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Abstract: With the increase in climate-change-related hazardous events alongside population con-
centration in urban centres, it is important to provide resilient cities with tools for understanding
and eventually preparing for such events. Machine learning (ML) and deep learning (DL) techniques
have increasingly been employed to model susceptibility of hazardous events. This study consists of
a systematic review of the ML/DL techniques applied to model the susceptibility of air pollution,
urban heat islands, floods, and landslides, with the aim of providing a comprehensive source of
reference both for techniques and modelling approaches. A total of 1454 articles published between
2020 and 2023 were systematically selected from the Scopus and Web of Science search engines
based on search queries and selection criteria. ML/DL techniques were extracted from the selected
articles and categorised using ad hoc classification. Consequently, a general approach for modelling
the susceptibility of hazardous events was consolidated, covering the data preprocessing, feature
selection, modelling, model interpretation, and susceptibility map validation, along with examples of
related global/continental data. The most frequently employed techniques across various hazards
include random forest, artificial neural networks, and support vector machines. This review also
provides, per hazard, the definition, data requirements, and insights into the ML/DL techniques
used, including examples of both state-of-the-art and novel modelling approaches.

Keywords: susceptibility modelling; hazard events; machine learning; deep learning; literature
review; air pollution; urban heat island; flood; landslide

1. Introduction

More than 3.3 billion people live in areas highly vulnerable to climate change, which
negatively impacts human health, infrastructure, overall well-being, and causes economic
losses [1]. In the decade from 2001 to 2010, the global area affected by heatwaves has
increased three times compared to the first decade of the 20th century [2]. Furthermore, nat-
ural disasters have caused higher losses in 2021 than in the two previous years, particularly
with record losses due to extreme flash flood events in Europe [3]. Resilience is the ability to
face and recover from the effects of hazardous events in an efficient manner by guaranteeing
the preservation, restoration, or improvement of essential services [4]. Among the Sustain-
able Development Goals (SDGs) proposed by the United Nations, SDG11 calls for inclusive,
safe, resilient, and sustainable cities and human settlements. A key part of resilience relies
on the tools to understand and prepare for the risks posed by hazardous events.

A hazard is a condition with the potential for damage, e.g., the potential of flooding
due to rainfall. Vulnerability refers to the conditions which make a location or asset likely to
be affected by a hazard, such as physical, social, economic, and environmental factors [5]. In
this context, risk can be defined as a hazardous event impacting an exposed asset, causing
consequences which depend on the vulnerability of the asset to that specific hazard [6]. On
the other hand, susceptibility is defined as the probability of a hazardous event happening
at a specific location. Given the historical occurrences of hazardous events, susceptibility
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to such events can be modelled by analysing the existing external factors which could
condition such occurrences, namely conditioning factors, e.g., meteorological or land cover
factors. These models can be later applied to locations without historical events to compute
their susceptibility towards a specific hazardous event.

The use of machine learning (ML) and deep learning (DL) techniques for the tasks of
susceptibility modelling and the forecasting of hazardous events has increased in recent
years due to the availability of environmental data and computational tools and resources.
ML and DL are possible approaches for these tasks among other approaches such as
traditional statistical methods, expert knowledge-based systems, and physically based
models. The annual scientific production of machine learning applied to climate change
risk assessment has been growing exponentially from 2000 to 2020 [7]. Geospatial big
data grow by at least 20% every year, including data in different formats and temporal
and spatial resolutions [8]. This growth accounts for the substantial contribution of the
community to the generation of data and the launch of new satellites for the monitoring of
different phenomena. An additional fact is the substantial increase in open source packages
(e.g., R, SciKit-Learn, and TensorFlow) and cloud computing platforms (e.g., Google Earth
Engine, Google Colab) [9] which allow for the fast implementation and computation of
ML/DL models. Therefore, this review focuses on the methodologies, data, and algorithms
used to model the susceptibility to hazardous events by means of ML/DL techniques.
This focus is due to the ability of these methods to capture temporal and spatial nonlinear
relationships and the increasing trend of publications on the matter.

In this paper, we propose a literature review to revise the state-of-the-art and novel
approaches related to the analyses and methodologies used for hazard susceptibility mod-
elling and mapping by means of ML/DL techniques, particularly those focused on the
hazards of air pollution, urban heat islands, floods, and landslides. The objective is to pro-
vide a reference point for the selection of modelling techniques and data in the production
of susceptibility maps for each hazard. The work was carried out within the framework
of the project HARMONIA (EU-Horizon 2020), which aims to provide stakeholders and
urban planners with a decision support system to improve urban resilience and mitigate
the effects of climate change.

The sections of this study are described as follows. Section 2, entitled “Background”,
defines the terminology used in the present manuscript and clarifies different concepts in
the areas of risk and ML/DL models. The methodology of the literature review procedure
is described in Section 3. Subsequently, the two following sections, Sections 4 and 5, are
devoted to the classification of the algorithms considered in this review and the description
of the feature selection methods. Afterwards, Section 6 regards the susceptibility mod-
elling of hazardous events and describes the general workflow and data insights shared
among the hazards considered in the present review. Subsequently, Sections 7–10 provide
specific information related to the definition, methodology, data acquisition, and insights
pertaining to the ML/DL algorithms for each of the four studied hazards. The last sections,
namely Sections 11 and 12, provide the conclusion and discussion. Furthermore, there
is an appendix containing the details of the ad hoc classification of ML/DL algorithms
implemented in the reviewed articles.

2. Background

This section is divided into two subsections. The first is concerned with the definitions
of hazard, susceptibility, risk, and other associated concepts. The second is concerned with
the concepts of machine learning, deep learning, the difference between them, and the
other methods considered in this review. The objective is to clarify the definitions and to
establish the wording that is used throughout the manuscript.
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2.1. Hazard, Susceptibility and Risk

Although the concepts of hazard, susceptibility, and risk are closely related, they differ
in terms of how they model the potential of hazardous events and their associated map
representations.

• Hazard is a condition which can potentially cause a consequence [10]. The materi-
alisation of a hazard is the occurrence of a hazardous event at a specific time and
location [6].

• Susceptibility models the tendency of the occurrence of hazardous events at a specific
location based on its physical and environmental characteristics [11]. The target vari-
able for susceptibility modelling is the occurrence (or non-occurrence) of a hazardous
event at a specific location.

• Risk measures the probability and severity of the negative impact on an asset [10].
The risk is the product of the hazard, the exposed assets, and the vulnerability of
the assets towards that hazard [6]. In this context, exposure refers to the presence of
infrastructure or a population at the event location, whilst vulnerability refers to how
an asset can be affected by the hazard considering the physical, social, economic, and
environmental factors [5].

The differences between these concepts are also reflected by their spatial representa-
tions. The definitions of the hazard, susceptibility, and risk maps are provided as follows:

• Hazard maps express the magnitude of the events and their frequency [6]. For ex-
ample, flood hazard maps provide the water depth, extent, and return period of
floods [11].

• Susceptibility maps depict the areas which are prone to the occurrence of hazardous
events. The susceptibility is provided quantitatively in terms of probability or qual-
itatively in terms of low, medium, or highly susceptible areas. The time frame of
susceptibility maps tends to not be considered [10].

• Risk maps show the product of the combination of the hazard, exposure, and vulnera-
bility maps. The parameters of the combination are customised to the case study.

This study focuses on susceptibility modelling and the production of susceptibil-
ity maps for the hazards of air pollution, urban heat island, flood, and landslide. The
term “hazard susceptibility mapping” refers to the susceptibility mapping of the four
aforementioned hazards.

2.2. Machine Learning, Deep Learning, and Other Methods

There are different approaches for hazard susceptibility modelling in the literature.
Some of the possibilities, among other methods, are expert-knowledge-based models,
physically based models, statistical methods, machine learning (ML), and more recently,
deep learning (DL) models [12]. These methods are defined in the context of susceptibility
mapping:

• Expert-knowledge-based models rely on questionnaires and the expert’s opinion [12].
• Physically based models are deterministic models which simulate the interactions

between different environmental variables. They provide a theoretical framework
integrating areas such as hydrology and geomorphology [13]. For example, for land-
slide susceptibility mapping, a physical model may integrate the soil characteristics,
slope gradient, and water density [14].

• Statistical methods are data-driven methods which analyse the relationships between
the previous occurrences of hazardous events and environmental variables to under-
stand the correlations among them. For example, statistical methods include frequency
ratio, weight of evidence, and analytical hierarchy process.

• Machine learning methods are also data-driven methods which rely on the same
relationship as statistical methods. However, ML models learn the characteristics of
the environmental variables associated with previous event occurrences to determine
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the probability of occurrence at unseen locations. This can be described as analytical
model building [15]. ML encompasses several subcategories, even deep learning.
In this context, ML includes regressions, decision trees, support vector machines,
ensembles, Bayesian-based classifiers and regressors, instance-based classifiers, and
artificial neural networks.

• Deep learning methods are part of ML. Deep learning methods are a branch of artificial
neural networks, specifically those with multiple hidden layers and specific processing
approaches [15]. These tend to perform better with respect to ’traditional’ ML [16],
due to their capacity to build even more complex relationships. DL includes convo-
lutional neural networks, recurrent neural networks, transformer neural networks,
autoencoders, and others.

Each of these approaches has its own limitations. Expert-based modelling tends to
be subjective, which could lead to biased results [12]. Physically based models provide
acceptable accuracy; however, their usage is limited to small areas of interest due to the need
for computational resources and precise geotechnical data [17,18]. Statistical methods rely
on certain assumptions about the data, such as linearity, which may limit their effectiveness
if the data are not well structured or do not fall into specific patterns. ML and DL models
are often ’black-box’ models which do not provide insights into the parameters which are
more important within the model structure. This limits the interpretability of these models,
in particular, DL models [15]. Furthermore, DL requires high-performance computational
resources with respect to traditional ML [15].

The advantage of ML and DL methods is their ability to construct complex relation-
ships from the training data, which results in outstanding accuracies and can be used in
large areas of interest. Less complex ML methods, such as linear regressions and decision
trees, are able to ascertain the importance of the environmental variables inside the model.
This is also the case for statistical models. In fact, statistical models tend to be used as an
initial step to understand the correlation between the dependent and independent variables.

3. Methodology

The procedure followed to conduct the literature review of hazard susceptibility
mapping using machine learning (ML) and deep learning (DL) techniques consisted of a
search of two scientific article indexing databases, the retrieval of articles, screening based
on inclusion/exclusion criteria, sorting the articles based on the number of citations, and
lastly, the extraction of relevant information from each article. The workflow is described
in detail in Figure 1.

The search was conducted in two search engines, Scopus (https://www.scopus.com/
accessed on 23 January 2024) and Web of Science (http://webofscience.com/ accessed
on 23 January 2024), considering articles from 2020 to 2023. Studies performing similar
literature reviews considered a longer time span, e.g., 1980–2021 [19], or 1992–2021 [9];
however, these only retrieved statistics on the number of articles and analyses of affiliations,
keywords, and methods. A deeper analysis was performed in this review, extracting the
ML/DL techniques used to model the susceptibility of the different hazards and other
attributes used for that purpose, such as the conditioning factors and the methods for
feature selection, outlier removal, and gap filling. Therefore, the selected time span is
shorter to include the latest technologies and maintain a reasonable amount of articles to
be used for an in-depth analysis.

Four queries were prepared, one per each hazard, to obtain the highest number of
relevant articles in both search engines. By relevant, we mean articles which are related to
the susceptibility mapping of hazardous events using ML/DL techniques. Before selecting
the final keywords to be used, we manually checked the different queries for each hazard
and we only kept the ones that provided significant and distinct results with respect to
other queries, e.g., for air pollution, the query ’“air pollution” susceptibility (machine or
deep) learning’ provided only 9 results, among which only 1 was relevant; then, the query
’“air pollution” mapping (machine OR deep) learning provided 52 results, among which

https://www.scopus.com/
http://webofscience.com/
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26 were relevant. This iterative procedure was used to compose the final queries for each
hazard. The final queries were used to search articles’ titles, abstracts, and author keywords,
selecting journals as the document type, and the period of 2020–2023 as the time span:

1. “air pollution” AND (mapping OR prediction OR modelling) AND (deep OR machine)
learning.

2. “heat island” AND (prediction OR modelling OR intensity) AND (deep OR machine)
learning.

3. Flood AND (mapping OR susceptibility) AND (machine OR deep) learning.
4. Landslide AND (mapping OR susceptibility) AND (machine OR deep) learning.

Figure 1. Literature review methodology.

The main features of the articles were retrieved, i.e., title, keywords, abstract, au-
thors, number of citations, affiliations, affiliations’ countries, DOI, and year. Duplicates
were removed using the articles’ DOIs. Afterwards, a manual screening of the articles
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was performed to select the relevant ones: this consisted of checking each article and
including/excluding it based on certain criteria. The selection criteria were the following:

1. Articles were selected if all the following criteria were met:

(a) The publication date was between 1 January 2020 and 31 December 2023.
(b) The publication was a peer-reviewed article (i.e., not conference proceedings

or other types of text).
(c) The publication reported on the use of ML/DL models, algorithms, or tech-

niques in the production of hazard susceptibility mapping, forecasting, or
modelling.

(d) The publication was related to risk assessment, but the susceptibility of hazards
was modelled individually, i.e., the risk assessment could be split into hazard
susceptibility modelling and then the risk was assessed based on the modelled
hazard susceptibility.

2. Articles were excluded if any of the following criteria were met:

(a) The publication was a literature review.
(b) The full text was not available.
(c) The publication was written in languages other than English and without an

English translation.
(d) The publication did not have a DOI.

The total number of retrieved articles vs. the number of manually selected articles
per each hazard is reported in Table 1 and a yearly breakdown is plotted in Figure 2.
Subsequently to the screening, the articles were sorted based on the number of citations
per year. This is particularly important when the number of articles to be individually
reviewed is large (above 100); in that case, the references considered in the hazard sections
were the ones with the highest number of citations or the ones with novel approaches.

Furthermore, some attributes were extracted for each reviewed article, i.e., the ML/DL
techniques used, the conditioning factors of the hazard (alongside their source and their
spatial and temporal resolution), as well as whether a feature selection, outlier removal,
and gap filling methods are used and which ones.

Table 1. Number of retrieved articles vs. number of selected articles.

Hazard No. of Retrieved Articles No. of Manually Selected Articles

Air pollution 1385 654
Urban heat island 116 36

Flood 657 253
Landslide 769 511

It is important to mention that the selection criteria, the search queries, and the
methodology were defined with the purpose of retrieving the largest number of relevant
articles in the defined time span. However, these come with some limitations and biases
which are described as follows:

1. Potentially relevant studies published before the year 2020 were excluded; therefore,
the information presented in this manuscript is limited to the latest studies.

2. The exclusion of articles which are not in English introduces a language bias by
ignoring relevant studies written in other languages.

3. The exclusion of grey literature, such as conference proceedings, tends to result in
cutting-edge approaches being overlooked.

4. The articles are sorted based on the number of citations per year; therefore, the sorting
is biased towards older articles.
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Figure 2. Number of selected articles per year.

Despite the aforementioned biases and limitations, the number of articles selected
as relevant is large. Nevertheless, the amount of selected articles is still manageable
for extracting information on the data and modelling techniques and methodologies.
Furthermore, articles with novel approaches are mentioned regardless of their number
of citations.

Finally, the results of the searches and the selected articles have been published in
Zenodo [20]. This repository also contains the Jupyter notebooks to reproduce the plots of
the individual hazard sections.

4. Algorithms Classification

As the reviewed articles contain a very large number of ML and DL algorithms, in
the following, a classification overview of the methods is provided. The most frequent
classification of machine and deep learning algorithms is supervised, unsupervised, semi-
supervised, and reinforcement learning [21,22]. These four classes differ based on the data
used in the training phase and on the learning method.

• Supervised learning algorithms start from a known training dataset with labelled data
and produce an inferred function used to make predictions.

• Unsupervised learning algorithms take as input data those which are not labelled or
classified a priori. The goal of these models is to find hidden structures or patterns in
the training data without explicit feedback or guidance.

• Semi-supervised learning algorithms are a combination of the two previous categories
since they use both labelled and unlabelled data for training. The objective is to
provide a better prediction with respect to using supervised learning with scarce
data [16].

• Reinforcement learning algorithms learn to interact with their surrounding environ-
ment to achieve a specific goal. The model takes actions and receives rewards based
on the outcome of the actions. Its goal is to learn the set of actions that maximises
the cumulative reward. Examples of the use cases for reinforcement learning are
autonomous driving and robotics, which are in an environment-driven context [16].

Despite being very common, this classification is not particularly useful for the scope
of this review, as almost all the techniques used for susceptibility mapping in the reviewed
articles are supervised. Furthermore, as there is no universal taxonomy that groups the
algorithms based on the similarity of their functions, we propose a custom classification
for the purpose of the review which includes all the algorithms introduced in the articles.
For this reason, the classes are not mutually exclusive, and some algorithms could be
considered part of multiple classes.
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The categorisation considered in this paper is similar to those presented in [23,24],
with some slight modifications and additions to better account for the algorithms of the
reviewed articles. Specifically, the classes discussed in the following subsections are the
ensemble (ENS), neural networks (NNs), decision trees (DTs), support vector machines
(SVMs), regression (REG), Bayesian (BAY), instance-based (IB), dimensionality reduction
(DR), statistical (STAT), clustering (CLUST), rule-based systems (RUL), and time series (TS).
Compared to the previously cited classifications, we added the classes statistical and time
series, added the regularisation methods to the regression class, and merged all types of
neural networks into a single class. Finally, we separated support vector machines from
the instance-based class to further highlight their importance in the susceptibility mapping
task. The classification of each particular algorithm in the defined classes can be found in
Appendix A.

4.1. Neural Networks

Neural networks are systems composed of multiple units, called artificial neurons,
which are connected in a layered structure that resembles the human brain. The neurons are
usually aggregated into three different kinds of layers: the input layer, one or more hidden
layers, and the output layers. The input layer takes the original data and passes these to
the rest of the network, while the output layer stores the result of the network. The hidden
layers, instead, perform multiple data transformations and processing and are responsible
for the performance and complexity of the network. Based on how the neurons and the
layers are connected, it is possible to distinguish a large number of network architectures.
In recent years, the use of neural networks in various fields has constantly increased due to
their ability to learn complex and nonlinear problems.

The simplest architectures are artificial neural networks (ANNs), which are usually
composed of a single hidden layer and the inputs are only processed in the forward
direction from the input to the output layer [25], as depicted in Figure 3.

Figure 3. The structure of a fully connected ANN.

Convolutional neural networks (CNNs) have a more complex structure than ANNs
and are widely used in image processing, and are thus particularly suited for various
geospatial applications. This is due to their ability to automatically extract features and learn
spatial patterns with the presence of convolutional and pooling layers in the network [26],
which are described below and depicted in Figure 4.

Convolution layers are based on the multiplication of a sliding window of weights
(filter or kernel) with the input values. The network automatically determines the weights
during the learning process. This is the main advantage of CNNs in comparison to conven-
tional ML methods where user-defined filter weights are needed. Pooling layers, instead,
aggregate neighbouring pixels into a single pixel with a maximum or average function,
reducing the image’s overall dimensions. As the numbers of convolutional and pooling
layers increases, the network becomes deeper and can identify more complex structures in



Remote Sens. 2024, 16, 3374 9 of 50

the data [26]. After the input data are processed through these layers, the classification or
regression is applied to obtain the final output.

Figure 4. The structure of a CNN and an example of convolution.

Recurrent neural networks (RNNs) are networks that contain recursion connections
among the neurons of the hidden layers (Figure 5). The loops and the memory in each
neuron allow the networks to capture sequential information in the input data, making
them useful when dealing with time series problems such as air quality assessment [27].

Figure 5. The structure of an RNN.

In the reviewed articles, among the most used types of architectures of RNN are long
short-term memory (LSTM) and its variations. A memory cell in an LSTM unit can store
data for long periods and the flow of information into and out of the cell is managed by
three gates. The ‘forget gate’ determines whether the information from the previous state
cell will be memorised or removed, the ‘input gate’ determines which information should
enter the cell state, and the ‘output gate’ determines and controls the outputs [15].
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CNNs and RNNs, especially LSTM, can be combined in geospatial problems with
both spatial and temporal dependencies in the data (Figure 6). This is often the case when
dealing with air quality prediction, as the conditioning factors include the time series of
the historical pollutant concentrations. A common example in the field [28,29] is to first
use the convolution and pooling layers of the CNN to extract the spatial features of the
original input data. The obtained features are then flattened into a one-dimensional array
and input into the LSTM as time series to analyse the time features of the data. Finally,
the result is obtained through the fully connected output layers. In these studies, the
hybrid CNN–LSTM architectures provided better accuracy compared to the single CNN
and LSTM counterparts.

Figure 6. The structure of a CNN–LSTM hybrid.

Furthermore, transformer neural networks are an emerging architecture in the context
of hazard susceptibility mapping. Originally proposed for natural language processing [30],
this encoder–decoder architecture contains a multi-head self-attention mechanism which
allows the encoding of short- and long-range correlations between the words of a sentence.
A recent study proposed the use of a spatiotemporal Transformer architecture adding
spatial, temporal, and value/variable embeddings and a sparse attention mechanism to
the original architecture in the task of predicting PM2.5 concentrations in wildfire-prone
areas [31].

4.2. Regression

Regression methods are statistical and machine learning algorithms that estimate with
a function the relationship between a dependent variable (or multiple variables) and one
or more independent variables. The most common regression method is linear regression,
which finds the line that better fits the data. To extend the regression to nonlinear problems
as well, it is possible to project the data to other spaces with the use of a kernel. Moreover,
it is possible to use nonlinear functions instead of linear ones to better fit the data. To
reduce the number of dimensions in the data, there are various regularisation techniques
that can be applied to regression algorithms, such as lasso, ridge, and elastic net [32]. These
methods constrain some of the feature coefficients towards zero, effectively reducing the
complexity of the model and the risk of overfitting.

Despite the name, some regression methods can be used in classification problems,
and the main example is logistic regression. The logistic regression model is very similar to
linear regression, but it is applied to predict the probability of the binary occurrence of an
event [33]. This method can be useful in flood and landslide susceptibility mapping [34]
where the formulation of the problem is a binary classification, as it directly provides a
probability of the hazard occurrence as an output. The probability can then be categorised
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with methods like natural breaks or quantiles to produce the final maps. Moreover, in
logistic regression, the input variables can be provided as both continuous (e.g., digital
terrain model, slope) and discrete (e.g., soil type, land cover), which is often the case for
hydrogeological data.

4.3. Decision Trees

Decision trees are simple non-parametric machine learning algorithms that can be
used for both classification and regression. They have a tree structure composed of a root
node, internal nodes, and leaf nodes. Each internal node is used to make a decision on
one of the attributes of the instance, while the leaves represent all possible outcomes in the
dataset [35]. One of the main advantages of decision trees is how easy it is to interpret their
output since there is the possibility of visualising all of the decisions that lead to it. Based
on how the trees are created and modified during the learning phase, a lot of different
variations exist in the literature, such as classification and regression trees [36], C5.0 [37],
and reduced error pruning trees [38].

4.4. Support Vector Machines

Support vector machines (SVMs) are supervised algorithms that are used for both
classification and regression problems, the latter of which is known as a support vector
regressor (SVR). The main idea of an SVM is to find the decision boundaries (hyperplanes)
that separate the input data points into the predefined classes with the highest margin and
the minimum misclassification (Figure 7).

Figure 7. Example of a support vector machine.

The simplest formulation of an SVM is the linear one, where the solution hyperplanes
are found in the same space as the input data [39]. In the case where a linear solution does
not exist, the input data are mapped onto a higher-dimensional feature space with the use
of a kernel function [40]. After this process, the algorithm searches for a solution in the new



Remote Sens. 2024, 16, 3374 12 of 50

space. Multiple variations of SVMs are formulated based on how they deal with the search
for the optimal solution and how they treat misclassified points.

The choice of the correct kernel function is essential to obtain high training and
prediction accuracy. There are four main groups of kernels that are commonly used with
SVMs: linear, polynomial, sigmoid, and radial basis function. In the field of susceptibility
mapping, especially for floods and landslides, the latter is widely used [41,42].

4.5. Ensemble Methods

Ensemble learning is a technique that combine multiple base models—or weak
learners—into a single model with the purpose of increasing the performance of both
regression and classification problems. There are several reasons why ensemble methods
improve predictive performance [43]:

• Overfitting avoidance: when the number of data points available for training is limited,
learning algorithms tend to fit the training data too closely and perform poorly on
unseen instances. Averaging multiple predictions from different models can effectively
reduce this limitation and improve the overall predictive performance.

• Local optima avoidance: single machine learning algorithms have the possibility of
getting stuck in local optima solutions. This drawback is reduced in ensemble methods
with the combination of multiple learners.

• Expansion of search space: the best solution for a problem can be outside the hypoth-
esis space of any single model. However, the combination of different models can
expand the search space and increase the chance of finding the best fit for the data.

Several machine or deep learning algorithms can be used as base models, with decision
trees being one of the most common. The main ensemble techniques are bagging, boosting,
and stacking.

Bagging (Figure 8) trains multiple base learners with different subsamples of the
original training dataset and combines the prediction of each learner with averaging, voting,
or other methods based on the problem formulation. One of the most widely used examples
of bagging is random forest, a tree-based algorithm popular for its high accuracy and the
fact that its hyperparameters [44], i.e., the number of trees and the number of features used
to split each node, can be easily tuned. In the study of landslide susceptibility mapping,
these two hyperparameters are optimised with the use of the grid search techniques [45].
This approach consists of creating a discrete grid with all possible variable combinations
and evaluating each of them with validation criteria to determine the optimal solution.

Boosting (Figure 9), instead, sequentially trains the base models by increasing the
weights assigned to the observations predicted poorly by the previous iterations. The
final prediction of the model is calculated with a weighted sum or vote of all the itera-
tions’ results [46]. Popular ensemble algorithms include AdaBoost [47], gradient boosting
machine [48], and extreme gradient boosting [49].

Stacking (Figure 10) is a technique that can be used to combine heterogeneous base
models and is composed of two steps. In the first step, the base models are trained on
the original training dataset to obtain their decisions. These decisions are then used to
train another model, called meta learner, which will provide the final prediction [50]. The
stacking method has been applied for flash flood susceptibility mapping [51]. In the study,
the predictions from the base models are combined to create a new feature set, which is
then used by the meta learner for training. The authors chose as base models KNN, logistic
regression, SVM, and random forest, while the meta learner is another logistic regression
model. The use of weak learners of different natures is often desirable to improve the
accuracy, as each of them may be able to learn different concepts from the data. The logistic
regression algorithm as a meta learner has the advantages of being simple and making the
final output easy to interpret.
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Figure 8. Scheme of the bagging ensemble method.

Figure 9. Scheme of the boosting ensemble method.

Ensemble algorithms can be particularly useful in susceptibility mapping as they
can mitigate the problem of class imbalances, where one class of data (e.g., “flooded”)
is significantly less represented compared to the other class (e.g., “non-flooded”). This
situation is frequent for hazards such as landslides and floods since the areas impacted
by past events are often smaller than those not affected by the hazard. To address this
issue, ensemble methods can be used, e.g., to create a combination of base models that
are trained with the balanced subsamples of the data, or to combine undersampling and
ensemble techniques [43]. Both approaches ensure that the algorithm is not biased towards
the majority class.
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Figure 10. Scheme of the stacking ensemble method.

4.6. Instance Based

Instance-based is a family of algorithms which, instead of creating a parametric model
to perform predictions, compare the new observations with the previous instances seen in
training, which are stored in memory [52]. A popular algorithm in this class is the K-nearest
neighbour [53], which assigns the output to each instance based on the values of its closest
neighbours. When using KNN, a distance metric used to measure the proximity between
data samples must be defined based on the problem settings, while the K parameter
represents the number of neighbours that are used to compute the output of new instances
with a majority vote or an average. For example, for landslide susceptibility mapping, the
Euclidean and Manhattan distance metrics were chosen, while the possible K values were
3, 5, 11, and 19 [54]. The optimal values were selected with a grid search.

4.7. Bayesian

Bayesian algorithms in ML are methods that are based on the Bayes probability
theorem [55]. The theorem is used by the algorithms to model the probability of each class
as a conditional probability, which is updated with new evidence from new observations.
One of the main advantages of these algorithms is the possibility of introducing a priori
information on the problem inside the model, which is not usually possible with other
ML algorithms. The most popular Bayesian method is Naive Bayes [56] which is used
for classification. Naive Bayes computes the probability of each feature value given a
particular class. Once all the feature probabilities are calculated, they are multiplied to
obtain the joint probability of a given class. This joint probability is then multiplied by
the prior probability of the class to obtain the final probability of the class given the input
features. The main disadvantage of naive Bayes is the assumption that the data features are
independent, which is often not the case in the geospatial field. Other algorithms in this
category such as Bayesian networks avoid this assumption, allowing them to model more
complex relationships among the features.

4.8. Time Series

Time series forecasting algorithms are specifically developed to deal with time series
data as input. They include the time factor in the model by introducing a dependency
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among all the observations, which provides additional information, and the prediction of
future values is based on the previous ones [57]. The output of these algorithms is provided
as a time series. Widely used time series methods are auto regressive models and prophet,
which is an algorithm developed by Meta [58]. For what concerns the articles in this review,
they are only used for the air pollution hazard, as it is often based on temporal data.

4.9. Other Classes

Some of the classes contain algorithms that are rarely used in the reviewed articles,
but they are reported for completeness.

4.9.1. Dimensionality Reduction

Dimensionality reduction is a preliminary step in machine learning which is used to
reduce the number of features, or dimensions, in a dataset. It is possible to distinguish
between feature selection and feature extraction methods. The former reduces the dimen-
sions by only keeping a subset of the original features, while the latter projects the original
data to a new feature space with different attributes [59]. This class contains algorithms
that combine the process of feature extraction with the regression and the classification
step, such as principal component regression and linear discriminant analysis. This type of
methods can be useful for geospatial problems, which often use a high dimensional dataset.
Feature selection algorithms will be further described in Section 5.

4.9.2. Statistical

This class contains algorithms that are not part of machine learning but are pure
statistical analysis methods, and are sometimes proposed as a benchmark for comparison
with ML and DL algorithms for a case study. The most used algorithm of this kind,
particularly for landslide susceptibility, is the frequency ratio algorithm [60]. A good reason
to apply these methods is that they estimate how much each conditioning factor influences
the target variable, providing useful insights into the problem.

4.9.3. Clustering

Clustering is an unsupervised machine learning task, where the main goal is to
partition objects into groups of similar objects (clusters) and to discover hidden struc-
tures or patterns in the data. Commonly used algorithms are K-means and hierarchical
clustering [61]. These methods are used in the reviewed articles, e.g., using K-Means to de-
fine flood susceptibility indices [62], or using K-means and DBSCAN (density-based spatial
clustering of application with noise) to produce landslide susceptibility maps [63,64].

4.9.4. Rule-Based Systems

Rule-based systems are machine learning algorithms that have the goal of automati-
cally generating a set of rules which will be used to perform the predictions. Each rule is in
the form “IF condition THEN action” and should have two characteristics: the rules allow
the machine to implement an optimal strategy towards its environment, and the rules do
not contain unnecessary information. Rule-based algorithms are different from decision
trees since the rules are not mutually exclusive [65], e.g., the prediction of air pollution
concentrations using the cubist rule system method [66].

5. Feature Selection

As previously described in Section 4.9.1, feature selection is the process of selecting
the set of data variables that will be used in the prediction model. This is a crucial step of
machine learning, especially when dealing with high dimensional problems, which is often
the case in the geospatial field. This process will determine the quality and performance of
the produced system. Indeed, having fewer features than required will produce a model
that is too simple and not capable of predicting the right output or finding the best patterns
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in the data; on the other hand, selecting too many features may lead to overfitting and an
excessive increase in model complexity.

Feature selection is closely related to a common problem in machine learning first
introduced by Bellman [67] as the “curse of dimensionality”. This concept refers to the
explosive nature of spatial dimensions and their resulting effects, such as an exponential
increase in computational effort, large waste of space, and poor visualisation capabilities.

Because of its nature, some feature selection methods provide the importance of a
feature or subset of features inside an ML/DL model. This information is useful not only
for selecting the features to be used in the modelling process but through the lifecycle of
the model by providing the means for model interpretability [68].

There are different feature selection algorithms that can help in the process of the
identification and removal of irrelevant and/or redundant variables and later in model
interpretation. They can be separated into four main categories as follows.

5.1. Wrappers

These methods explore different combinations of features to find the best subset. This
is achieved by training and evaluating an ML/DL classifier using each feature subset to
measure its quality. The selection of features depends on the chosen machine learning
algorithm.

The search for the best feature subset can be performed in two ways: sequentially or
by means of a heuristic algorithm. In the sequential approach, the process starts with either
an empty set or the full set of features and gradually adding or removing features until
the best result is achieved based on a defined objective function. These methods are called
sequential forward selection and sequential backward elimination, respectively.

On the other hand, heuristic algorithms use a greedy search strategy to find a subset
that optimises the objective function.

Sequential and heuristic wrapper methods typically yield better predictive accuracy
compared to filter methods. However, they come with a trade-off of higher computational
complexity [69].

5.2. Filters

These methods base their selection on a rank of the features’ intrinsic properties. They
do not rely on a specific ML/DL algorithm as wrappers do. For this reason, filter methods
are computationally less expensive compared to wrappers, but they tend to have a lower
prediction performance.

Filter methods establish a ranking criteria and a threshold. The ranking is based on
the correlation or dependency between variables. Features that fall below the set threshold
are considered less important and are therefore removed from the final feature set. This
ranking-threshold-based procedure helps determine the subset of features to be used
for subsequent analysis [69]. The methods used for feature selection include Pearson’s
correlation, linear discriminant analysis (LDA), analysis of variance (ANOVA), and mutual
information (MI) [70].

5.3. Embedded

These are methods that incorporate the feature selection process into the model con-
struction itself. One example of such methods is lasso regression. In this technique, a
penalty term is introduced and calculated based on the absolute values of the coefficients.
By applying this penalty, some of the coefficients are shrunk to zero, effectively removing
the corresponding features from the model. Only the features with non-zero coefficients
are retained in the final model.

Embedded methods fall between wrapper and filter methods in terms of computa-
tional complexity. They are computationally more intensive than filter methods but less
demanding than wrapper methods [69].
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5.4. Explainable

Explainable artificial intelligence (XAI) consists of producing human-readable expla-
nations of the feature contributions in a model and/or of the model structure. This helps
in a first instance on the feature selection process while building the model for its en-
hancement, bias detection, and robust model building, and in a second instance, on model
interpretation and transparency [68]. There are two categories for model interpretability
and explainability [71]: integrated and post hoc explanations.

Integrated explanations refer to transparency-based models, i.e., white-box models
with an output that directly allows their interpretation, e.g., linear models, decision trees,
and generalised additive models. More recent approaches include interpretable deep
neural networks which rely on layer-wise relevance propagation to analyse the correlation
between dependent and independent variables [72].

On the other hand, post hoc explanations refer to black-box models for which addi-
tional methods have to be used to understand the model and the roles of the features inside
the black-box model, e.g., support vector machines and neural networks. Post-hoc model
explanations consist of a white-box model built using the black-box predictions as targets
in order to mimic its behaviour, providing a description of the model via decision trees or
lists of rules [73]. Furthermore, post hoc outcome or prediction explanations are produced
by building a model in the vicinity of the observation of interest [73]. Different methods
have been used in the context of hazard susceptibility mapping to provide the post hoc
prediction explanations of black-box models, e.g., the Shapley additive explanation values
(SHAP) [74,75] and the local interpretable model-agnostic explanations (LIME) [76,77].

There is a trade-off between model readability and model performance which makes
it so that white-box models are easier to interpret, whilst black-box models allow complex
modelling and therefore, tend to have better performance [78].

6. Hazard Susceptibility Modelling

Hazard susceptibility modelling refers to the process of learning from the environ-
mental and socio-economic conditions of the previous occurrences of hazardous events
to estimate the hazard susceptibility in unseen locations, considering the similarity of the
conditioning factors (CFs). A general methodology for the susceptibility modelling of
hazards using ML/DL techniques was consolidated from the reviewed articles, as depicted
in Figure 11 and described in the following.

The historical hazard occurrences and the CF are retrieved from different sources,
e.g., observations from sensor networks, national or regional authorities datasets, and
satellite imagery. Both historical occurrences and CF are preprocessed to improve the input
data. The most common approaches are data standardisation or normalisation, outlier
removal, temporal and/or spatial gap filling, data transformation (e.g., discretisation), and
the signal decomposition of time series data.

Additionally, a geospatial analysis may be performed to extract the geospatial re-
lationships between the data. This is specific to air pollution and urban heat island
when modelling discrete data, e.g., in situ stations data. Furthermore, in several stud-
ies [79,80], the historical occurrences are considered as positive samples; then, negative
samples are extracted from unfeasible hazard locations and the problem is approached as a
binary classification.

Feature selection may be performed to reduce the number of CF and to avoid feature
correlation. The most used methods in the reviewed articles are Pearson correlation,
Spearman’s correlation, random forest feature importance, information gain, recursive
feature elimination, variance inflation factor and embedded feature selection, i.e., the most
important features are directly selected by the model. In most recent articles, XAI has been
used for feature selection as well [81].

The ML/DL modelling part consists of training a model with the occurrences and CF
data and the direct production of the hazard susceptibility map in a specific area of interest.
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However, it may include additional steps such as a feature selection, correlation analysis,
model hyperparameter optimisation, and model embedded feature selection.

The hyperparameters of the models are often optimised using grid search and K-fold
cross-validation. Furthermore, in several articles, more advanced techniques are used for
model optimisation, i.e., attention-based mechanisms, Kalman filter, swarm intelligence
algorithms, and genetic algorithms.

There are different accuracy assessment metrics among the reviewed articles which
include: overall accuracy, relative absolute error, mean absolute error, root relative squared
error, root mean squared error, coefficient of determination (R2), receiver operating char-
acteristic (ROC), area under the ROC curve (AUC), precision, recall, F-1 score, sensitivity,
and specificity.

In the reviewed studies, one or multiple models are trained on the susceptibility task;
afterwards, their accuracy in tested to select the best one. The best model is used for
the production of the hazard susceptibility map in the entire area of interest. There are
three types of approaches for using one or multiple models. The first is that only one
state-of-the-art model is used [82]. The second is when multiple state-of-the-art models are
tested [83]. The third is when a novel approach is proposed and state-of-the-art models are
tested to showcase the accuracy improvement of the proposed approach [84].

Figure 11. Hazard modelling workflow. * The solid connections suggest that it is a mandatory step,
while the dotted connections suggest that it is an optional one. ** The blue colour groups the data,
the yellow groups the data processing (preprocessing and feature selection), the purple groups the
modelling process and the model, the green groups the susceptibility map as a product, and lastly, in
orange groups the final optional steps.
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There are three additional (optional) steps which help provide an enhanced post-
modelling result. The first is model interpretation, which consists of using post hoc
explanation methods to understand the contribution of CFs in the ML/DL model (black-
box model). The second is the assessment of the spatial agreement between susceptibility
maps. Some studies perform an analysis to understand the spatial agreement of the hazard
susceptibility maps produced by different models. It can be the case that the accuracy
metrics are high for different models; however, the resulting maps are spatially different.
To overcome this, methods such as the McNemar’s test have been used to understand
the spatial agreement of hazard susceptibility maps derived from different models [85,86].
Lastly, the susceptibility maps can be validated with external data, such as new event
occurrences or authoritative data. The quality of the results as well as the quality of the
model should be validated.

The previously described workflow encompasses the individual modelling of the
four hazards considered in this review, namely air pollution, urban heat island, flood, and
landslide. Additional considerations of the specifics to each hazard are detailed in the
corresponding hazard sections.

The individual hazard susceptibility maps can be combined to produce a multi-hazard
susceptibility map, showing the interaction between different hazards at specific locations.
There is no consensus on how to combine individual susceptibility maps [87]. Most
of the reviewed articles dealing with multiple hazards modelled the individual hazard
susceptibility maps and produced the multi-hazard susceptibility maps with the univariate
combination of different hazards, resulting in a categorical map. For example, when
combining flood, landslide, and fire susceptibility, the resulting map is composed of
eight classes, three for each single hazard, three for the combination of two hazards, one
for all hazards, and one for no hazards [82]. Similar approaches have been followed in
other studies [88,89]. The only different approach is to use a Mamdani fuzzy inference
system method which consists of a control system using linguistic rules based on experts’
opinions [87]. The resulting multi-hazard susceptibility map is continuous.

The following subsection lists the CFs which may be influential for two or more
hazards (see Section 6.1). There are conditioning factors which are specifically related to a
single hazard which will be detailed in the specific data acquisition subsections per hazard,
including the historical occurrences data.

6.1. Conditioning Factors Common to Multiple Hazards

Table 2 reports the conditioning factors (CFs) considered in the reviewed articles which
are available at a global or continental level.

Table 2. Conditioning factors common to multiple hazards and examples of datasets.

Type Variable Source Spatial Resolution Temporal
Resolution References

Meteorological data

Temperature
Wind
Rain

Solar radiation
. . .

ERA5 1 0.25° × 0.25° Hourly [90,91]

Meteorological data

Temperature
Atmospheric pressure

Wind
Humidity

. . .

Netatmo 2 Discrete 5 min [92]
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Table 2. Cont.

Type Variable Source Spatial Resolution Temporal
Resolution References

DEM 3

Elevation
Slope

Aspect
. . .

ASTER-GDEM 4 30 m N/A [93–95]

SRTM-DEM 5 30 m N/A [96,97]

ALOS-PALSAR-
DEM 6 12.5 m N/A [98,99]

Derived surface indices
and land cover 7

LULC
NDVI
NDBI

MDWI
. . .

Landsat-8 30 m Revisit time: 16 days [80,94,100]

Landsat-5 30 m Revisit time: 16 days [96,101]

Sentinel-2 10 m Revisit time: 5 days
(twin satellites) [90,102]

MODIS Terra and
Acqua 250 m Revisit time: 2 days [103]

Land cover

Copernicus CORINE
8 Land Cover 2018 100 m 6 years [34]

ESA 9 WorldCover
2020

10 m Annual [104]

Features

Roads
Waterways

Power plants
Points of interest

. . .

OpenStreetMap (OSM) vector
Updated by the

community [104,105]

1 ERA5 = ECMWF (European Centre for Medium-Range Weather Forecasts) Atmospheric Reanalysis V5.
2 Netatmo provides crowdsourced data. 3 DEM = Digital elevation model. 4 ASTER-GDEM = Terra Advanced
Spaceborne Thermal Emission and Reflection Radiometer - Global Digital Elevation Model. 5 SRTM-DEM = Shut-
tle Radar Topography Mission - Digital Elevation Model. 6 ALOS-PALSAR-DEM = Advanced Land Observing
Satellite - Phased Array type L-band Synthetic Aperture Radar - Digital Elevation Model. 7 Datasets which can be
produced based on satellite imagery. NDVI = Normalised difference vegetation index, NDBI = Normalised differ-
ence built-up index, LULC = Land use–land cover. 8 CORINE = Coordination of Information on the Environment.
9 ESA = European Space Agency.

The CFs shared among the four studied hazards are meteorological factors
(e.g., temperature, precipitation, wind direction, and velocity), topographic factors
(e.g., digital elevation model (DEM)), land use and land cover, and socio-economic factors
(e.g., power plants, night-time lights).

There are CFs which are provided by local authorities and are specific to a city, region,
or country. These local data generally include meteorological and air pollution data from
in situ station networks, digital terrain models, land use and land cover maps, building
footprints and heights, road traffic data, and others. The local data usually can be, at least,
partially replaced by global or continental products [106], such as those reported in Table 2.

7. Air Pollution Susceptibility Modelling

Air pollution is defined as the presence of toxic chemicals or compounds in the air, at
levels that pose a health risk [107]. The most common air pollutants which are modelled
in the reviewed articles are particulate matter (PM10, PM2.5), ozone (O3), nitrogen dioxide
(NO2), carbon monoxide (CO), black carbon (BC), and sulphur dioxide (SO2). Additionally,
the Air Quality Index (AQI) is contemplated in several articles. The AQI is an indicator
used by government authorities to categorise pollution in terms of its severity [108]. It is
based on the weighted combination of different pollutants, and it may vary per country
according to their own pollution levels and restrictions; e.g., in China, the AQI considers the
concentration of six pollutants (CO, NO2, O3, SO2, PM10, and PM2.5) to obtain the sub-index
of each pollutant using a piecewise linear function and take the maximum argument value
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of such sub-indexes to reflect the overall air quality [28]. For European countries, the AQI
guidelines are provided by the European Environment Agency [109], and the pollutants
considered to compute the index are up to five (PM10, PM2.5, O3, NO2, SO2).

Air pollution susceptibility modelling and mapping consists, as explained in the
general workflow, in correlating air pollution concentration events with the data on condi-
tioning factors at specific locations in order to provide an overview on how the pollution
levels would be given certain factors at unseen locations. The air pollution events consist
of a concentration level threshold being exceeded [79].

Air pollution susceptibility is directly treated in few of the reviewed articles [79,110,111];
however, several studies proposed methods that could potentially contribute to the pro-
duction of the susceptibility maps. Therefore, these are also included, e.g., enhancing
the pollution concentration data and forecasting the pollution concentration levels. An
example of this is the production of high-resolution pollution concentration maps at the
national [112] or regional [113] levels.

The following subsections provide insights into the data sources, the data preprocess-
ing, and the ML/DL techniques related to this hazard.

7.1. Air Pollution Data Sources and Conditioning Factors

The air pollution monitoring data, i.e., the occurrences data, can be retrieved from
satellite imagery, authoritative datasets, or ground stations, either environmental agencies’
sensor networks, crowdsourced networks, or ’amateur’ sensor networks. Examples of
satellites with instruments for measuring the air pollution concentration are Sentinel-5P
TROPOspheric Monitoring Instrument (TROPOMI) [114,115] and Aura satellite Ozone
Monitoring Instrument (OMI) [116]. Authoritative datasets refer to the data provided by
trusted organisations which are validated and provided as a higher-level product, e.g.,
Copernicus Atmosphere Monitoring Service (CAMS) [76], the China High Air Pollutants
(CHAP) [117], and the Air Quality e-Reporting database from the European Environmental
Agency [105]. Ground station (or in situ) data are derived from sensor networks that
measure the pollutant concentrations at specific locations, providing very accurate data but
usually just allow a sparse representation of the pollution levels in the area of interest. The
sensors’ data may be provided by local authorities, e.g., the U.S. Environmental Protection
Agency [118], China National Environmental Monitoring Center (CNEMC) [119,120], the
Environmental Protection Department of Hong Kong [120], and the Department of Territory
and Sustainability of the Catalonia Government [79]. A sensor network could be built
as part of the study as well, e.g., creating an Internet of Things (IoT) system [121,122].
Table 3 lists the air pollution sources that provide data at least at the global, continental, or
multi-national levels.

Each of these sources can be used individually as occurrences data or they can be
combined to produce and use an enhanced dataset, e.g., using CAMS data to fill the gaps
of satellite imagery [116].

The air pollution conditioning factors considered in the reviewed studies are
meteorological—temperature, dew point, wind speed and direction, atmospheric pres-
sure, relative humidity, and precipitation; socio-economic—population data, traffic data,
road density, night-time lights, points of interest (bus stations, gas stations, heat suppliers,
polluting factories, and restaurants); topographic—elevation (digital elevation or terrain
model), slope, aspect, and surface imperviousness; and land cover and derived vegetation
and built areas indices. Additionally, the aerosol optical depth (AOD) is widely used as a
conditioning factor [112].
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Table 3. Data sources for air pollution monitoring.

Source Pollutants Spatial Resolution Temporal Resolution References

Sentinel-5P O3, SO2, NO2, CO, HCHO, and CH4 5.5 km × 3.5 km Revisit time: daily [114,115,123]

Aura OMI 1 O3, NO2, SO2, and aerosols 13 km × 25 km Revisit time: daily [116,124,125]

Air Quality e-Reporting database O3, SO2, NO2, CO, HCHO, and CH4 discrete Daily/hourly [105]

CAMS 2 reanalysis O3, SO2, NO2, CO, HCHO, and CH4 10 km × 10 km Hourly [76,116]

MERRA-2 3 PM2.5, BC, and aerosols 0.625° × 0.5° Hourly [116,117,126]

1 OMI = Ozone Monitoring Instrument. 2 CAMS = Copernicus Atmosphere Monitoring Service. 3 MERRA-2 =
Modern-Era Retrospective Analysis for Research and Applications, version 2.

7.2. Air Pollution Monitoring Data Preprocessing

The preprocessing of air pollution monitoring data consists of gap filling, outlier
removal, transformation, decomposition, and an additional geospatial analysis. The latter
applies when working with discrete data and is conducted to provide spatial relationships
to the model.

Temporal and spatial gaps are filled by means of interpolation, average, fill forward,
or estimated using ML models. Some use cases of temporal air pollution data gap filling
are linear interpolation for small gaps and the average value for significant ones [127],
spatiotemporal interpolation [128], random forest and linear interpolation [129], and light
gradient boosting machine model [117]. Examples of spatial gap filling could consist of
using complementary sources, e.g., using MODIS Terra and Acqua [112], CAMS data [116],
or training ML/DL models to predict the values at missing locations [130].

Outliers or anomalies are a common cause of error in the model estimates, mostly
on time series data. However, few authors specify the techniques used to remove them
during the preprocessing phase. Some of the techniques for outlier removal are the Hampel
identifier which is a triple standard deviation discriminant algorithm [131], the numerical
limiting method [129], and the interquartile range method [132,133].

The decomposition method core concept is to decompose the original non-stationary
series into several relatively more stable subseries. For each subseries, a predictor is
established to achieve the forecasting task. The decompositions proven to be effective in
processing pollution levels and AQI time series are Wavelet and multiscale analysis [134]
and variational mode decomposition [131]. This applies to time series non-spatial data.

7.3. Insights into Pollution ML/DL Modelling Techniques

The articles included in the following statistics and insights regard air pollution sus-
ceptibility modelling and also air pollution modelling studies that can contribute to the
production of susceptibility maps, i.e., as previously mentioned, the enhancement of air
pollution concentration maps and the air pollution forecast using temporal or spatiotempo-
ral data. Enhancement provides a better product for obtaining more accurate air pollution
susceptibility maps and the forecast provides ML/DL techniques and approaches that can
be extrapolated for susceptibility modelling. The total number of articles used to produce
Figure 12 was 534, which were those with at least one citation the date they were retrieved.
The label of less recurring algorithms was removed to improve readability. All the statistics
are available in the repository created for this article (see Section 3).

Figure 12 shows the distribution of the ML/DL classes defined in Section 4 and the
techniques used for air pollution temporal and/or spatial modelling and forecasting, with
a visible label if present in more than 20 articles. The largest used class for dealing with
air pollution temporal and spatiotemporal modelling is neural networks, followed by
the ensemble (ENS), linear regression (LR), and support vector machine (SVM) classes.
Concerning the specific algorithms, more than 117 different ML/DL techniques were used
in the reviewed articles, without considering the variations due to the hyperparameter
optimisation algorithms. The most used technique was long short-term memory (LSTM),
used in a total of 203 articles, followed by random forest (RF), support vector machines



Remote Sens. 2024, 16, 3374 23 of 50

(SVMs), convolutional neural networks (CNN), extreme gradient boost (XGB), and linear
regression, which were used in a total of 166, 81, 81, 65, and 62 articles, respectively.

Different variations of LSTM were used, such as graph LSTM [135], spatiotemporal
LSTM [27,136], and bidirectional LSTM (BLSTM) [137]. Furthermore, to improve the re-
sults, LSTM and its variations are often ensembled with other neural networks (NNs) and
optimisation methods. Examples of combinations with other NNs are convolutional neural
network (CNN) LSTM–CNN [28,138,139], gated recurrent unit (GRU) [140], or several
models like adding graph convolutional network (GCNs), multi-layer perceptron, and
Gaussian progress regression (GPR) to propose the GCN–LSTM–MLP–GPR model [141],
or artificial neural networks (ANNs) and recurrent neural networks (RNNs) to propose the
ANN–LSTM, RNN–LSTM, and ANN–RNN–LSTM models [142]. Examples of optimisa-
tion algorithms are convolutional block attention module [143], multi-verse optimisation
algorithm [144], and Bayesian optimisation [145]. The combination of CNN or other algo-
rithms which are commonly used in image processing alongside LSTM is crucial for the
spatiotemporal modelling of air quality.

Several articles deal with the air pollution concentration forecast using air pollution
concentration measurements from in situ stations, i.e., point data, or using an additional
continuous representation of the air pollution concentration levels from satellite data, both
coupled with other auxiliary data (CF). Examples of the first scenario using the previously
mentioned approaches are the AQI forecast using CNN, LSTM, and CNN–LSTM [28] and
the PM2.5 forecast using 1D-CNN, Bi-LSTM, and their combination [146]. Other state-of-the-
art approaches include support vector regression (SVR) [147] and extreme learning machine
coupled with the multi-objective Harris hawks optimisation [146]. Novel approaches
include the implementation of Transformers, e.g., the spatiotemporal transformer model
for the prediction of hourly PM2.5 [148] and the autocorrelation-error informer model [149],
which outperformed other state-of-the-art models based on time series like LSTM, GRU,
and ARIMA. Examples of the second scenario are the satellite-based PM2.5 prediction using
a spatiotemporal deep neural network (DNN) [150] and RF [151].

Examples of articles dealing with the enhancement of air pollution concentration maps
are the production of daily 1km PM2.5 estimates in China using extremely randomised
trees (ERTs) using an AOD product, in situ PM2.5 data, and auxiliary data [112]; daily
1 km NO2 estimates in the United States using the NO2 column density from OMI Aura
satellite, NO2 from chemical transport models, land cover, and ancillary data as input to the
ensemble of neural network, RF, and gradient boosting [116]; and daily maximum 8-hour
average O3 at 0.1° resolution using an XGB model with ground-level ozone monitoring
data, MERRA-2 data, and geographical data [124]. This type of study tends to implement
tree-based techniques like RF, light gradient boosting machine, and XBG, which usually
provide the highest accuracy [123,151–153].

Transfer learning has been implemented in some articles. In this context, it consists of
reusing a highly accurate model and fine tuning it with a reduced amount of data from
a different time and/or location. It is a solution for predicting or estimating air pollution
levels at locations/monitoring stations which lack data. Transfer learning stacked BLSTM
was used to train with the data of historical monitoring stations and fine tune with the scarce
data of a new station, which resulted in an accuracy improvement of 23.37% with respect
to traditional training [154]. Similar results were obtained in transfer learning studies
using LSTM [155,156] and Gaussian mixture [93] models. Furthermore, the prediction
performance of the air pollution concentration of a city was tested based on a CNN–LSTM
model trained on another city; in this case, the transfer learning did not improve the testing
accuracy [139]. Moreover, the spatial and temporal transferability of models, without fine
tuning, has been tested in some studies [157,158].

An additional fact observed in the reviewed articles is the utilisation of integrated and
post hoc explainable artificial intelligence (XAI). Examples of integrated XAI are the pro-
posal of an interpretable DNN [150] for predicting PM2.5 and extracting the spatiotemporal
features of the model and a second interpretable DNN for understanding the contribution of
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urban traffic to air quality [72]. Examples of post hoc XAI are the usage of Shapley additive
explanations (SHAP) values to analyse the feature contributions in the model [123,159,160].

Figure 12. Air pollution algorithm classes (see Section 4) and frequently used methods. Complete
dataset available in the repository (see Section 3). * BPNN = Backpropagation Neural Networks,
ELM = Extreme Learning Machine, RNN = Recurrent Neural Networks, DNN = Deep Neural Net-
works, MLP = Multi-Layer Perceptron, ANN = Artificial Neural Networks, GRU = Gated Recurrent
Unit, CNN = Convolutional Neural Network, LSTM = Long Short-Term Memory, LGBM = Light
Gradient Boosting Machine, GBDT = Gradient Boosting Decision Trees, XGB = Extreme Gradient
Boosting, RF = Random Forest, SVM = Support Vector Machine, LASSO = Least Absolute Shrinkage
and Selection Operator Regression, LR = Linear Regression, DT = Decision Trees, KNN = K-Nearest
Neighbours, ARIMA = Autoregressive Integrated Moving Average.

Furthermore, Figure 13 exposes the articles’ spatial distribution based on the affiliation
country of the first author. It can be clearly seen that China has the highest number of
studies related to air pollution, followed by India and the United States.

Figure 13. Air pollution articles’ distribution based on the first author’s affiliation.
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8. Urban Heat Island Susceptibility Modelling

Urban heat islands (UHIs) are urban areas composed of structures, e.g., buildings,
roads, and other infrastructure, that become ‘islands’ of higher temperatures with respect
to outlying areas. This happens since infrastructures absorb and re-emit the sun’s heat in a
higher ratio than natural landscapes. UHIs are usual when there is a high infrastructure
concentration and greenery is limited [161].

The related articles describe the thermal characteristics of an area of interest by mod-
elling the air temperature [95] or the land surface temperature (LST) [162] and deriving
indices such as the urban heat island intensity (UHII) [163], the Urban Thermal Field Vari-
ance Index (UTFVI) [164], and the Urban Thermal Environment Index (UTEI) [97]. These
indices will be described as follows.

The UHII is defined as the difference in surface temperature between the urban
centre and the countryside [165]. UHII can be computed as the difference in temperature
between a station or a pixel and the reference temperature [90], for discrete or continuous
data, respectively.

UHII = Ti − Tcountryside (1)

where Ti refers to the temperature at a station or cell i and Tcountryside refers to the tempera-
ture of the reference station, the average temperature of multiple reference stations, or the
average temperature of the cells belonging to the countryside area.

The UTFVI expresses the thermal characteristics of the city with respect to the mean
temperature of the same space. It can be computed as stated in the following Equation [164].

UTFVI =
Ti − Tm

Tm
(2)

where Ti refers to the temperature at station or cell i and Tm refers to the mean temperature
of the city or area of interest (AOI).

A similar index is the UTEI which only considers the temperature of the AOI, which is
further described in the following Equation [97].

UTEI =
∑m

i=1 ∑n
j=1(xi,j)

m × n
(3)

where xi,j stands for a cell value in a continuous representation, where m and n the dimen-
sions of the grid.

The objective of modelling UHI with the UHII index or other similar indices is to
explore the spatiotemporal evolution of the thermal characteristics in an AOI. In the
reviewed articles, the monitoring of the thermal characteristics is divided into daytime and
night-time [90] or seasonally into summer and winter [162].

8.1. Urban Heat Island Data Sources and Conditioning Factors

Among the reviewed articles, land surface temperature (LST), land use–land cover
(LULC) [96,101,164], and meteorological variables are combined with other ancillary data
to build the models. Important ancillary data include albedo, building height, proximity to
water bodies, and anthropogenic heat sources [97,166,167].

Table 4 lists the global sources available for the retrieval of LST, LULC, albedo, and
anthropogenic heat flux.
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Table 4. Urban heat island conditioning factors and the frequently used sources.

Variable Source Spatial Resolution Temporal Resolution References

LST 1
MODIS 2 Terra and Aqua 1 km

Revisit time: daily
(morning pass Terra +
afternoon pass Acqua)

[168,169]

Landsat 8/5 30 m Revisit time: 16 days [162,170]

Sentinel-3 1 km Revisit time: 2 days [171]

AOD 3 MODIS Terra and Aqua 10 km
Revisit time: daily

(morning pass Terra +
afternoon pass Acqua)

[168]

Albedo MODIS Terra and Aqua 0.05°
Revisit time: daily

(morning pass Terra +
afternoon pass Acqua)

[168]

Landsat 8 30 m Revisit time: 16 days [172]

Anthropogenic heat flux NOAA 4 night-time lights 1 km Daily/monthly [93]
1 LST = Land Surface Temperature. 2 MODIS = Moderate Resolution Imaging Spectroradiometer. 3 AOD =
Aerosol Optical Depth. 4 NOAA = National Oceanic and Atmospheric Administration.

Besides the different factors that may condition UHIs (see Figure 11), several envi-
ronmental indices are considered as well, i.e., the Normalised Difference Vegetation Index
(NDVI), the Normalised Difference Built-up Index (NDBI), or the Normalised Difference
Water Index (NDWI) [173]. NDBI exposes the impervious surfaces that reduce humidity
and increase the environmental temperature. On the other hand, NDVI and NDWI show
the correlation between vegetation, water, and water present in vegetation with respect to
humidity and the vegetation cooling effect.

Additional data to be considered are the urban growth and population
growth [169,174] if the UHI analysis is focused on these variables.

8.2. Insights into the Urban Heat Island ML/DL Modelling Techniques

In the UHI susceptibility modelling and related studies, the most used ML method
is ensembles (ENS), followed by neural networks (NNs) and regressions (LRs), as shown
in Figure 14, where the specific ML/DL techniques can be appreciated as well. A total of
25 ML/DL algorithms were used to model UHI and related studies. The most used method
was random forest regression (RFR), followed by an artificial neural network (ANN), linear
regression (LR), random forest (RF), and support vector regression (SVR).

A common approach to studying UHIs is to analyse the LULC and the LST, and subse-
quently derive the UHII or related indices, e.g., using the ANN to predict the LULC, LST,
and UTFVI in 2029 and 2039 during summer and winter based on Landsat imagery [162].
Similarly, forecasting the LULC, LST, UHII, and UTFVI [101].

Other derived information may be useful to analyse the interaction between the LULC
landscape and the thermal comfort, such is the case of the morphological spatial pattern
analysis (MSPA) [175] of green space or built-up areas. For example, the MSPA of green
space can be extracted from land cover maps and through RF deriving the nonlinear
relationships between the UHII, the vegetation patterns, and ancillary data like sky view
factor, density of green space, mean building height, etc. [163].

Moreover, other studies focus on the direct forecast of the UHII, for example, utilising
deep neural networks (DNNs) to forecast the magnitude of UHI in a large city based on
temperature measurements derived from weather stations [166]. Additionally, the authors
of the previous study proposed a new index called UHI-hours which provides the number
of hours in which the UHI phenomenon occurs in a specific location. The aim is to quantify
the cumulative effects of UHI.
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Figure 14. Urban heat island algorithm classes count (see Section 4). Complete dataset available in the
repository (see Section 3). * XGBR = Extreme Gradient Boosting Regression, SGB = Stochastic Gradient
Boosting, AB = AdaBoost, BDT = Bagging Decision Trees, GBRT = Gradient Boosted Regression Trees,
RF = Random Forest, RFR = Random Forest Regression, MANN = Model-Averaged Neural Network,
DNN = Deep Neural Network, DBN = Deep Belief Network, RESCNN = Residual Convolutional
Neural Network, MLP = Multi-Layer Perceptron, ANN = Artificial Neural Network, LUR = Land
Use Regression, LR = Linear Regression, SVM = Support Vector Machine, SVR = Support Vector
Regression, NB = Naive Bayes, BR = Bayesian Regression, BN = Bayesian Network, RT = Regression
Trees, DT = Decision Trees, GMM = Gaussian Mixture Models, KNN = K-Nearest Neighbours.

Furthermore, Figure 15 exhibits the spatial distribution of the articles considering only
the affiliation of the first author. It can be observed that China has the highest number of
articles while other countries produced one or two articles.

Figure 15. Urban heat island articles’ distribution based on THE first author’s affiliation.
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9. Flood Susceptibility Modelling

Floods are defined as an overflowing of water onto land that is normally not covered by
water. Different factors can trigger flooding, e.g., heavy rains, ocean waves, snow melting,
and dam breaks [176]. Consequently, floods can be classified into different types based on
how, why, and where they occur: river floods, flash floods, coastal floods, urban floods,
and dam floods [11]. The types of floods included in the review are coastal floods [177],
flash floods [178], river floods [179], and urban floods [180].

Flood susceptibility modelling aims to determine the probability of the flood occur-
rence across the study area. It is treated, in the reviewed literature, as a binary classification
problem where the two classes are flooded and non-flooded. The methodology for the
production of the susceptibility maps is similar in most of the articles, following the work-
flow explained in Section 6. ML/DL models are created to provide the probability of being
’flooded’ in a specific location starting from the creation of the historical flood occurrence
database, the collection of the conditioning factors data, their preprocessing, and feature se-
lection. Furthermore, optimisation methods tend to be used for fine-tuning and improving
the accuracy of the models (see Section 9.3). The flood susceptibility maps are produced by
the categorisation of the predicted probabilities using natural breaks or equal intervals, e.g.,
three classes (high, medium, and low) or five classes (very low, low, medium, high, and
very high).

Moreover, the studies are carried out at the provincial scale with areas of a few
thousands of square meters [80,100], but there are also a few applications of the same
methodology to small river basins [181] or considerably larger regions [82].

9.1. Flood Data Sources and Conditioning Factors

For the production of the models, two different datasets are necessary. The first one
contains the past flood events in the study area and is used as the dependent variable,
which is referred to as “flood inventory” in the literature. The second one combines the
conditioning factors which are used to estimate the probability of future flood occurrences.

9.1.1. Flood Inventory

Previous flood events can be retrieved from different sources depending on the spatial
and temporal characteristics of the event. In general, the sources are official archives from
local authorities, field surveys, or they are derived from aerial photos or satellite imagery.

The sources tend to be combined to perform the delineation of flooded areas or sample
the flooded points, e.g., combining historical data sources, fieldwork, the perception of
residents, and Google Earth (GE) [100]. GE is used to delineate the areas and then validate
them with GNSS field surveys [182]; the Modified Normalised Difference Water Index
(MNDWI) derived from Sentinel-2 imagery i used to extract the inundated areas and then
validate with field surveys and reports [183]; and Sentinel-1 imagery and GE [184] use
information from social media posts [102].

Many studies directly rely on official reports and field surveys for the collection of the
flood inventory database [98,185,186]. The coverage of fine-scale areas tends to be limited
to ad hoc field surveys [102].

After the flooded areas or points are collected, they are aggregated to a grid of a
specific spatial resolution consistent with the other relevant data. According to most of the
reviewed articles, a number of ’flooded’ points is randomly selected from the grid to obtain
the training data. As the problem is approached as a binary classification, the previous
samples are complemented by adding the ’non-flooded’ locations. These can be randomly
selected from areas where floods are unlikely, e.g., high-elevation locations that have not
been previously flooded, locations far from water bodies, etc. The selection of actual non-
flooded points is very relevant to avoid negative sampling errors (false negatives) which
affect the results of the classification [104].

To maintain the balance between the two classes, the general rule is to select an equal
number of flooded and non-flooded points which are split into two distinct sets for the
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training and validation of the models. Commonly used split ratios are 70%/30% and
80%/20%, respectively.

9.1.2. Flood Conditioning Factors

The conditioning factors that influence flood events include topographic, geological,
precipitation, and land cover data. The topographic features (e.g., elevation, slope, topo-
graphic wetness index) are computed from the digital terrain model of the study area, which
can be retrieved from local authorities datasets [80] or from global products, e.g., ASTER
GDEM [184]. Geological data such as lithology and soil type are important as they influence
the permeability of the terrain. Geological maps are usually provided by local authorities
or research institutes [80]. In flood susceptibility models, precipitation data are key and
are generally collected from ground stations and tend to be aggregated, e.g., total annual
precipitation or maximum precipitation in a day [100]. Land cover data can be obtained
from local authorities datasets, Corine Land Cover in Europe, or by processing satellite
imagery (e.g., Landsat-8 or Sentinel-2) [184]. To use the different data sources as input in
the machine and deep learning models, all of the datasets must be resampled at the same
spatial resolution, which typically ranges between 5 and 30 m in the reviewed articles.

9.2. Flood Data Preprocessing

The independent data may be preprocessed to be prepared as input for the feature
selection or classification algorithms, or to remove differences across the factors that could
cause biases in the models. The most common transformation is the categorisation of all
datasets into discrete classes, which can be determined with methods such as natural breaks,
equal intervals, or manual thresholds [80]. In some cases [182], the features are categorised
by scaling their values in the 0–1 range to account for the different scales of the data, which
could lead the models to overweight or underweight certain features. The precipitation
data from meteorological stations must be interpolated to create a grid. The interpolation
methods employed in the reviewed paper are inverse distance weighting [183], spline
interpolation [187], and kriging [184,188]. The latter usually performs better when the
number of available stations is low, which is a common problem when dealing with meteo-
rological variables, e.g., only four stations were used across an area of over 2000 km2 [100].

9.3. Insights into the Flood ML/DL Modelling Techniques

Ensembles (ENSs), neural networks (NNs), support vector machines (SVMs), decision
trees (DTs), and linear regressions (LRs) were the mostly used classes (see Section 4) in the
task of flood susceptibility mapping. Figure 16 shows an overview of the statistics per class
alongside the specific models, with a visible label if implemented in more than nine articles.
Random forest (RF), artificial neural network (ANN), and support vector machine (SVM)
were the most popular techniques used in 105, 75, and 65 articles, respectively. The result
is expected given the suitability of the previous models for solving binary classification
problems, usually guaranteeing high accuracy in the task.

Due to the nature of the problem, flood susceptibility modelling poses data balancing
issues given that the number of flooded samples which are obtained from the flood inven-
tory is less than the number of actual non-flooded samples in an area of interest. Non-flood
events happen more frequently than flood events in almost any location of the world [189].
In most of the reviewed articles, the number of non-flooded samples used is the same as
the number of flooded samples; however, some authors tackle the imbalance problem, e.g.,
testing the RF model with different flooded and non-flooded sampling ratios consisting of
1×, 10×, 25×, 50×, and 100× non-flooded samples with respect to the flooded ones [189].
The 1× sampling provided the highest AUC and recall and the 100× sampling provided
the highest precision and f-1 score; however, the 50× sampling showed a middle point
considering all the metrics, which is also a closer representation of the reality. Some of
the techniques used in the articles to deal with the class imbalance problem are random
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undersampling and random oversampling [190] and the synthetic minority oversampling
technique [191].

The study of landscape patterns, i.e., the shape, composition, proportion, and configu-
ration of the land use classes, is also addressed in the reviewed articles as a nature-based
solution for flood resilience [104]. In this case, the authors used the computed landscape
patterns in the AOI to compute their influence on the flood susceptibility. The results
showed that the susceptibility to floods tend to be higher with the separation of forest
patches, water connectivity, the growth of core urban areas, etc.

Despite the fact that flood susceptibility maps are produced with high accuracy, the
pixel-by-pixel agreement between the maps produced of different highly accurate models
is rarely studied [192]. This problem is referred to in the literature as uncertainty in spatial
patterns or spatial agreement. Different approaches have been used to test the spatial
agreement of flood susceptibility maps, e.g., Pearson’s correlation and a subsequent linear
regression to combine the maps produced by different models [192], the Kendall synergy
coefficient to analyse the significance difference between the susceptibility indices of the
produced maps, and computing the agreement between the models’ results with the ground
data [193].

Furthermore, various techniques have been used to improve the accuracy of the
base ML/DL models. A simple method consists of determining the input weight of each
conditioning factor with bivariate statistical methods such as frequency ratio [34] or with
operations research, e.g., analytical hierarchy process [194]. Another valid approach is the
optimisation of the algorithm’s hyperparameters. The tuning can be easily performed with
grid search or trial and error [80], or with more complex algorithms such as metaheuristics,
e.g., swarm intelligence [84,195] and genetic algorithms [196].

Figure 16. Flooding algorithm classes count (see Section 4). Complete dataset available in the
repository (see Section 3). * ERT = Extremely Randomised Trees, GBDT = Gradient Boosted De-
cision Trees, AB = AdaBoost, BRT = Boosted Regression Tree, XGB = Extreme Gradient Boost-
ing, RF = Random Forest, CNN = Convolutional Neural Network, DNN = Deep Neural Network,
ANN = Artificial Neural Network, SVM = Support Vector Machine, KNN = K-Nearest-Neighbours,
NB = Naive Bayes, ADT = Alternating Decision Trees, DT = Decision Trees, GLM = General Linear
Model, LOGR = Logistic Regression, CB = CatBoost.
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Finally, post hoc XAI methods have been used to understand the predictions of
flood susceptibility models, e.g., SHAP for explaining convolutional neural networks
(CNNs) [197], recurrent neural networks (RNNs) [198], boosting ensemble models [85,199],
and extremely randomised trees (ERTs) [200].

Figure 17 presents the distribution per country of the flood susceptibility mapping
articles based on the first author’s affiliation. Iran is the leading country in this subject,
followed by India, China, and Vietnam.

Figure 17. Flooding articles’ distribution based on the first author’s affiliation.

10. Landslide Susceptibility Modelling

Landslides are defined as the movement of a mass of rock, debris (coarse-grained),
or earth (fine-grained) down a slope due to external forces (mainly gravity). The term
encompasses five modes of slope movement: falls, topples, slides, spreads, and flows.
Furthermore, these can be subdivided based on the type of geologic material: bedrock,
debris, or earth [201]. The landslide types in this review include debris flow and rock
flow [202–204]. It is important to highlight that, for the purpose of the literature review, no
differentiation is made between the ML/DL techniques and the types of landslides in the
review statistics for this kind of event.

The workflow followed to model landslide susceptibility in the reviewed articles is the
same as that used to model flood susceptibility described in Section 9, with some differences
in the algorithms and data used. The problem is still approached as a binary classification,
with the classes landslide and non-landslide.

10.1. Landslide Data Sources and Conditioning Factors

Landslide susceptibility is modelled using previous landslide occurrences or events
and the conditioning factors at the event locations. These datasets are the landslide in-
ventory and the landslide conditioning factors, respectively, which will be detailed in the
following subsections.

10.2. Landslide Inventory

The areas of landslide occurrences can be retrieved from historical records, satellite
imagery, aerial photos, and field surveys, e.g., with manual interpretation from aerial
photographs and DEM [205]. The inventory may be accompanied by metadata such as
size and material type [202]. The landslide inventory is usually retrieved from official data
archives or from an enhanced product coming from the combination of different sources,
e.g., official data archives, GE, and field surveys [206,207], lidar, and aerial photos [205].

The landslide points can be sampled in different ways from the landslide records, e.g.,
by taking the landslide scarp centroid, the landslide body centroid, or samples from the
landslide body or scarp [205]. The occurrence data generally consist of binary data (land-
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slide and non-landslide) with a balanced number of samples; furthermore, the sampling
ratio of training and testing points is 70%/30%.

10.3. Landslide Conditioning Factors

The mainly used conditioning factors (CFs) for landslide susceptibility modelling
can be grouped into topographic, hydrological, geological, and meteorological CFs. The
topographic factors are altitude, slope, aspect, and curvature, and can be derived from
a DEM. The hydrological factors are the distance to streams or water bodies, drainage
density, and the topographic wetness index. The geological factors are lithology, distance
to faults, distance to geological boundaries, and soil type. Meteorological factors refer
mostly to precipitation for this hazard. Additional conditioning factors not included in the
previous groups are land use/land cover, Normalised Difference Vegetation Index (NDVI),
Normalised Difference Built-up Index (NDBI), distance to roads, and points of interest.
Furthermore, the landslides may be triggered by earthquakes, and therefore, seismic maps
and their derived factors can be considered as well [205]. Additional CFs may be considered
according to the details of the case study.

10.4. Landslide Data Preprocessing

In the reviewed articles, the conditioning factors (CFs) datasets are often categorised
in discrete classes; afterwards, in several cases, the frequency ratio method is applied as
a preliminary analysis [208] or to optimise the models [45,209]. The statistical approach
allows the quantification of the relationship between each CF class and the areas affected
by landslides. Moreover, it provides details on how the CFs’ classes are distributed across
the study area.

The datasets related to the different CFs have to be resampled to match a common
spatial resolution which tends to be between 5 and 30 m. A different approach consists of
computing slope units and conducting the CFs sampling and landslide modelling based on
them [210–212].

10.5. Insights into the Landslide ML/DL Modelling Techniques

Ensembles (ENSs), neural networks (NNs), linear regressions (LRs), and support
vector machines (SVMs) are the most used classes for landslide susceptibility modelling,
as depicted in Figure 18. The figure also provides information about the specific ML/DL
algorithms belonging to each class, with a visible label if used in more than 14 articles.
The most used techniques are random forest (RF), support vector machine (SVM), logistic
regression (LOGR), and artificial neural network (ANN), being implemented in 200, 151,
108, and 106 articles, respectively. The previously mentioned graph is limited to articles
with at least one citation, at the time of retrieval, which corresponds to 402 articles out
of 511 selected articles for this particular hazard. The popularity of SVMs to model these
hazards is justified by the ability of the algorithms to perform well in high dimensional
spaces and with class imbalances, compared to other ML methods [26].

The sampling of the dependent dataset (landslide/non-landslide) has a significant
impact on the accuracy of the ML/DL models [210]. The selection of the non-landslide
samples poses the problems of uncertainty and imbalance.

The uncertainty on the sampling of non-landslide points is posed by the influence of
the distribution of non-landslide samples in the model, also considering that the sampled
points are truly non-landslide. The non-landslide samples are usually randomly sampled
in the area of interest (AOI) after excluding the landslide locations and considering certain
conditioning factors (CFs) such as elevation. More advanced methods can be used to
improve the quality of the non-landslide samples, e.g., self-organising-map and SVM [213],
the Newmark sampling approach which, in the study of coseismic landslides, adds the
slope earthquake displacement factor to narrow down the sampling area [214].

Imbalance refers to the misrepresentation of non-landslide samples with respect to the
landslide samples, considering that the non-landslide locations are the majority class in
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most of the AOIs. The data imbalance problem is assessed with undersampling techniques
such as easy ensemble and balance cascade [215]. Another approach for avoiding imbalance
is to use positive unlabelled learning [216,217].

Furthermore, the sampling of the landslide points is also relevant. A study tested
the difference on model performances due to the use of different sampling types in the
landslide areas, i.e., landslide scarp samples, landslide scarp centroids, landslide body
samples, and landslide body centroids [205]. The results showed that using the landslide
scarps samples produced a more accurate model. Another study tackled the generation
of new landslide samples with generative adversarial networks (GANs), improving the
performance of the models [18].

The spatial heterogeneity of landslide locations is assessed in the reviewed articles.
It can be handled with the GeoSOM method to cluster landslide locations based on their
environmental characteristics [218]. Additionally, the spatial heterogeneity of a model
can be tested using spatial cross-validation which consists of splitting the AOI into differ-
ent subregions and analysing the response of the model considering the environmental
characteristics of each subregion [211].

Using different models for each landslide type yields higher accuracy than modelling
all landslide types together [202,219]. In a similar way, a study divided the AOI into
geomorphologically different areas (based on slope, elevation, constituent materials, etc.)
to model and assess the landslide susceptibility per area [220].

Explainable artificial intelligence (XAI) is used to understand the dependence of
the landslide susceptibility models on the CFs. Post hoc XAI models include the us-
age of the SHAP method, e.g., for global and individual prediction explanations of NN
models [211,221], XGB [222], LightGBM [220]. Integrated XAI models include the gener-
alised additive models with structured interactions (GAMI-net) method [223].

Figure 18. Landslide algorithm classes count (see Section 4). Complete dataset available in the
repository (see Section 3). * AB = AdaBoost, STACK = stack of multiple models, GBDT = Gradient
Boosted Decision Trees, XGB = Extreme Gradient Boosting, RF = Random Forest, SVM = Support
Vector Machine, MENT = Maximum Entropy, LOGR = Logistic Regression, RNN = Recurrent Neural
Network, DNN = Deep Neural Network, CNN = Convolutional Neural Network, ANN = Artificial
Neural Network, NB = Naive Bayes, KNN = K-Nearest Neighbours, DT = Decision Trees.
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The generalisation of models is also studied. It consists of training a model in a specific
region and using it to produce the landslide susceptibility map in other regions with
different environmental characteristics. A study tested the generalisation of the XGB model
and used the SHAP method to explain the difference in the CFs’ contributions to the model
per region [224]. Another study followed an unsupervised transferable representation
learning approach to improve the generalisation performance of a regressor [225]. The
generalisation of a model can be further improved with transfer learning. This is key for
assessing landslide susceptibility in areas with few landslide samples [226]. For example,
an AdaBoost model could be improved with transferred samples from an additional
region [226], or more advanced studies could implement transfer-learning strategies such
as case-based reasoning and domain adaptation to generalised additive models [227].

The spatial agreement of susceptibility maps produced of different models is assessed
in few articles. The agreement between the susceptibility maps produced by different
highly accurate models has been tested with the correlation coefficient, ranging from 0.69
to 0.85; afterwards, a combined map was developed with linear regression to integrate
the results of multiple models [54]. McNemar’s test is also used to evaluate whether the
misclassifications between two models are statistically significant [220].

Figure 19 depicts the spatial distribution of landslide susceptibility studies, showing
that China is the leading country on the subject, in the frame of this review, followed by
India, Vietnam, and Iran.

Figure 19. Landslide articles’ distribution based on the first author’s affiliation.

11. Discussion

Modelling the susceptibility of hazardous events with machine learning (ML) and
deep learning (DL) techniques has proven to be a strong approach. However, there are
some considerations which arose after analysing the techniques and methodologies utilised
in the selected articles. The discussion covers three main topics: the first is the importance
of the quality of the training data given the data-driven nature of ML/DL; the second is the
model generalisation and potential use of transfer learning; finally, the third regards the
spatial agreement of susceptibility maps.

11.1. The Importance of the Quality of Training Data

The quality of training data is key for a good model. In the current context, the quality
of the data can be commented on through three aspects. The first is the temporal and spatial
variability of the hazardous event occurrence data and its sampling; the second is the
precise association in time of conditioning factors (CFs) and the occurrences of hazardous
events; and the third is data preprocessing.

The temporal and spatial variability or the heterogeneity of data is important for
the production of a robust model which is able to generalise in unseen locations. The
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sampling of the training data also has an influence on the modelling results. Let us
recall that the susceptibility modelling of hazardous events is based on the positive and
negative occurrences of such events, usually approached as a binary classification problem.
The binary classification tends to be associated with the data imbalance problem. This
is often the case in flood and landslide susceptibility modelling. The majority of the
selected articles ignore this issue by selecting the same number of positive and negative
samples, without considering the fact that the actual ratio of occurrence vs. non-occurrence
locations in the studied areas is not equal [189]. The data imbalance problem is assessed
in few articles with undersampling and oversampling techniques [190,191], and positive
unlabelled learning [216,217]. New approaches for tackling the class imbalance problem
for susceptibility mapping could be analysed in future studies.

The precise association in time of CFs and the occurrences of hazardous events can be
referred to as time-consistent modelling. Although the occurrences of hazardous events
happen at specific times, the CFs at the event locations tend to remain constant in time,
which mostly applies to the flood and landslide studies. Event occurrences in an 11-year
time span are associated with the same time-invariant CFs [45]. It may be the case that
the time span of the event occurrences is not mentioned and still the CFs are constant,
e.g., a total of 243 landslides events were associated with a single Normalised Difference
Vegetation Index (NDVI) map [228]. Additionally, areas closer to recent event occurrences
tend to be more susceptible than areas closer to older events, even if susceptibility maps
tend to be considered time-invariant [229]. The susceptibility maps of hazardous events
can be further improved if the hazardous event occurrences are associated with CFs which
are close to the event in time, of course, depending on the availability of temporal CF data.

The data provided to the model can be enhanced in the preprocessing phase. Many
studies emphasise the feature selection and the analysis of the correlation between CFs and
occurrence data. The feature selection methods range from statistical correlations to ML
approaches, recently including explainable artificial intelligence.

A final comment on this discussion is about the actual lack of data. ML and mostly
DL models need a reasonable amount of data to build accurate models. Some options for
dealing with data scarcity are the generation of synthetic data [18] and transfer learning.
The second is discussed in the following subsection.

11.2. Model Generalisation and Transfer Learning

Model generalisation (MG) and transfer learning (TL) are closely related concepts.
MG refers to the ability to accurately predict susceptibility in unseen locations, even if
the conditioning factors (CFs) of the unseen locations are different from those used for
training. For example, spatial cross-validation, i.e., training a model in a region and
testing it in another region with different environmental characteristics such as slope or
temperature [211]. MG is referred to as the ’spatial heterogeneity’ of a model in the articles
related to landslide susceptibility mapping [218]. On the other hand, TL consists of starting
from a previously trained robust model and fine-tuning it with the data of a new region.
TL is particularly useful for the assessment of areas with scarce data [226] and applies to
both spatial and temporal modelling.

MG was tested in few articles, e.g., by analysing the behaviour of landslide suscepti-
bility in regions with different environmental characteristics [224]. However, the majority
of the articles tested the susceptibility models in a single area of interest. TL has been
implemented in the studies related to the hazards of air pollution, floods, and landslides.
The results of using a TL model were, mostly, more accurate with respect to producing a
model from scratch with only the scarce available data.

The combination of MG and TL supports the production of robust and spatially
heterogeneous susceptibility models which are not only custom-made for a specific region.
This can potentially support the production of susceptibility maps in regions of the world
with scarce training data.
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11.3. Spatial Agreement of Susceptibility Maps

A significant concern identified is the spatial agreement of susceptibility maps pro-
duced by different models. Although accuracy metrics are commonly used to assess the
performance of susceptibility models, these metrics do not always correlate with the spatial
consistency of the maps produced by different models. The susceptibility maps can exhibit
significant spatial differences despite being the product of models with similar accuracies.

Few studies tackled this issue by testing the spatial correlation of the susceptibility
maps. The approaches of the revised studies were two. The first uses the McNemar’s test
and Kendall synergy for evaluating the statistical significance of the misclassification of the
maps [192,220]. The second is to test the spatial correlation of the produced maps and their
eventual combination with linear regression [54].

Nevertheless, in the majority of the articles, there is a lack of assessment of the spatial
agreement among the produced susceptibility maps.

12. Conclusions

There is an increasing trend in the usage of ML/DL techniques for modelling the
susceptibility of the four studied hazards which are air pollution, urban heat islands (UHIs),
floods, and landslides. This reflects how this type of approach is able to assess complex
environmental relationships, usually yielding better results than other approaches.

The majority of the reviewed articles utilised supervised learning techniques. There-
fore, for providing a holistic overview, an ad hoc classification of these techniques has
been provided, underlining their utilisation across the different hazards. The proposed
classification includes ensembles, neural networks, decision trees, support vector machines,
and regression techniques, among others.

From the literature, a general hazard susceptibility modelling approach was consoli-
dated into a schema. This workflow encompasses the entire process, beginning with the
collection and preprocessing of previous hazardous event occurrences and their associ-
ated conditioning factors (CFs), followed by feature selection and correlation analysis,
and posterior modelling and validation. Additionally, the optional spatial agreement and
model/results interpretation is commented. Furthermore, the data sources of CFs common
to multiple hazards were listed if available at the global or continental level, providing the
list of the main sources for meteorological data, digital elevation models, land cover, and
surface indices.

The concept of multi-hazard susceptibility, which involves the combination of indi-
vidual susceptibility maps, was explored in the studies. Most articles utilised a univariate
combination approach, resulting in categorical maps. However, one study employed a
fuzzy inference approach to incorporate experts’ opinion, producing a continuous suscep-
tibility map. This suggests the potential value of exploring alternative methods for more
comprehensive multi-hazard assessments.

Each hazard was discussed in a dedicated section, covering aspects such as its defini-
tion, particular data, modelling approaches, and related considered articles. Each of these
sections also provided an overview of the usage of different techniques, and the spatial
distribution of studies based on the first author’s affiliation. Moreover, we highlighted
novel methodologies such as Explainable Artificial Intelligence (XAI), transfer learning,
model generalisation, and methods to address data imbalance and spatial agreement.

For the UHI, flood, and landslide hazards, random forest, support vector machines,
and artificial neural networks emerged as the overall most frequently used techniques,
primarily because they represent the state-of-the-art in the field. Despite this, there is a
growing interest in exploring novel ML/DL approaches, particularly neural network and
ensemble models with hyperparameter optimisation techniques. On the other hand, air
pollution was the hazard which included the most computationally complex approaches
due to the nature of the problems modelled, i.e., time series or spatiotemporal forecasting
and spatial estimation.



Remote Sens. 2024, 16, 3374 37 of 50

Furthermore, XAI plays a very important role in the modelling of hazard susceptibility
with ML/DL techniques due to the mostly black-box nature of this technique. XAI helps
one understand the model and the model predictions, providing insights into the relations
between a prediction and the contributions of CFs.

To summarise, ML/DL models are a useful tool for the production of hazard sus-
ceptibility maps. The aim is to contribute to the improvement of the resilience of cities
by providing a means to understand the behaviour and distribution of hazardous events.
Ergo, a holistic hazard susceptibility modelling shall not only be accurate but also spatially
validated and rely on XAI to provide human-readable explanations of the results.
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Appendix A. Algorithms Classification

Table A1. Ad hoc classification of algorithms.

Class Algorithms

Bayesian Bayesian General Linear Model (BGLM), Bayesian Logistic Regression (BLOGR), Bayesian Moving Average (BMA), Bayesian Network (BN), Bayesian
Regression (BR), Incremental Learning Bayesian Network (ILBN), Naive Bayes (NB).

Clustering DBScan (DBS), Gaussian Mixture Models (GMM), Hierarchical Clustering (HC), K-Means (KM), Positive Unlabelled Bagging (PUB).
Dimensionality Reduction Flexible Discriminant Analysis (FLDA), Functional Discriminant Analysis (FUDA), Mixture Discriminant Analysis (MIDA), Multivariate Discriminant Analysis

(MDA), Partial Least Square Regression (PLSR), Quadratic Discriminant Analysis (QDA).
Decision Trees Alternating Decision Trees (ADT), Best First Decision Trees (BFDT), C4.5 Decision Tree (C45DT), C5.0 Decision Trees (C50DT), CHi-squared Automatic

Interaction Detection (CHAID), Classification and Regression Tress (CART), Decision Table Classifier (DTC), Decision Trees (DT), Functional Trees (FT), Gradient
Boosting Regression Trees (GBRT), Hoeffding Trees (HT), J48 Decision Tree (JDT), Logistic Model Tree (LMT), M5 model trees (M5P), Naive Bayes Trees (NBT),
Partial Decision Tree (PDT), Reduced Error Pruning Decision Tree (REPDT), Reduced Error Pruning Tree (REPT), Regression Trees (RT), Spatiotemporal Decision
Trees (STDT).

Instance-based Hyperpipes (HP), K-Nearest-Neighbour (KNN), K-Star (KS), Locally Weighted Linear Regression (LWLR), Subspace K-Nearest-Neighbour (SSKNN), Voting
Feature Intervals (VFI).

Rule-based Systems Cubist (CUB), Genetic Algorithm Rule-Set Production (GARP), Rough Set (RS).
Regression Additive Regression (ADR), Complete Subset Regression (CRS), Elastic Regression (ER), Elasticnet Classifier (ENC), Gaussian Process Regression (GPR), General

Linear Model (GLM), Generalised Additive Model (GAM), Kernel Logistic Regression (KLOGR), Kernel-based Regularised Least Squares (KRLS), LASSO
Regression (LASSO), Land Use Regression (LUR), Linear Regression (LR), Logistic Regression (LOGR), Maximum Entropy (MENT), Multivariate Adaptive
Regression Spline (MARS), Principal Component Regression (PCR), Ridge Regression (RR), Volterra (VOL).

Support Vector Machine Least Square Support Vector Machine (LSSVM), Relevance Vector Machine (RVM), Spatiotemporal Support Vector Machine (STSVM), Support Vector Machine
(SVM), Support Vector Regression (SVR).

Statistical Dynamic Conditional Pareto (DCP), Frequency Ratio (FR), Functional Data Analysis (FDA), Response Surface Model (RSM).
Time Series Autoregressive model (AR), Autoregressive Integrated Moving Average (ARIMA), Autoregressive Moving Average (ARMA), Generalised Autoregressive

Conditional Heteroskedasticity (GARCH), Moving Average (MA), Prophet Forecasting Model (PFM), Vector Autoregression (VAR).
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Table A1. Cont.

Class Algorithms

Neural Networks Adaptive Neuro-Fuzzy Inference System (ANFIS), Artificial Neural Network (ANN), Autoencoders (AE), Autocorrelation Error Informer (AEI), Back
Propagation Neural Network (BPNN), Bayesian Neural Network (BNN), Bottleneck Transformer Network (BTN), Convolutional Neural Network (CNN), Deep
Autoencoder (DAE), Deep Belief Network (DBN), Deep Convolutional Neural Network (DCNN), Deep Neural Network (DNN), Dense Convolutional
Networks (DCN), Echo State Neural Network (ESNN), Elman Network (EN), Extreme Learning Adaptive Neuro-Fuzzy Inference System (ELANFIS), Extreme
Learning Machine (ELM), Full Connection Layers (FCL), Fuzzy Neural Network (FNN), Gated Recurrent Unit (GRU), General Regression Neural Network
(GRNN), Generalised Additive Models with Structured Interactions (GAMI), Generative Adversarial Network (GAN), Graph Convolutional Network (GCN),
Graph Long Short-Term Memory (GLSTM), Graph Neural Network (GNN), Hierarchical Neural Network (HNN), Long Short-Term Memory (LSTM), Model
Averaged Neural Network (MANN), Multi-Graph Convolution (MGC), Multi-Layer Perceptron (MLP), Multi-Step Ahead Neural Network (MSANN), Passive
Aggressive Classifier (PA), Quasi-Recurrent Neural Networks (QRNN), Radial Basis Function (RBF), Recurrent Neural Network (RNN), Residual Convolutional
Neural Network (RESCNN), Residual Neural Network (RESNN), Restricted Boltzman Machine (RBM), Self-Adaptive Deep Neural Network (SADNN),
Self-Organising Map (SOM), Sequence2Sequence RNN (SEQ2SEQ), Simple Recurrent Unit (SRU), Spatiotemporal Backpropagation Neural Network (STBPNN),
Spatiotemporal Dynamic Advection (STDA), Spatiotemporal Extreme Learning Machine (STELM), Spatiotemporal Gated Recurrent Unit (STGRU),
Spatiotemporal Informer (STI), Spatiotemporal Long Short Term Memory (STLSTM), Spatiotemporal Multi-Layer Perceptron (STMLP), Spatiotemporal Neural
Networks (STNN), Spatiotemporal Orthogonal Cube (STOC), Spatiotemporal Transformer (STT), Temporal Convolutional Neural Network (TCNN), Temporal
Difference-based Graph Transformer Networks (TDGTN), Transformer Neural Network (TNN), Variational AutoEncoder (VAE), Vision Transformer (ViT),
Wavelet Neural Network (WNN).
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Table A1. Cont.

Class Algorithms

Ensemble Adaboost (AB): AB Decision Table (ABDTA), AB Alternating Decision Trees (ABADT), AB Backpropagation Neural Network (ABBPNN), AB Classifier (ABC),
AB Credal Decision Trees (ABCDT), AB Decision Trees (ABDT), AB Extreme Learning Machine (ABELM), AB Hyperpipes (ABHP), AB Partial Decision Tree
(ABPDT), AB Reduced Error Pruning Decision Tree (ABREPDT), AB Rough Set (ABRS), AB Voting Feature Intervals (ABVFI), AB Credal Decision Tree (ABCDT),
Real AB Hyperpipes (RABHP), Real AB J48 Decision Tree (RABJDT), Real AB Reduced Error Pruning Tree (RABREPDT); Adaptively Resample and Combine
(ARC), Attribute Selected Classifier Artificial Neural Network (ASCANN); Bagging (Ba): Ba Credal Decision Tree (BCDT), Ba Forest Penalising Attribute (BFPA),
Ba Functional Trees (BFT), Ba Artificial Neural Network (BANN), Ba Best First Decision Trees (BBFDT), Ba C4.5 Decision Tree (BC45DT), Ba Credal Decision
Trees (BCDT), Ba Decision Table (BDTA), Bagging Decision Trees (BDT), Ba Deep Neural Network (BDNN), Ba Functional Tree (BFT), Ba Gaussian Process (BGP),
Ba Hyperpipes (BHP), Ba K-Nearest-Neighbour (BKNN), Ba Logistic Model Tree (BLMT), Ba M5 model trees (BM5P), Ba Partial Decision Tree (BPDT), Ba
Random Forest (BRF), Ba Random Subspace Naive Bayes Trees (BRSSNBT), Ba Random Trees (BART), Ba Reduced Error Pruning Decision Tree (BREPDT), Ba
Rough Set (BRS), Ba Sequential Minimal Optimisation (BSMO), Ba Support Vector Machine (BSVM); Bayesian Additive Decision Trees (BADT); Boosted (Bo): Bo
Classification Tree (BCT), Bo Decision Trees (BODT), Bo Generalised Additive Model (BGAM), Bo Generalised Linear Model (BOGLM), Bo Regression Tree
(BRT), Bo Regression Trees (BRT), Bo Artificial Neural Network (BOANN), Bo C4.5 Decision Tree (BOC45DT), Bo Decision Trees (BODT), Bo Logistic Model Tree
(BOLMT), Bo Support Vector Machine (BOSVM), Explainable Bo Machine (EBM), Extreme Gradient Bo (XGB), Extreme Gradient Bo Regression (XGBR),
Generalised Bo Model (GBM), Gradient Bo Decision Trees (GBDT), Gradient Bo Regression Trees (GBRT), Gradient Bo Classifier (GBC), Gradient Bo Extreme
Learning Machine (GBELM), Gradient Bo Machine (GBM), Histogram-based Gradient Bo (HGB), Light Gradient Bo Machine (LGBM), Logit Bo (LOGB), Natural
Gradient Bo (NGB), Stochastic Gradient Bo (SGB); Bootsrap aggregation (BA), Cascade Generalisation Artificial Neural Network (CGANN), Cascade Random
Forest (CRF), Catboost (CB), Conditional Inference Random Forest (CIRF), Cost Sensitive Forest (CSF), Credal Decision Trees (CDT); Dagging (Da): Da
Alternating Decision Trees (DADT), Da Artificial Neural Network (DANN), Da Best First Decision Trees (DABFDT), Da Credal Decision Trees (DCDT), Da
Decision Trees (DDT), Da Functional Tree (DFT), Da HyperPipes (DHP), Da M5 model trees (DM5P), Da Partial Decision Tree (DPDT), Da Reduced Error
Pruning Decision Tree (DAREPDT); Decorate (De): De Best First Decision Trees (DBFDT), De Credal Decision Tree (DECDT), De Decision Trees (DDT), De Forest
Penalising Attribute (DFPA), De HyperPipes (DEHP), De Reduced Error Pruning Decision Tree (DREPDT); Deep Forest (DF), Deepboost (DB), Extremely
Randomised Trees (ERT), Forest Penalising Attribute (FPA), Geographical Random Forest (GRF), Isolated Forest (IF); Multiboost (MB): MB Adaboost Credal
Decision Trees (MBCDT), MB J48 Decision Tree (MBJDT), MB Alternating Decision Trees (MBADT), MB Artificial Neural Network (MBANN), MB Decision Trees
(MBDT), MB Voting Feature Intervals (MBVFI), MB Reduced Error Pruning Decision Tree (MBREPDT); Multiple Kernel Learning (MKL), Rotation forest (ROF):
ROF Credal Decision Tree (ROFCDT), ROF Random Forest (ROFRF), ROF Functional Tree (ROFFT), ROF Reduced Error Pruning Decision Tree (ROFREPDT);
Random Forest (RF): RF Logistic Model Tree (RFLMT), RF Machine (RFM), RF Regression (RFR); Random Naive Bayes (RNB), Random Subspace (RSS): RSS
Alternating Decision Trees (RSSADT), RSS Artificial Neural Network (RSSANN), RSS Best First Decision Trees (RSSBFDT), RSS C4.5 Decision Tree (RSSC45DT),
RSS Credal Decision Tree (RSSCDT), RSS Decision Trees (RSSDT), RSS Functional Trees (RSSFT), RSS J48 Decision Tree (RSSJDT), RSS Partial Decision Trees
(RSSPDT), RSS Random Forest (RSSRF), RSS Reduced Error Pruning Decision Tree (RSSREPDT); Random Trees Classifier (RTC), Spatiotemporal Extreme
Gradient Boost (STXGB), Spatiotemporal Extremely Randomised Trees (STERT), Spatiotemporal Gradient Boosted Decision Tree (STGBDT), Spatiotemporal
Light Gradient Boosting Machine (STLGBM), Spatiotemporal Random Forest (STRF), Stacking multiple models (STACK), Subspace Discriminant (SSD), SysFor
(SF), Ultraboost (UB).
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