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Abstract: The dynamic of rangelands results from complex interactions between vegetation, soil,
climate, and human activity. This scenario makes rangeland’s condition challenging to monitor, and
degradation assessment should be carefully considered when studying grazing pressures. In the
present work, we study the interaction of vegetation and soil moisture in semiarid rangelands using
vegetation and soil moisture indices. We aim to study the feasibility of using soil moisture negative
anomalies as a warning index for vegetation or agricultural drought. Two semiarid agricultural
regions were selected in Spain for this study: Los Vélez (Almería) and Bajo Aragón (Teruel). MODIS
images, with 250 m and 500 m spatial resolution, from 2002 to 2019, were acquired to calculate the
Vegetation Condition Index (VCI) and the Water Condition Index (WCI) based on the Normalised
Difference Vegetation Index (NDVI) and soil moisture component (W), respectively. The Optical
Trapezoid Model (OPTRAM) estimated this latter W index. From them, the anomaly (Z-score) for
each index was calculated, being ZVCI and ZWCI , respectively. The probability of coincidence of their
negative anomalies was calculated every 10 days (10-day periods). The results show that for specific
months, the ZWCI had a strong probability of informing in advance, where the negative ZVCI will
decrease. Soil moisture content and vegetation indices show more similar dynamics in the months
with lower temperatures (from autumn to spring). In these months, given the low temperatures,
precipitation leads to vegetation growth. In the following months, water availability depends on
evapotranspiration and vegetation type as the temperature rises and the precipitation falls. The
stronger relationship between vegetation and precipitation from autumn to the beginning of spring is
reflected in the feasibility of ZWCI to aid the prediction of ZVCI . During these months, using ZWCI as
a warning index is possible for both areas studied. Notably, November to the beginning of February
showed an average increase of 20–30% in the predictability of vegetation anomalies, knowing
moisture soil anomalies four lags in advance. We found other periods of relevant increment in the
predictability, such as March and April for Los Vélez, and from July to September for Bajo Aragón.

Keywords: soil moisture anomaly; vegetation condition anomaly; early warning index; drought
prevention

1. Introduction

Precipitation and temperature directly influence water balance, causing changes in
soil moisture (SM) regime, which, in turn, influences plant growth. Temperature also
directly affects plant phenology and growth. Thus, SM is widely recognised as a critical
parameter that links precipitation, temperature, evapotranspiration, and vegetation status.
The most common vegetation index to assess vegetation status is the Normalised Difference
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Vegetation Index (NDVI). Adegoke and Carleton [1] aimed to show the link between NDVI
and water soil content with different lags. In this study, stronger relations were obtained
with SM data that lagged by up to 8 weeks with respect to the vegetation index, implying
that SM may be a valuable predictor of warm season satellite-derived vegetation conditions.
Recently, Felegari et al. [2] showed that plant indices such as NDVI have a delayed response
to SM. In most cases, SM data and other meteorological characteristics strongly correlate
with these indices in a short period. In a related study, Sharma et al. [3] examined the trends
in MODIS/TERRA derived NDVI and its correlation with Land Surface Temperature (LST),
SM, and precipitation over Gautam Buddh Nagar (India), during the period 2005–2018.
The correlation between NDVI and LST was observed to be higher than the correlation of
NDVI with SM and precipitation.

The difference between surface soil layers and root-zone soil must be noted when
studying SM content [4], even though a strong correlation has been shown between these
layers [5,6]. Different responses of NDVI to SM content are found among distinct vegetation
types, especially between humid and arid or semiarid areas. These differences are due to
the disparities among these areas at root-zone soils and surface soil layers [1,7,8]. NDVI
has been shown to have strong links with root-zone SM and surface SM in grassland and
shrubland in semiarid regions [8–10].

Droughts are often divided into four major types: meteorological, agricultural, hydro-
logical, and socioeconomic. Meteorological drought is defined as a reduction of precipita-
tion. Agricultural drought occurs when plants do not have enough available water to meet
their requirements; therefore, this drought varies based on the vegetation type. Since this
is vegetation specific, some soil water deficits may affect vegetation differently. Typically,
there is a lag between soil water deficit and how this is reflected in the vegetation with
shorter or wider periods. Hydrological droughts occur when the water moving through
the ground is significantly reduced. Finally, socioeconomic droughts occur when a drought
affects a community’s supply of goods and services. These droughts are sequential in time,
increasing the complexity of their impacts and conflicts [11–14].

Remote sensing observation can monitor drought-related variables and assess their
effects and impacts from an ecosystem perspective [7]. Precipitation has been studied with
several indices [15,16], such as the Standardised Precipitation Index (SPI) [17], Effective
Drought Index (EDI) [18], and Percent Normal Precipitation Index (PNPI) [19]. Several
indices have been developed to estimate SM [20,21], such as the Standardised Soil Moisture
Index (SSI) [22], Soil Moisture Percentile (SMP) [21,23], and OPTRAM (OPtical TRapezoid
Model) [24,25]. Several works have shown that OPTRAM could be used to estimate SM
with reasonable accuracy at large scales [24–26] and at field scales with ground references
measurements [6,27,28].

As the drought types are sequential, an alarm index can be developed before more
damage is caused. Drought indicators represent different stages of the hydrological cy-
cle, such as precipitation or SM, and later impacts can be perceived in vegetation and
water stress. How each stage behaves depends on the particular vegetation or ecosystem.
Droughts cannot be avoided, but their impacts can be reduced by preparing for them. In
this respect, different combined indicators that present indices with warning thresholds
have been defined [22,29–33]. Early warning indices can provide a drought probability
that can be used as a management tool. A proactive approach can be taken in drought risk
management using different risk reduction instruments at different farm or government
levels. These instruments include insurance, irrigation schemes, and budget releases. De-
spite presenting different challenges, early warning systems have already been used in the
past [34,35]. Azhdari et al. [36] recently worked on a combined multivariate index named
the Joint Deficit Hydro-meteorological Index (JDHMI) to monitor hydro-meteorological
drought at a watershed scale. They estimated conditional probabilities to provide practical
information for forecasting drought conditions. Hao et al. [37] investigated the conditional
probability of vegetation decline under different climate conditions in a similar line of work.
Another related study was carried out by Ribeiro et al. [38]. They used a bivariate copula



Remote Sens. 2024, 16, 3369 3 of 19

approach to model joint probability distributions describing the amount of dependence
between drought conditions and crop yield anomalies. Recently, Sanz et al. [39] pointed
out that conditional probability could be applied to capture the causality between water
availability and vegetation anomalies.

The first goal of this research is to better understand the relationships between vege-
tation and SM content indices in semiarid rangelands as a complex agricultural dynamic
system. The second goal is to study the feasibility of using anomalies in SM (measured by
the ZWCI) as an advanced warning index to predict anomalies in the vegetation activity,
measured by the ZVCI . To accomplish these two goals, two semiarid rangelands were
selected in Spain, Los Vélez in Almería province and Bajo Aragón in Teruel province.

2. Material and Methods
2.1. Area of Study

An extensive area of rangelands was selected in the agricultural region of Los Velez, in
Almeria province, southeast of Spain (Figure 1A). This region presents a mountainous land-
scape with a slope from 1% to 14%, with regosols (Xerochrept) soils formed on limestones
and dolomites and a poorly developed horizons profile, finding a horizon C immediately
above horizon A [40].
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Figure 1. Map representing the selected pixels. In purple, the selected pixels of Los Vélez (A), and in
red, the pixels of Bajo Aragón (B).

Los Vélez has a Mediterranean climate (Bsk, according to Köppen classification). It
has average monthly temperatures ranging from 5.4 ◦C to 22.7 ◦C, and average yearly
precipitations between 330 and 390 mm [41]. In this area, 47% of the surface is dedicated to
crops, 31% is forestry, and 26% is scrub, pastures, and meadows. Brushlands Thymus sp. and
Rosmarinus sp. coexist with almond trees and cereal crops [42]. The area is characterised by
Brachypodietalia phoenicoidis grasses and its only alliance, Brachypodion phoenicoidis. These
are the more xerophytic and Mediterranean communities of the Festuco-Brometea class.

Bajo Aragón, in Teruel Province, is in the transitional area between the Iberian System
and the Ebro Valley (Figure 1B). The analysed pixels are mainly located in the southern part
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of the region above 800 m altitude, with complex relief and slopes between 5% and 30% [43].
In this area, 41% of the surface is dedicated to crops, 21% is forestry, and 38% is scrub, pas-
tures, and meadows. In the scrub landscape, repopulated pine forests and xeric grasslands
are present [44]. These grasses are dominated by creeping grasses and legumes, which
offer a compact and homogeneous physiognomic appearance bellowing to the alliances
described within the order Festuco-Poetalia ligulatae [45]. On dry soils, they correspond to
the Festuco-Brometea class, where Bromus erectus, Brachypodium phoenicoides, Avenula pratensis,
Anthyllis vulneraria, and Potentilla neumanniana, among others, are characteristic.

The soils are cambisols (Calciorthid) and regosols (Xerochrept) formed on limestone
and marl, with a more developed horizon profile: A-Bw-BC-C compared to Los Velez [46].
Bajo Aragón has a Mediterranean climate (Bsk, to Csa according to Köppen classification)
with average monthly temperatures between 0.8 ◦C and 29.8 ◦C and annual rainfall between
350 and 600 mm [47].

2.2. Data Collection

Tragsatec provided the rangeland pixel selection in collaboration with Entidad Na-
cional de Seguros Agrarios (ENESA). Tragsatec used the “Sistema de Información Ge-
ográfico de Parcelas Agrícolas” (SIGPAC) from “Fondo Español De Garantía Agraria”, and
the “Mapa Forestal Español” (MFE) [48]. Finally, 621 and 1952 pixels defined the Los Vélez
and Bajo Aragón areas, respectively. The NDVI was extracted from the product MOD09GQ
of the TERRA satellite and MYD09GQ of the AQUA satellite, which provide the reflectance
of the red and near-infrared bands with which the index was built. NDVI series from 2002
to 2019 for each pixel, with a temporal resolution of 10 days (10-days composite period)
and a spatial resolution of 250 m, were used in this study.

Shortwave infrared reflectance (SWIR, 2105–2155 nm) was collected from MOD09Q1.006
band 7 product from AppEEARS to calculate the Shortwave Transformed Reflectance
(STR) [49]. This product has a 500 m spatial resolution, lower than the one used for the
vegetation indices, but a higher spatial resolution was not available for this reflectance band.
This band’s temporal resolution is 8 days (8-days composite period). SWIR series started
from 2002 to 2019 to match the time series of NDVI corresponding to the pixel selection.

Daily meteorological data from the closest meteorological stations were also used [50].
Average temperature and accumulated precipitation were calculated every 10 days to
match the NDVI dates.

2.3. Estimation of Vegetation and Soil Moisture Content Indices

NDVI was used to calculate another vegetation index mainly used for vegetation
drought detection, the Vegetation Condition Index (VCI) [51]. This index was calculated
following Equation (1), where NDVI is each value of the time series and NDVImin and
NDVImax are their multiyear minimum and maximum, respectively, for every 10 days:

VCI =
NDVI − NDVImin

NDVImax − NDVImin
(1)

To estimate surface soil moisture, we used the Optimised TRapezoid Model [25]. It is
based on the linear physical relationship between SM and Shortwave infrared Transformed
Reflectance (STR) and is parameterised based on the pixel distribution within the STR-
NDVI space. The first step in OPTRAM model requires the STR, which was calculated
using Equation (2):

STR =
(1 − SWIR)2

2·SWIR
(2)

SWIR reflectance has the advantage that it does not significantly change with ambient
atmospheric conditions. This is especially important when the analysis must use a long
time series of soil moisture. Firstly, we converted the 8-days time STR series to 10-days
period series like with the NDVI and VCI. For every month with 4 values of this time
series, every two values were averaged to obtain 3 instead of 4. When a month had
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3 values, its values remained untouched. Secondly, to match the STR and NDVI spatially,
every NDVI pixel was given an STR value based on its centroid proximity. Therefore,
STR spatial resolution (500 m) was adapted to NDVI spatial resolution (250 m). After
building a dataset of time series and pixels, this was made for every pixel in all its time
series. We proceeded to calculate the trapezoidal space NDVI-STR (Figure 2). The pixels
corresponding to wet soil are located on the upper edge of the trapezoid (wet edge), and
the pixels corresponding to dry soil are located on the lower edge of the trapezoid (dry
edge). The soil moisture component (W) is normalised using the local minimum dry and
maximum wet soil moisture content, as presented in Equation (3):

Wi =
θi − θd
θw − θd

=
STRi − STRmini

STRmaxi − STRmini

(3)

where θi is the surface soil moisture at date i, θd is the local minimum dry soil moisture
content, θw is the local maximum wet soil moisture content, STRi is the transformed SWIR
reflection coefficient at date i, STRmini is the transformed reflectance of dry soil, and STRmaxi

is the transformed reflectance of wet soil. The dry and wet edges formed a theoretical
trapezoid between the STR and NDVI space, and they are defined as Equation (4):

STRmini = id + sdNDVIi
STRmaxi = iw + swNDVIi

(4)
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The parameters id and sd are the intercept and the slope of the dry (upper) edge, and
iw and sw are the intercept and the slope of the wet (lower) edge (Figure 2). Using these
parameters, W is calculated using Equation (5):

Wi =
STRi − id − sdNDVIi

idw − id + (s w − sd)NDVIi
(5)

Note that W depends on STR and ultimately from SWIR. NDVI is only a scale factor
to determine STRmini and STRmaxi . Even though there is a linear relationship between STR
and W (Equation (3)), this is not found between NDVI and W, as the dry and wet edges
are not parallel lines (Figure 2). A time-lagged cross-correlation analysis was performed to
check that W estimation does not impose a significant relation with NDVI that could bias
the estimation of the probabilities applied in this work.
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We took another step in calculating the Water Condition Index (WCI), submitting
the W to the same transformation NDVI had undergone to calculate VCI. Therefore, we
calculated the WCI using Equation (6):

WCI =
W − Wmin

Wmax − Wmin
(6)

where W is each value of the time series and Wmin and Wmax are, respectively, their
multiyear minimum and maximum for every 10 days.

For both WCI and VCI, anomaly values were calculated using a Z-score per each date
of the year (standardisation) as in Equation (7):

ZWCI =
WCI−µWCI

σWCI

ZVCI =
VCI−µVCI

σVCI

(7)

where µ is the yearly average and σ is the yearly standard deviation for each year’s date.
Any trend or seasonal variation is removed with a Z-score formula, highlighting only the
anomaly events.

2.4. Estimation of Probabilities of WCI and VCI Anomalies

The probabilities of surpassing different thresholds were calculated for WCI anoma-
lies (ZWCI) and VCI anomalies (ZVCI) every 10 days throughout the time series. Three
thresholds (−0.5, −0.7, and −1) were selected following the thresholds used for Standard
Precipitation Index (SPI) [17] and Standard Precipitation Evaporation Index (SPEI) [52],
indices commonly used for drought monitoring [53,54]. These thresholds were estab-
lished based on previous research for drought identification using the multi-thresholds run
theory [55,56].

Firstly, we calculated an estimation of the probability of negative ZVCI and negative
ZWCI at period i (every 10 days) for the given time series using Equation (8):

P(ZVCI < “th” at the period i )
P(ZWCI < “th” at the period i)

(8)

where “th” are the three different thresholds: −0.5, −0.7, and −1.0. For easier understand-
ing, this will be called “base probability”.

Secondly, an estimation of the conditional probability going through each threshold of
the ZVCI at the period i given a ZWCI below −0.3 at the same period i was also calculated
using Equation (9):

P(ZVCI < “th” at the period i | ZWCI < −0.3 at the same period i) (9)

where “th” are the three different thresholds: −0.5, −0.7, and −1.0. This probability
measures the correlation between SM and vegetation anomaly occurrences at the same
period. This probability will be called as “lag-0 conditional probability”.

Finally, an estimation of the conditional probability going through each threshold of
the ZVCI at the period i given a ZWCI below −0.3 four periods (lags) before was calculated
using Equation (10):

P(ZVCI < “th” at the period i | ZWCI
< −0.3 at the period i minus 4 periods or lags)

(10)

where “th” are the three different thresholds: −0.5, −0.7, and −1.0. This probability
measures the correlation between both anomalies with 4 lags of delay. This probability will
be named as “lag-4 conditional probability”.
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The percentual relative frequency was used for the estimation of both types of prob-
ability and, for clarity, percentual frequency notation (0–100%) will be used instead of
probabilities notation (0–1).

3. Results
3.1. Soil Moisture and Vegetation Indices

The NDVI and WCI series obtained in each place are shown in Figure 3. Both areas
show a different range of values, particularly in NDVI, as expected due to the different
characteristics described in Section 2.1.
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Bajo Aragón (B).

Los Velez’s NDVI series values range from 22 to 33. Meanwhile, those of Bajo Aragón
range from 32 to 45. Therefore, these values show the semiarid conditions in both areas.
Concerning their annual pattern, visual inspection points out differences that will be
quantified in the VCI series.

WCI series shows similarity in the range of values. Los Velez’s WCI series range from
0.04 to 0.61, and those of Bajo Aragón range from 0.04 to 0.48. The WCI annual pattern in
Los Velez is similar to that in Bajo Aragón.

Cross-correlation analysis (Figure 4) shows a significant correlation between WCI and
NDVI at the lags (from 0 to 4) used to estimate conditional probabilities.
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3.2. Water and Vegetation Condition Indices

Firstly, we studied the dynamics of VCI and WCI for Los Velez (Almería province)
and Bajo Aragón (Teruel province). Figure 5A shows the dynamic of the VCI for Loz
Vélez (green box plots). The vegetation activity, measured by VCI, increases from the
end of summer until the middle of November, then decreases until the middle of March
and increases again until the end of May. Therefore, VCI dynamics do not match the
seasons: a rise and a drop are observed during autumn, spring, and summer, while VCI
dynamics match better during winter. Figure 5A also shows the behaviour of the SM
content, measured by WCI (red box plots), during a year. The evolution of both indices
is very similar from the end of August to the middle of March. However, from March to
the end of May, WCI suffers a continuous downfall, unlike the VCI, which increases in
this period.

Figure 5B shows the dynamic of the VCI for Bajo Aragón (green box plots). In this case,
VCI also increases during the end of summer but extends to the beginning of December,
then decreases until the middle of March and increases again until the beginning of June.
For this area, VCI dynamics match better the seasons autumn, winter, and spring, while a
rise and a drop are observed during summer. Figure 5B also shows the dynamic of WCI
(red box plots) during a year. The evolution of both indices is very similar from the middle
of August to the middle of March. By contrast, from April to the beginning of June, WCI
suffers a continuous downfall, unlike the VCI that goes up in this period, with similar
behaviour to Los Vélez.

Following [57], four phases were proposed to analyse the vegetation and SM content
dynamics. The criterion used to delimit the phases was the slope change in the VCI median.
For Los Vélez, VCI and WCI have more similar dynamics in phases 1, 2, and 4. In phase
1, VCI increases due to vegetation activation after the summer. WCI also rises due to the
effect of moisture increments in the soil due to the beginning of rainfall. The maximum VCI
activity occurs at the end of phase 1 (the middle of November), while WCI peaks during
the middle of phase 2 (the end of January). The low temperatures in phase 2 (see Figure 6A)
cause a reduction in plant activity and a continuous decrease in the VCI graph during
this phase. When phase 3 begins, the temperature increases and the WCI graph decreases.
This pattern occurs because the most superficial layers of the soil are losing moisture. In
phase 3, precipitations are present (see Figure 6A), but temperature and evapotranspiration



Remote Sens. 2024, 16, 3369 9 of 19

play an essential role in superficial soil water content, obscuring the relationship between
precipitation and SM content [57,58]. The VCI graph has another peak at the end of phase
3 because of photosynthetic activity growth. In phase 4, both graphs decrease because of
high temperatures and low precipitation during this period of the year.
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For Bajo Aragón, VCI and WCI have dynamics similar to those in phases 1, 2, and 4, as
in Los Vélez. In phase 1, VCI and WCI increase due to vegetation activation and abundant
precipitations (see Figure 6B). The maximum VCI activity (the end of phase 1) is delayed
for two 10-day periods compared to Los Vélez. In contrast, the maximum WCI at the
beginning of phase 2 is advanced four 10-day periods compared to Los Vélez. It should be
noted that phase 1 in Bajo Aragón is more prolonged than in Los Vélez. Conversely, phase
2 in Los Vélez is longer than in Bajo Aragón. Phases 3 and 4 in Bajo Aragón are similar to
those in Los Vélez, with the same duration and time limits. The only difference is that, in
phase 3, the VCI maximum in Los Vélez is higher than in Bajo Aragón, probably due to
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the vegetation of the area had a better condition to grow because of high and prolonged
precipitation in phase 2 (see Figure 6A).
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Secondly, we studied the series of anomaly indices, ZVCI and ZWCI , averaged over
the two studied areas. In both plots of Figure 7, it can be observed that ZVCI series are
usually smoother than ZWCI series, which present a rougher profile with higher peaks. This
behaviour reveals that the vegetation response to environmental changes is slower than the
soil moisture response. In Figure 7A, ZVCI serie reflects the long periods of intense drought
suffered in Los Vélez the years 2004–2005, 2013–2014, and 2015–2016, when ZVCI reached
very low values, approximately −2.0. The drought periods in Bajo Aragón occurred in
2004, 2011–2012, and 2017 (Figure 7B).

For Los Vélez (Figure 8A), the probability of ZVCI to be below the first threshold (−0.5)
is high in two main periods: the first during the end of January and the whole of February
(with 35%), and the second during April and the beginning of May (with 40–45%). For the
threshold −0.7, the periods of high probability are similar to those of the −0.5 threshold,
although the probability values are lower than those obtained with the other threshold. On
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the other hand, the probability for ZVCI to be below −1.0 is kept relatively constant most
of the year, increasing approximately from 10% to 25% from September to October.
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For Bajo Aragón (Figure 8B), the probability for ZVCI to be below the thresholds −0.5
and −0.7 is relatively constant most of the year, although the probability values for the
threshold −0.7 are always lower than −0.5, especially in March. The probability for ZVCI
to surpass below −1.0 is especially low from December to March, when the values are
approximately between 5% and 10%.

A similar graphic, but for ZWCI , is presented in Figure 9. In Los Vélez (Figure 9A),
the base probabilities for the thresholds −0.5 and −0.7 show a similar pattern. In both
thresholds, the base probabilities are high for two main periods: the first from January to
February, and the second in June. For the threshold −0.5, the base probability in these two
periods is 35–40%. It can be observed that the base probability for the threshold −1.0 shows
more periods with 0% compared to ZVCI .

In Bajo Aragón (Figure 9B), the base probability for the threshold −0.5 is especially high
in October (45%), while for the threshold −0.7 it is not observed during any outstanding
period. However, for the probability of surpassing below the threshold −1.0, we find that
this is especially low in March, with values of 5%.

In addition to this, the probabilities of ZWCI and ZWCI for the different thresholds can
be compared with expected probabilities on standardised data. If the indices, ZWCI and
ZWCI , followed normal distributions, the probabilities would be P(Index < −0.5) = 0.309,
P(Index < −0.7) = 0.242, and P(Index < −1.0) = 0.159, which is not the case for the
majority for the 10-day periods.
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3.3. Relationship of VCI and WCI Anomalies

For each threshold (−0.5, −0.7, and −1.0), the base probability of ZVCI and two
conditional probabilities (lag-0 and lag-4) are shown in Figures 10–12.
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In Los Vélez, for all thresholds (Figures 10A, 11A and 12A), the lag-0 conditional
probability is higher than the base probabilities from September to April. Moreover, the lag-
4 conditional probability is higher than the 0-lag conditional probability from the middle
of November to April, except for February for the threshold of −0.5 and December for
the threshold of −1.0. Los Vélez shows high values in the lag-4 conditional probability
with minor anomalies (−0.5 and −0.7), often reaching from 50% to 65% of probability
from November to January (compared to an average of 20–30% of base probability). These
probabilities decrease when threshold −1.0 is used, reaching a maximum of 50% in the
middle of January. Although the lag-4 conditional probabilities are low for the threshold
−1.0, they remain above the base probability from October to April.

In Bajo Aragón (Figures 10, 11B and 12B), the periods where the lag-0 conditional
probability is higher than the base probability are not so well-defined as those in Los Vélez.
In fact, unlike in Los Velez, we find all the summers with lag-0 conditional probability higher
than the base probability for all the thresholds. Regarding lag-4 conditional probability, we
find a long period where the one is higher than the base probability for all the thresholds.
This period occurs from September to the beginning of February, with probability values
reaching 60–70%, approximately, during December and January, with smaller thresholds
(−0.5 and −0.7). For the rest of the year, we can observe some short alternating periods
where the lag-4 conditional probability is higher than the base probability, i.e., in May and
August for the threshold of −0.5 and March and August for the threshold of −0.7.
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4. Discussion

Figure 13 shows a comparison, for both areas, of the positive difference between the
lag-4 conditional probability and the base probability every 10 days of the year and for
the three different thresholds (A, B, and C). This Figure summarises the periods where the
knowledge of ZWCI increases the predictability of ZVCI four lags later compared to the
base probability.
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for both areas of study and the thresholds −0.5 (A), −0.7 (B), and −1.0 (C).

In Los Vélez, the lag-4 conditional probability is higher than the base probability from
October to April for all thresholds. On the contrary, in Bajo Aragón, this occurs from the
middle of July to the beginning of February. Therefore, we find two long periods where the
capability of predicting VCI anomalies could be increased in both areas. In Bajo Aragón,
this increase in prediction starts before, probably due to higher precipitation in June and
July than in Los Vélez.

For Los Vélez, the increment in predictability from the middle of November to the
beginning of February is evident when we consider low anomalies of VCI, i.e., for the
thresholds −0.5 and −0.7. The increment in these months reaches 25–35% in November and
December. On the other hand, the values range from 10% to 20% during March and April.
When we consider high anomalies of VCI, i.e., for the threshold −1.0, the predictability
decreases in all months, with values in the range from 5% to 20%. It should be noted that the
middle of January shows higher predictability values, over 30%, than the other thresholds.

In Bajo Aragón, we find higher positive differences in the same period than In Los
Vélez, i.e., from the middle of November to the beginning of February for the thresholds
−0.5 and −0.7. The increment in these months reaches 30–35% in January and the be-
ginning of February. By contrast, in Bajo Aragón, we find intermittent periods of high
predictability values during March (10–15%) and May (10–30%). The more outstanding
difference between both areas is the presence of higher predictability at the end of July,
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August, and September. In these periods, we have zero increase in predictability in Los
Velez but a 5–15% increase in Bajo Aragón. These values of positive differences persist in
August and September, even in the case of high anomalies of VCI, for the threshold of −1.0.

From October to January, precipitation is more or less abundant in both areas but is
consistent with low temperatures. Therefore, this could explain why the predictability
of vegetation anomalies using the SM content index is improved from November to the
beginning of February. When precipitation continues to fall, but temperatures begin
to rise, from February to the end of April, the predictability starts to decrease due to
temperature and evapotranspiration playing a major role in SM content [57–59]. In Los
Vélez, precipitation decreases strongly from May, and temperatures start to increase until
the end of summer. In these periods, the SM content does not give extra information about
anomalies in vegetation. By contrast, in Bajo Aragón, we find relatively high precipitation
until June and more precipitation than Los Vélez in July and August. This scenario
could explain why we have increments in predictability during August and September in
Bajo Aragón.

Early warning systems are being developed for famine, agricultural yield, and drought.
Recently, remote sensing has been used in this regard and is more commonly used for
rangeland monitoring. In this work, we merged remote sensing vegetation monitoring
with early warning indices, ZWCI , to inform managers and rangers [60,61] and showed
that early SM content anomalies can relevantly improve the predictability of vegetation
condition anomalies in some specific months.

5. Conclusions

SM content and vegetation indices show more similar dynamics in the months with
lower temperatures in both study areas, from autumn to the beginning of spring. In these
months, given the low temperatures, precipitation leads to vegetation growth. In the later
months, when the temperature rises, SM availability depends mainly on evapotranspiration
and vegetation type.

The stronger relationship between precipitation and vegetation from autumn to the
beginning of spring is reflected in the feasibility of ZWCI to aid the prediction of vegetation
anomalies ZVCI . During these months, using ZWCI as a warning index is possible for Los
Velez and Bajo Aragón. Both are considered semiarid rangelands.

Lag-4 conditional probability measures the probability of an anomaly of VCI occurring
when an anomaly of WCI has already happened four periods (10 days) before. When we
compared this probability with the base probability (the probability of an anomaly of VCI),
we detected some periods of the year where the knowledge of an anomaly of SM content
allowed us to increase the probability of the occurrence of an anomaly of vegetation.

The two study areas showed an increase of 10–35% in the predictability of vegetation
index anomalies ZVCI (thresholds −0.5 and −0.7) from November to the beginning of
February. Additionally, in Bajo Aragón, we also find an increase in the capability of
prediction from July to September due to more precipitation and lower temperatures
in June compared with Los Vélez. Therefore, we could increase the predictability of
anomalies of VCI in some specific periods if we detect anomalies in the WCI four 10-day
periods before.

ZVCI is one of the indices used to monitor vegetation growth anomalies. Additional
monitoring of the ZWCI index allows predicting VCI anomaly events in advance and
farmers to make early decisions about their rangelands.

This study presents several limitations, some due to remote sensing techniques and
others due to the limits of the areas of study. Temporal lengths and pixel resolution are
limited by satellite data availability, a common problem in remote sensing. Exploring
new satellite data with better temporal and spatial resolution could help to improve and
strengthen the conclusions of this study. Further research is needed to expand to other
areas, vegetations, and ecoregions, using different soil moisture approaches and more
climatic variables to understand vegetation dynamics.
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