements: Areas developed without formal planning, featuring irregular
layouts and non-uniform parcel sizes and road widths. These areas evolved organically
over time.

• Informal Land Subdivision: Areas with informally planned layouts marked by visible
but inconsistent infrastructure, variable parcel sizes, and road widths. These areas
often lack formal approval and standardised infrastructure.
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• Formal Land Subdivisions: Areas planned with municipal approval, showcasing con-
sistent infrastructure quality, standardised parcel sizes, and road widths. These zones
adhere to municipal regulations and include paved roads, streetlights, and sidewalks.

• Housing Projects: Developments where land subdivision and home construction
follow a unified plan, resulting in similar structures and layouts. These projects range
from large apartment complexes to uniform suburban housing, typically developed
by a single entity.

Figure 9 displays the location of each station and the assigned land-use category.
The map also distinguishes stations with a mean RMSE lower than the general median
in blue and those with a mean RMSE higher than the general median in red. Contrary
to expectations, land use in this context does not clarify the magnitude of error in the
estimations. Instead, it reveals that stations with the lowest error are situated in the most
urbanised and central parts of the city, where traffic intensity is higher. This suggests that
the model performs better at estimating NO2 concentrations in densely populated urban
scenarios or high-traffic roads. This suggests that the model is more effective at estimating
concentrations at source locations than in areas with significant NO2 transport. This
conclusion is supported by the correlation between wind speed, wind direction, and NO2
concentrations (Table 1), indicating that wind has less influence on the results. This same
effect can be observed in previous studies [7].

Figure 9. MAMC stations with the type of land-use and colour coding for the global median for the
time of passage of the satellite.
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In order to ensure that the estimations align closely with the ground truth data, we
performed a statistical comparison of their density distributions. We employed a density
distribution comparison technique, visualised in Figure 10. This figure illustrates the
relationship between the two sets of data points. Ideally, if the estimations and the ground
truth are statistically similar, the points in the Q–Q plot should lie along a 45-degree
reference line. In our analysis, the Q–Q plot shows an almost linear relationship, indicating
that the two distributions are similar. This linearity implies that the estimations do not just
approximate the ground truth at a general level but match closely across the entire range of
values. Such a result confirms that our estimation model is robust and capable of accurately
reflecting real-world NO2 concentrations. Moreover, this analysis provides confidence
in the model’s predictive capabilities, as the statistical similarity between the estimated
and actual data suggests that the model can generalise well to new data. This consistency
is essential for applications in air quality monitoring and forecasting, where reliable and
precise data are necessary for informed decision-making and policy development.

Figure 10. Quantile–quantile plots, comparing the data distribution of the ML model estimation
against the ground truth. The blue dots correspond to one quantile of the first distribution against
the same quantile of the second distribution. The red line is used as a reference to represent an ideal
linear relationship between the distributions.

Finally, we compared the performance of our original model to TimeGPT (Section 2.6).
Tables 4 and 5 show the comparison between our model (column 2) and that one using
TimeGPT (column 3). As expected, it can be observed that the error for the TimeGPT
model is significantly larger than our model. A possible explanation is that our model was
specifically trained to estimate NO2 ground-level atmospheric concentrations at the time of
the passage of the satellite. In contrast, TimeGPT was pretrained using a large amount of
data and then adjusted to our model. This means that our model is more specialised in our
study of interest.

It is also important to highlight that, at the moment, TimeGPT has the possibility
to perform estimations using multiple variables. Nevertheless, it has some restrictions.
The most significant limitation that we found when using this model is that the data need
to be continuous with no time gaps. By eliminating these time gaps, the data partially loses
its seasonal behaviour. Additionally, TimeGPT requires that all the testing data sensors
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have the same amount of dates. Both of these constraints make the study lose its seasonality
(as previously mentioned) and reduce the amount of data points for the testing period.

Table 4. NRMSE (%) obtained by using the original model and the TimeGPT model for the estimations
in the MCM.

Sensor ID NRMSE Original Model (%) NRMSE TimeGPT Model (%)

5504 59.90 152.10
5507 46.00 167.43
5517 50.52 189.44
5520 75.02 151.95
5531 52.42 178.14
5534 52.51 181.86
5547 45.92 195.29
5548 63.68 148.91
5549 50.97 138.05
5554 46.36 193.24
5609 57.35 185.09
9999 79.31 231.93

10,279 47.01 181.52

Mean 60.76 176.53

Table 5. NRMSE (%) obtained by using the original model and the TimeGPT model for the estimations
in the MAMC.

Sensor ID NRMSE Original Model (%) NRMSE TimeGPT Model (%)

ATI 122.33 139.48
BJU 89.70 175.77

CAM 93.94 167.63
CCA 87.30 141.53
CUA 102.85 249.34
CUT 121.62 142.31
FAC 109.46 202.03
FAR 84.47 141.51

GAM 88.84 174.46
IZT 99.86 134.27

Mean 84.47 166.83

A critical review of the factors influencing NO2 concentrations reveals the importance
of various meteorological and environmental variables. Temperature and solar radiation are
particularly significant. It can be assumed that they influence the dispersion and transport
of NO2 across different regions of the study area. Temperature also plays a vital role, as it
can affect the rate of chemical reactions in the atmosphere, including the formation and
degradation of NO2. Wind typically leads to the dispersion of pollutants. Wind directions
can carry NO2 from emission sources to other areas, influencing the spatial distribution.
Moreover, net solar radiation affects photochemical reactions that can alter NO2 levels
throughout the day, particularly in urban environments where solar exposure varies due to
building shading and other urban features.

In addition to meteorological factors, the topography and land use patterns signifi-
cantly impact NO2 distribution. On the one hand, areas with high traffic density, industrial
activities, and lower elevations are prone to higher NO2 concentrations due to the accumu-
lation of emissions and limited dispersion. On the other hand, regions with more vegetation
or at higher altitudes may experience lower NO2 levels due to natural absorption and
dispersion processes. Our model accounts for these impact factors by incorporating a
range of covariates, including meteorological data and land use classifications, to enhance
the accuracy of NO2 concentration estimations. However, it is essential to consider that
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variations in these factors, especially in complex urban terrains such as the MAMC, may
introduce challenges in modelling that could need further refinement to fully capture their
influence on NO2 levels.

4. Conclusions

The research presented in this article provides a comprehensive analysis of ground-
level NO2 concentrations using ML and remote sensing data, with a specific focus on
the MAMC. Our study employed a model that was pretrained in previous works using
data from the MCM. This model uses Sentinel-5P satellite data and ERA5 data as input.
Ground-based measurements were used to evaluate the estimations. The integration of
these data sources allowed us to address the spatial and temporal limitations of traditional
ground-based monitoring systems, offering a more extensive and continuous approach to
air quality assessment.

Our findings demonstrate that the ML model we developed is capable of estimating
NO2 ground-level concentrations at the ground sensor locations at the time of the passage
of the satellite (from 13:00 to 15:00 local time). The model’s performance was evaluated
using several statistical metrics, including RMSE and NRMSE. Notably, the model was able
to capture the spatial variability of NO2 across different regions of the MAMC.

One of the key insights from our analysis is the significant influence of meteorological
factors on NO2 concentrations. Parameters such as temperature, wind speed, and net
solar radiation were found to be crucial in determining NO2 dispersion and concentration
levels. This underscores the importance of incorporating meteorological data into air
quality models to enhance their predictive capabilities. Our study also revealed that
NO2 estimations are notably better in regions with dense traffic and industrial activities,
corroborating previous findings from previous works.

The temporal analysis of NO2 concentrations provided valuable insights into the
di-urnal and seasonal patterns of pollution. We observed that seasonal variations indicated
higher NO2 concentrations during the colder months, likely due to temperature inversions
that trap pollutants near the ground.

Our study highlighted the potential of using remote sensing data for air quality mon-
itoring in regions with limited ground-based infrastructure. The Sentinel-5P satellite, in
combination with the ERA5 reanalysis model, proved to be an effective tool for estimating
NO2 data. The open accessibility of the data offers a valuable resource for researchers and
policymakers in low- and middle-income countries, where financial and technical con-
straints often limit the implementation of comprehensive air quality monitoring networks.

In conclusion, this research demonstrates the efficacy of combining ML with remote
sensing data to estimate ground-level atmospheric NO2 concentrations. Our model pro-
vides a scalable and cost-effective solution for monitoring air quality, particularly in urban
areas with significant pollution challenges. The insights gained from this study can inform
the development of more effective air quality management strategies and contribute to the
broader efforts of mitigating the adverse health and environmental impacts of atmospheric
pollution. Future work should focus on further refining the model and exploring its appli-
cation to other pollutants and regions to enhance our understanding of urban air quality
dynamics and support global efforts in combating air pollution.
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