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Abstract: Land subsidence caused by human engineering activities is a serious problem worldwide.
We selected Qian’an County as the study area to explore the evolution of land subsidence and
predict its deformation trend. This study utilized synthetic aperture radar interferometry (InSAR)
technology to process 64 Sentinel-1 data covering the area, and high-precision and high-resolution
surface deformation data from January 2017 to December 2021 were obtained to analyze the deforma-
tion characteristics and evolution of land subsidence. Then, land subsidence was predicted using
the intelligence neural network theory, machine learning methods, time-series prediction models,
dynamic data processing techniques, and engineering geology of ground subsidence. This study
developed three time-series prediction models: a support vector regression (SVR), a Holt Exponential
Smoothing (Holt) model, and multi-layer perceptron (MLP) models. A time-series prediction analysis
was conducted using the surface deformation data of the subsidence funnel area of Zhouzi Village,
Qian’an County. In addition, the advantages and disadvantages of the three models were compared
and analyzed. The results show that the three developed time-series data prediction models can
effectively capture the time-series-related characteristics of surface deformation in the study area.
The SVR and Holt models are suitable for analyzing fewer external interference factors and shorter
periods, while the MLP model has high accuracy and universality, making it suitable for predicting
both short-term and long-term surface deformation. Ultimately, our results are valuable for further
research on land subsidence prediction.

Keywords: land subsidence; InSAR; prediction; SVR; HOLT; MLP

1. Introduction

Land subsidence caused by human activities is a serious problem worldwide [1–3], and
it is crucial to slow down severe cases (subsidence rate > 3 cm/year) [4]. Land subsidence
is primarily caused by the excessive extraction of groundwater from aquifers, leading to
water depletion [5,6]. The over-exploitation of groundwater beyond natural recharge limits
can result in various disasters, including lowered groundwater levels, seawater intrusion,
deteriorated groundwater quality, land subsidence, poor drainage, and flooding [7,8].

To address the key issues of evaluating and predicting land subsidence, numerous
studies have been conducted and can be categorized into two main types [1]: (1) those
focused on the physical mechanism of land subsidence, primarily surface subsidence
caused by resource exploitation; (2) those that establish fitting mathematical models to
predict subsidence trends using extensive measured data. Studies of the first category
estimate subsidence by simulating physical evolution processes using methods such as
the finite element [9,10], difference [11], and numerical analysis methods based on Biot’s
consolidation theory [12,13]. Models of the second category include the logistic curve
equation [14] and the Weibull [15] and hyperbolic [16] models. However, these models

Remote Sens. 2024, 16, 3345. https://doi.org/10.3390/rs16173345 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs16173345
https://doi.org/10.3390/rs16173345
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://doi.org/10.3390/rs16173345
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs16173345?type=check_update&version=2


Remote Sens. 2024, 16, 3345 2 of 17

have limitations in practical application since they cannot accurately reflect the entire land
subsidence process.

Theoretical analysis and model tests are important for studying land subsidence
mechanisms [17]. Physical prediction models, which incorporate factors influencing land
subsidence, simulate the subsidence process and effectively explain its mechanisms [18].
However, these models require extensive hydrological data, which limits their applica-
bility [19]. In contrast, mathematical prediction models use mathematical functions to
represent the statistical characteristics of historical land subsidence [20]. These models
have a broader range of applications than physical prediction models [21,22]. However,
when land subsidence values vary widely, the prediction performance of mathematical
models is low [23]. This is because mathematical models cannot explain the underlying
mechanisms of land subsidence.

With the development of artificial intelligence, machine learning-based models for
predicting land subsidence can combine the strengths of both physical and mathematical
models while overcoming their limitations [24–26] and provide more reliable prediction
results [27–30]. Chen et al. [31] used a random forest (RF) algorithm and geographical
detector (GD) technology to quantitatively analyze the impact of different aquifers on land
subsidence in 2020. This method combines the advantages of machine learning and the
characteristics of geospatial data, providing a new perspective on the complex relationship
between groundwater levels and land subsidence. Rajabi et al. [32] established a numerical
model in 2018 to assess the impact of aquifer changes on land subsidence in the Aliabad
plain, Iran. Ali et al. [33] used two regression estimation methods with weighted land
subsidence characteristics to predict land subsidence in Taiwan in 2020. Ding et al. [34]
analyzed and predicted land subsidence by establishing a linear engineering settlement
numerical model in 2020. Although numerical models may have some uncertainties when
simulating the settlement process in real-world engineering environments, they still pro-
vide a valuable tool for understanding and predicting land subsidence. Among machine
learning methods, the BP neural network (BPNN) is effective for quantitatively predicting
the nonlinear relationship between land subsidence and groundwater levels [35,36]. Wang
et al. [37] studied the thermal conductivity characteristics of different soil types and dis-
covered that the thermal conductivity and resistivity of soil are nonlinear when saturated.
They utilized the MLP neural network’s ability to effectively handle nonlinear data to
predict the soil’s thermal resistance coefficient. Huang et al. [38] proposed that the factors
influencing agricultural droughts are both large in volume and nonlinear via agricultural
drought monitoring, prediction, and risk assessment. They also used deep learning com-
bined with information fusion to predict nonlinear data, further improving the accuracy
of regional agricultural drought monitoring and prediction. However, adjusting the algo-
rithm’s parameters is cumbersome, and the calculations are large and time-consuming. The
random forest (RF) algorithm [39,40], as an integrated algorithm, performs well with its
default parameters. This makes it more efficient and practical for analyzing the relationship
between land subsidence and groundwater level.

However, existing prediction models and methods ignore the impact of the non-
stationary spatiotemporal relationship between influencing factors and cumulative ground
subsidence, leading to poor accuracy in predicting ground subsidence deformation. Ma-
soud M. et al. [41] used PMWIN5.3 (MODFLOW for Windows) to develop a numerical
simulation for characterizing ground subsidence in the southwest plain of Tehran and
predicted its trend until 2018. Yonghao Yuan et al. [30] proposed a geographical and
time-weighted regression method combining long short-term memory (LSTM) with a mul-
tivariate approach and an attention mechanism (GTWR-LSTMm-AM) to accurately predict
ground subsidence over time. Although time-series data prediction is widely applicable,
its accuracy can be limited by the amount of available data [42,43].

This study used SBAS-InSAR to extract surface deformation characteristics from
Sentinel-1 images covering the study area. This approach relies on synthetic aperture
radar to provide high-precision temporal and spatial resolution measurements of regional
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deformation. With a sufficient volume of Sentinel-1 data, subsidence information from
overlapping areas was processed and then interpolated for use in training and learning
prediction models. We innovatively combined theories from artificial intelligence neural
networks, machine learning methods, common time-series prediction models, measure-
ment adjustment and dynamic data processing, and engineering geological subsidence
to predict ground subsidence using InSAR with three different time-series models. Af-
ter analyzing the predicted deformation, we further evaluated the errors and practical
effectiveness of these three models in predicting surface deformation.

2. Study Area

Qian’an County is located northwest of Jilin Province (Figure 1a,b) and west of Songyuan
City, with a north latitude of 44◦37′47′′–45◦18′08′′ and east longitude of 123◦21′16′′–124◦22′50′′.
It is also in the middle of the Yuechi fault depression basin, which is a subsidence area
from the Mesozoic Era, with an altitude of 120 m–187.5 m; the terrain gradually rises from
the northeast to southwest, with prominent alluvial and lacustrine plains from sediment
accumulation. The area is also in the center of the Songliao depression and is characterized
by a graben formed during the Hercynian movement, on which a thick layer of Cretaceous
strata is deposited. Subsequently, the basal differential movement of the Yanshan movement
formed a west-dipping monocline structure and two anticlines, namely Dalai-Heidi Miao
Changyuan and Chaganor Changyuan. The entire area is extensively covered by quaternary
strata, with tertiary and Cretaceous strata underlain.
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Figure 1. Location and data: (a,b) location of the study area; (c) coverage of Sentinel-1 data.

The main lithologies in the study area are silty sub-clay, sandy loam, sub-clay, gravel-
bearing clay, mudstone, thin sandstone, and clastic rock. The surface water in this area
is scarce, and the groundwater types mainly include quaternary loose rock pore water
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and Neogene clastic rock fissure-pore water. The quaternary pore-confined water aquifer
is shallow in the south and southwest of the study area, about 20~50 m, and the rest is
mostly greater than 50 m; the aquifer mainly comprises sand and gravel of the Baitushan
Formation. The confined water of the tertiary clastic rocks is widely distributed throughout
the whole county, and the sandstone and conglomerate aquifer groups are overlapped
by two layers of the Da’an and Taikang Formations, which are stable in layer, large in
thickness, and sufficient in water richness. The pore fissures of the Taikang Formation are
confined to water, and this layer is generally developed in this area and buried 25~108 m
below the ground. The fissure-pore confined water of the Da’an Formation is widely
distributed throughout the whole area, the aquifer thickness is 18~53 m, and the confined
water level is generally 6.56~7.08 m from the ground. The water richness of aquifers varies
greatly. Qian’an County mainly takes the confined water of the quaternary and Neogene
Taikang Formation.

Qian’an County has a mid-temperate arid and semi-arid continental monsoon cli-
mate, with an average annual temperature of 4.6 ◦C. The highest and lowest recorded
temperatures are 37.8 ◦C and −34.8 ◦C, respectively. The average annual precipitation is
417 mm, with over 80% between June and September. The annual maximum and minimum
precipitations are 686 mm and 213.9 mm, respectively. The area is also subject to peak
accelerations within the range of 190l (equivalent to an intensity of VIII), making it one of
the few high-intensity seismic zones in northeastern China.

3. Data and Methods
3.1. Data

This study used data from two SLC Level 1 product images in the interferometric wide-
swath (IW) mode of the Sentinel-1 satellite to conduct model-related prediction analysis.
The image coverage is shown in Figure 1c, ranging from January 2017 to December 2021,
with a total of 64 periods. Detailed information on the used SAR images is presented
in Table 1. The average incident angles of the radar for the two images are 36.02◦ and
36.94◦. Sentinel-1 is a C-band satellite with a wavelength of 5.6 cm, an orbital altitude of
approximately 700 km, and a revisit period of 12 days. It has a large-scale spatial coverage
of approximately 250 km and a resolution of 5 m × 20 m. It can provide high-resolution
monitoring of global land and sea surfaces in a multi-polarized manner. These SAR data
are processed using SBAS-InSAR to obtain millimeter-level surface deformation data on
the study area.

Table 1. Basic information of Sentinel-1 images.

Satellite Sentinel-1

Orbital direction Descending
Product type SLC

Temporal coverage 28 January 2017–18 December 2021
Band C band

Wavelength 5.6 cm
Resolution 5 × 20 m

Average incident angle 36.02◦, 36.94◦

Polarization mode VV

3.2. Methodology

The townships under the jurisdiction of Qian’an County, Daya Livestock Farm, Scale
Characteristic Agricultural Park, and Tengzi Plantation Farm are densely distributed areas
of personnel and property, and many major production engineering facilities are distributed
here. Disasters such as surface structure destructions caused by land subsidence have
affected the safety of people’s lives and property, and land subsidence is a slow-changing
geological disaster that makes repair difficult and will continue to deform and damage
in the future, so it is necessary to predict land subsidence deformation in typical areas to
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reduce safety risks. The subsidence funnel of Zhouzi Village in Yuzi Township was selected
as the research object, and the SAR data were processed via SBAS-InSAR technology to
obtain the surface deformation information of the study area. Then, the deformation
data were preprocessed, with abnormal data eliminated after deviation calculation, and
Gaussian interpolation was applied to the data to ensure their applicability in the three
prediction models.

3.2.1. Data Preprocessing

(1) Abnormal Data Elimination

We used sliding windows to analyze distribution characteristics and detect and elim-
inate gross errors. A gross error is defined as an observation value where the difference
between the sliding window and the local median exceeds three times the scaled median
absolute deviation (SMAD), which is calculated as follows [44]:

SMAD = C · median(|Si − median(S)|), C = −1/(sqrt(2) · er f cinv(3/2)) (1)

(2) Gaussian interpolation processing of the time series data

The Gaussian interpolation algorithm uses prior information to approximate time-
series deformation data with a Gaussian distribution. It interpolates the second-largest
value in the neighboring cells using the maximum amplitude and value of the shape
variable in the distance cell. Let the probability density function of the Gaussian distribu-
tion [45] be

f (t) =
1√

2πσ2
exp(− (t − t0)

2

2σ2 ) (2)

where t0 and σ2 are the mean and variance of the Gaussian distribution, respectively.

3.2.2. Prediction Model

This study used support vector regression (SVR), Holt’s exponential smoothing (HOLT)
model (proposed by Holt in 1957), and multi-layer perceptrons (MLPs) to create land
subsidence prediction models. The principles of these methods are elucidated below.

(1) Support Vector Regression (SVR)

Support vector regression (SVR) is an algorithm designed for regression problems
using support vector methods [46]. Its basic principle involves training the model to
position data samples between two parallel lines, minimizing the total deviation of all
points from these lines. The goal is to find the maximum distance between these two lines,
which represents the optimal hyperplane for the SVR model.

For a given dataset {x1, x2, . . ., xn} and its corresponding actual values {y1, y2, . . ., yn},
the goal is to obtain a regression formula such that f (x) is as close to the actual y value
as possible. The weight vector w and offset B must be determined to achieve this, with
φ(x) representing a nonlinear mapping. By introducing relaxation variables, the ε - SVR
problem is transformed into a quadratic programming problem as follows:

min
1
2
∥w∥2 + C

m

∑
i=1

(ξi + ξ∗i ) (3)

s.t. f (xi)− yi ≤ ε + ξi (4)

yi − f (xi) ≤ ε + ξ∗i (5)

ξi ≥ 0, ξ∗i ≥ 0, i = 1, 2, · · · , m, (6)
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where C is the control penalty parameter; min 1
2∥w∥2 is the control item of a complex

function; ξi and ξ∗i are the relaxation variables; and ε is the insensitive loss factor. The dual
problem of SVM can be obtained by introducing a Lagrange multiplier as follows [47]:

max
α,α∗

m

∑
i=1

(α∗i − αi)yi −
m

∑
i=1

(α∗j + αj)ε −
1
2

m

∑
i=1

m

∑
j=1

(α∗i − αi)(α
∗
j − αj)K(xi, xj) (7)

where αi, α∗i , αj, and α∗j are Lagrange multipliers, and K(xi, xj) is the kernel function. The
regression function can be obtained by solving the above equation as follows:

f (x) =
m

∑
i=1

(α∗i − αi)K(xi, xj) + b (8)

(2) Holt’s Exponential Smoothing Model

Holt’s exponential smoothing model was proposed by Holt in 1957 [48]. It differs
from the general exponential smoothing model in that it directly smooths the trend data
and predicts the original time series. The model assumes that all known data impact the
predicted value. The short-term data have a greater impact on the predicted value, while
the long-term data have a smaller impact on the predicted value, and the impact decreases
in geometric progression, as demonstrated below [49]:

St = αXt + (1 − α)(St−1 + Tt−1) (9)

Tt = γ(St − St−1) + (1 − γ)Tt−1 (10)

Xt+m = St + mTt (11)

where St and St−1 represent the estimation of the trend; Tt and Tt−1 represent the estimation
of the trend increment of t and t − 1, respectively; a and γ are the smoothing parameters,
with 0 ≤ α ≤ 1 and 0 ≤ γ ≤ 1; Xt is the observation value of the t period; Xt + m is the
prediction value of the t + m period; and m is the prediction extrapolation period.

(3) Multi-layer perceptron (MLP) model

The multi-layer perceptron (MLP) model is a classic feedforward neural network
model [50]. The first layer of the MLP is the input layer, and the number of input layers is
the number of factors affecting the output parameters. The last layer is the output layer, and
the rest are hidden. The specific process is shown in Figure 2. The network uses neurons as
the smallest unit, and the output of the previous layer is the input of the next layer. The
input information of multiple nodes is finally nonlinearly mapped to a single output on the
output layer.
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Assuming the weight matrix Wk and intercept matrix Bk are given, consider an MLP
model with one hidden layer, which consists of an input layer, a hidden layer, and an
output layer. If the number of input parameters is n, and x represents the output node
value, the output sj value of the hidden layer can be calculated using Equation (12).

The value of j is taken from 1 to m, which represents the number of hidden layer nodes.
The final output o is determined using Equation (13).

sj = f (∑n
i=1 (ωij · xi)− bj) (12)

o = f (∑m
i=1 (ωi · st)− b) (13)

In Equation (13), there are m hidden nodes and one output node; the elements in the
weight matrix are represented as ωl. The bias matrix only contains one intercept term b.
The values of the weight matrix Wk and the intercept matrix Bk are large. The weight matrix
Wk and the intercept matrix Bk are crucial as they directly determine the final output o.
As the MLP structure becomes more complex, it involves more input parameters, hidden
nodes, and layers.

4. Results and Discussion
4.1. Deformation of Typical Subsidence

In this study, we focused on the settlement funnel of Zhouzi Village, which exhibited
typical settlement characteristics, for predictive research using surface deformation data
from Sentinel-1. The data span from January 2017 to December 2021. The time-series
cumulative settlement data for this location, based on Sentinel-1 observations, are shown in
Figure 3, with deformation rates ranging from −20 mm/y to 20 mm/y. Among them, over
80% of the points show a downward trend at locations far from the settlement center due
to the influence of vegetation growth and errors, but a few points showed upward trends.
Based on the monitoring results of InSAR, we conducted a detailed on-site investigation
in Zhouzi Village. The funnel showed typical subsidence characteristics, with obvious
ground fissures and surface subsidence phenomena, which were highly consistent with the
InSAR results, confirming the accuracy of the monitoring results, which can be used for
subsequent model prediction.
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Figure 3. The deformation rate and profile position of the land subsidence in Zhouzi Village.

The maximum settlement deformation rate of the settlement funnel in Zhouzi Village
ranges from −15 mm to −20 mm per year. The cumulative deformation results of Zhouzi
Village were interpolated, and the representative settlement results were selected as shown
in Figure 4.
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Figure 4. Time series cumulative deformation of Zhouzi Village land subsidence.

Over the past four years, from the perspective of value and range, the deformation of
the settlement funnel has gradually increased, and the maximum deformation has reached
−74.2 mm. We used time-series data from 1078 subsidence points within the subsidence
funnel to ensure the availability and universality of the ground subsidence prediction model.
These data were processed by removing anomalies and applying Gaussian interpolation
before making predictions. We selected six representative coherent points at the intersection
of two profiles in the following areas for detailed research: the edge of the mobile basin,
dangerous movement, and fault. Figure 3 presents two cross-sectional lines of the settlement
funnel and the locations of six typical coherent points. Figure 5a–c presents the time-series
deformation trend in six selected coherence points. The horizontal axes in Figure 5a,b
represent the distances from A to A ‘and B to B’ in the settling funnel, while the vertical
axes represent the deformation rate at each point on the profile line. The results indicate
significant differences in deformation at each point, with uneven deformation at each point.
The maximum deformation rate can reach about −17 mm/y, and the deformation degree
gradually increases from both sides of the basin to the middle, forming a funnel shape.
Figure 5c reflects the temporal deformation of six coherent points. From January 2017 to
May 2019, most of the coherent points are in the stage of uniform deformation, showing
small deformation. From May 2019 to December 2020, except for points 1 and 4, there
is a trend in accelerated deformation. Afterwards, the coherent points gradually became
uniformly deformed.

4.2. Time Series Deformation Prediction of the Overall Settlement Funnel Area

A total of 1078 settlement points were obtained in the settlement funnel of Zhouzi
Village via SBAS-InSAR processing, and each point covered 64 periods of surface subsi-
dence information. However, the 64-period data are not evenly distributed at the same
time interval, which hinders the operation of the prediction model. Therefore, Gaussian
interpolation is used to interpolate the deformation data into 256 periods with equal time
intervals. A total of 256 samples were obtained using the deformation information and
latitude and longitude coordinates of each point in each period as input values to form an
experimental sample. The top 80% were selected for the training set, and the bottom 20%
were used for validation analysis.
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Figure 5. Temporal deformation characteristics of typical profiles (a) A-A′ coherent points deforma-
tion velocity; (b) B-B′ coherent points deformation velocity; (c) accumulated deformation of selected
coherent points.

Both the predicted and measured deformation ranges from −74.2 mm to 58 mm
formed significant subsidence funnels in the central area. Groundwater extraction in
Qian’an County, mainly irrigated farmland and land subsidence characteristics, regularly
changed due to seasonal changes. During the rainy season, farmland is irrigated from
rainfall, which reduces groundwater withdrawal and replenishes the groundwater table,
resulting in a significant slowdown in the surface decline rate. During the rainfall period,
the surface rises significantly and sinks during the dry season. According to Figure 6, on
21 December 2021, the measured data show that the severely subsiding region (deformation
ranging from −74.2 mm to −37.9 mm) accounted for about 9.8% of the total study area, and
the deformation degree predicted from the SVR model was relatively small. The severely
subsiding region accounted for about 9.8% of the total study area, and a considerable
number of deformation points underwent significant subsidence, but this is not reflected in
Figure 6.
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Figure 6. Time series deformation prediction results based on three models.

The results of the HOLT model were opposite to those of the SVR model, predicting
a larger deformation degree over the entire area, with the severely subsiding region ac-
counting for about 15% of the total study area. Consequently, the HOLT model tends to
overestimate deformation, predicting severe subsidence even for many points that have
not actually undergone significant subsidence. As a result, areas that have not experienced
severe subsidence are also classified as such. Overall, the predicted severely subsiding
regions account for about 10% of the total study area. Compared with the previous two
models, the MLP model is closer to the measured results for both deformation degree
and range.

Figure 7 shows the Mean Absolute Error (MAE) values of the overall subsidence
leakage area as outputs via the decoding modules in the three prediction models. It also
displays the MAE distribution between the predicted deformation of the subsidence funnel
area in Zhouzi Village and the actual deformation data based on SBAS-InSAR.

On 20 March 2021, the MAE values of the three models were all less than 10. When
comparing the MAE values obtained from the three different models horizontally, the MLP
model had the smallest prediction error, followed by the HOLT model, and the SVR model
had the largest prediction error.

On 26 June 2021, the error values of the SVR and HOLT models increased significantly
compared to the previous period, with error values ranging from 10 to 20, accounting for
about half of the area. The error values of the MLP model showed almost no increase
compared to the previous period. The areas where the error values of the three models
increased rapidly were also mainly located in the areas with higher error values in the
previous period. Among the three models, MLP had the smallest prediction error.
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On 25 September 2021, the prediction errors of the SVR and HOLT models increased
further over time, with most regions reaching MAE values in the range of 10–20 and some
in the range of 20–30. The prediction errors of the MLP model increased slightly over time,
with a few regions reaching the range of 10–20. Regions that had higher errors continued
to show the fastest error growth rates for all three models. Overall, the MLP model still
had the lowest prediction errors compared to the other two models.

On 21 December 2021, the errors of the SVR and HOLT models increased further, while
the prediction error of the MLP model increased slightly; however, the error in most areas
was still less than 10.

The prediction error values of the three models present different distribution patterns
over time. With time, the prediction error values of the overall regional time-series surface
deformation data in Zhouzi Village gradually increased. The areas with faster error growth
rates were primarily those with higher initial prediction errors. The error growth rates
of the SVR and HOLT models were faster than the MLP model. As of 26 June 2021, the
predicted deformation values of the SVR and HOLT models still possessed a certain degree
of accuracy, but as the prediction time increased, the error gradually increased, and the
predicted deformation values of these two models presented a significant deviation from
the measured results. The short- and long-term prediction results of the MLP model are
more accurate. The predicted deformation values provided by the MLP model are more
accurate and suitable for predicting surface deformation in the study area.

4.3. Temporal Deformation Prediction of the Coherent Points

This section provides a detailed discussion of the predicted deformation and error
values for six representative coherent points selected from Section 4.1; the specific locations
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of the six points are shown in Figure 3. It also covers the time-series data, showing variations
in the predicted deformation values and errors throughout the prediction process, as shown
in Figure 8.
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The measured cumulative deformation from 26 December 2020, to 21 December 2021,
obtained via InSAR for six coherent points (points 1–6) ranges from 2 to 20 mm, −52
to −42 mm, −60 to −65 mm, 1 to −8 mm, −42 to −40 mm, and −80 to −62 mm. The
subsidence rate and deformation range of the coherent points at different locations selected
on different sections of the moving basin vary significantly.

The measured deformation values at points 1, 3, and 4 and the deformation values
predicted using the three prediction methods showed a trend in first increasing slightly
and then decreasing. The error values of the SVR and HOLT models gradually increased,
while the error values of the MLP model changed slightly. The MLP model’s predictions
for deformation values at points 1, 3, and 4 closely matched the measured results. For
points 2 and 6, both the measured deformation values and those predicted using all three
models showed a downward linear trend. The deformation values predicted using the
three methods for point 2 were relatively close to the measured data, and the MLP model
provided predictions for point 6 that were the closest to the measured results.

At point 5, the measured deformation was much smaller than that predicted using the
HOLT and MLP models, with almost no actual deformation observed. The deformation
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predicted using the SVR model shows a downward linear trend. The error values of the
three models gradually increase, with the SVR model showing a faster growth rate, while
the HOLT and MLP models show a smaller change in error values. The HOLT and MLP
models predict deformation at point 5 in a time series that fits the measured results.

After comparing the measured results of these six typical coherent points with the
predicted time-series surface deformation values and analyzing the time-series variation
in error values, we found significant differences in the subsidence rates and deformation
ranges among the coherent points selected from different locations on various sections
of the moving basin. The performance of the three models in predicting the time-series
deformation at these six typical coherent points also varied. The deformation values at the
six typical coherent points predicted using the SVR and HOLT models generally presented
linear or simple function curve changes. For individual points with uneven subsidence
rates or irregular changes such as first rising and then subsiding, accurate predictions
cannot be made. The MLP model has higher accuracy in predicting nonlinear time-series
data based on the ability of multi-layer neural layers to extract complex features through
layer-by-layer connections.

4.4. Discussion

The error distribution obtained from the prediction models was analyzed. Over time,
the error values of the three prediction models for predicting surface deformation gradually
increased. However, the MLP model performed better than the other two models. For
longer time-series prediction, errors tend to accumulate as the prediction interval increases.
This phenomenon is because the error of each prediction step may affect subsequent
predictions, especially when using models like the SVR and HOLT models that rely on past
data for predictions. If the initial prediction is inaccurate, the error will be transmitted and
amplified in the time series. The MLP model extracts typical features of data not only by
relying solely on past data but also using a multi-layer neural network structure, in which
each neuron is connected to all neurons in the previous layer. This approach helps to better
capture the changing characteristics of time-series data and reduces error accumulation to
a certain extent.

The deformation predicted using the SVR and HOLT models generally shows a linear
or simple function curve change and has low accuracy for predicting nonlinear changes
in data. However, the MLP deep neural network has strong adaptability and mapping
capabilities for processing nonlinear data [51]. It can accurately predict time-series data
with uneven or irregular changes in the settlement rate.

The MLP neural network prediction model has better accuracy in the prediction
process of time-series data than traditional machine learning and exponential smoothing
prediction methods, mainly due to its nonlinear fitting ability, adaptability, flexibility, and
distributed computing advantages. The nonlinear fitting ability of neural networks is
reflected in their ability to learn complex nonlinear relationships and adapt to various data
patterns and rules. Traditional machine learning methods, such as SVR, may not be able
to capture nonlinear relationships in data, resulting in decreased prediction accuracy [52].
The adaptability and flexibility of neural networks lie in their ability to automatically adjust
network structures and parameters based on data characteristics without manual feature
extraction, simplifying the prediction process and reducing human error, thus making them
better suited for various prediction tasks and data patterns. The advantage of distributed
computing is reflected in the fact that neural networks often use large amounts of data
to train and tune models. In the era of big data, neural networks can make full use of
large-scale data for training, improving prediction accuracy [53,54].

The MLP model is well-suited for predicting time-series surface deformation in the
subsidence funnel of Zhouzi Village. It also shows reasonable accuracy in predicting time-
series surface deformation data for ground subsidence areas with similar mechanisms in
the region.
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4.5. Limitations and Future Work—Variations in External Factors

The current literature predominantly addresses static conditions and lacks a com-
prehensive assessment of how dynamic changes in external factors (climatic changes,
geological conditions, and human activities) affect model performance. The influence of
external factors on phenomena such as collapse is well-documented, as demonstrated in
our rainfall analyses in Section 4.2.

Based on the discussion in Section 4.4, we acknowledge that MLP has distinct advan-
tages in handling complex nonlinear relationships. The nonlinear characteristics of the data
become more pronounced with the inclusion of external factors. Although SVR excels in
managing high-dimensional data, its sensitivity to external factor variations is relatively
low and entails significant computational complexity. The Holt model, while effective for
linear trends, lacks the capacity to accommodate nonlinear and seasonal variations, which
limits its applicability in dynamic environments. Given MLP’s proficiency in addressing
complex nonlinear relationships, MLP is anticipated to maintain a performance edge over
the other models when external conditions vary, which is expected to have substantial
impacts. However, further research is required to empirically validate this expectation.
Addressing these limitations, future research should focus on the following areas:

Comprehensive Evaluation of External Factors: Future studies should incorporate
datasets that include a range of climatic conditions, geological variations, and human
activities. This will provide a more comprehensive evaluation of how different external
factors impact model performance. Introducing time-series and dynamic data to assess
the impact of changing external factors on model predictions will help to understand the
models’ adaptability to evolving conditions.

Comparative Evaluation: Future studies should conduct a thorough comparative
analysis of the SVR, MLP, and Holt models using new datasets and dynamic scenarios.
This will provide insights into model performance under different external conditions and
inform their practical application.

Integration Approaches: Future studies should explore the potential of integrating
multiple models, such as combining MLP with SVR, to leverage the strengths of different
approaches and enhance predictive accuracy. New predictive methodologies designed to
address complex external factor variations and meet the demands of long-term forecasting
should also be developed and tested. This will contribute to advancing the field and
improving predictive capabilities in the face of dynamic external conditions.

5. Conclusions

In this study, we developed three time-series prediction models: SVR, Holt, and MLP.
We conducted research on time-series surface deformation predictions for the settlement
funnel area in Zhouzi Village, Qian’an County, using surface deformation data from SBAS-
InSAR. The following conclusions are drawn:

(1) This paper introduces three time-series surface deformation prediction models—SVR,
Holt, and MLP—offering an alternative to traditional physical and mathematical
models. These models can directly predict without the need for complex physical
modeling or manual feature extraction. By comparing these models, we addressed the
limitations of each, improving their accuracy in predicting time-series deformation
data. This approach provides a new method for handling such prediction challenges.

(2) The proposed time-series data prediction models can also provide high-precision
predicted shape variables based on historical surface deformation monitoring data
without considering external factors, which is more practical and convenient than
other prediction models that need to consider external factors.

(3) The three time-series data prediction models developed in this study can effectively
capture the time-series correlation characteristics of surface deformation in the study
area. The SVR and Holt models are suitable for analyzing fewer external interfer-
ence factors and shorter periods, while the MLP model has higher accuracy and
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universality, making it more suitable for predicting short- and long-term time-series
surface deformation.

(4) This study verifies the feasibility of three time-series data prediction models for the
surface deformation prediction of the settlement funnel in Zhouzi Village, Qian’an
County. The results show that the MLP model achieved the best prediction results for
the entire region and individual coherent points among the three models, making it
better suited for studying land subsidence in this region.
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