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Abstract: For missile-borne platforms, traditional SAR technology consistently encounters two signif-
icant shortcomings: geometric distortion of 2D images and the inability to achieve forward-looking
imaging. To address these issues, this paper explores the feasibility of using a maneuvering trajectory
to enable forward-looking and three-dimensional imaging by analyzing the maneuvering charac-
teristics of an actual missile-borne platform. Additionally, it derives the corresponding resolution
characterization model, which lays a theoretical foundation for future applications. Building on
this, the paper proposes a three-dimensional super-resolution imaging algorithm that combines axis
rotation with compressed sensing. The axis rotation not only realizes the dimensionality reduction of
data, but also can expand the observation scenario in the cross-track dimension. The proposed algo-
rithm first focuses on the track-vertical plane to extract 2D position parameters. Then, a compressed
sensing-based process is applied to extract reflection coefficients and super-resolution cross-track po-
sition parameters, thereby achieving precise 3D imaging reconstruction. Finally, numerical simulation
results confirm the effectiveness and accuracy of the proposed algorithm.

Keywords: maneuvering; forward-looking; three-dimensional imaging; axis rotation; compress
sensing; super-resolution

1. Introduction

Thanks to the ability to provide high-resolution microwave imagery of the observed
area regardless of weather conditions, synthetic aperture radar (SAR) [1–4] has become
one of the most attractive radar techniques. Meanwhile, with the rapid development of
electronic technology and the miniaturization of components in recent years, missile-borne
SAR has become possible. However, different from traditional side-looking SAR, missile-
borne SAR [5–7] often requires the antenna to present a large squint observation angle in
order to detect longer distances and a forward target. Further, various algorithms have
been proposed to solve the above requirements, such as time domain algorithms [8,9] (back-
projection algorithm (BPA) and the fast factorized back-projection algorithm (FFBPA), etc.)
and frequency domain algorithms [10–18] (Range–Doppler algorithm (RDA), Chirp Scaling
algorithm, Nonlinear Chirp Scaling algorithm (NCSA) and Frequency Scaling algorithm
(FSA), etc.). Nevertheless, both the geometric model and the imaging algorithm of the
above missile-borne SAR entail 2D imaging detection through traditional linear trajectory,
the limitations of which are twofold, as follows: the geometric distortion of 3D object on 2D
images; the large squint cannot detect the front object. For solving these issues, the concept
of 3D forward-looking imaging has gained the attention of scholars.
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For achieving 3D forward-looking imaging detection, the primary task is to solve the
issue of a missing aperture compared to traditional SAR. To date, there are two main ways
to complete the aperture: Firstly, multi-channel interference [19–26], such as TomoSAR,
HoloSAR and Linear array SAR, which has no requirements for the flight trajectory of
the platform, but needs to be able to form a large aperture antenna. However, due to the
limited volume of the missile platform, the above technical approaches are difficult to
apply. Secondly, trajectory deviation [27–33], such as CSAR, CLSAR. Their principle is to
form the third dimensional aperture through the trajectory, thereby achieving 3D object
detection. From the technical point of view, it is more suitable for the missile platform,
but the trajectory deviation of the above technical approach is concentrated in the plane
and does not involve the research and analysis of 3D deviation similar to the missile
platform. Following the second technical idea and combining it with an actual ballistic
study, a novel 3D forward-looking super-resolution imaging method for missile-borne
SAR via maneuvering trajectory is proposed, in which we first validate the feasibility of
using maneuvering trajectory for 3D forward-looking through multiple actual ballistic data,
and then the 3D resolution is derived, including an analysis of the influence of different
parameters on the 3D resolution. Based on this, an effective 3D forward-looking imaging
algorithm is proposed, which consist of two steps: axis rotation and super-resolution
extraction through compressed sensing [34–40]. The operation of axis rotation is used to
widen the observation scenario, thereby extracting the position parameter of the vertical and
track dimension. Then, compressed sensing is applied to extract the reflection coefficient
and cross-track position. Finally, the 3D image will be reconstructed effectively.

This paper is organized as follows: Section 2 assesses the feasibility of using maneu-
vering trajectory for the 3D forward-looking approach through multiple actual ballistics,
and then analyzes its 3D resolution in detail; Section 3 describes a 3D forward-looking
super-resolution imaging algorithm, combining axis rotation and compressed sensing;
Section 4 further tests the proposed algorithm through several simulation experiments.
Finally, summations of the whole paper are provided in Section 5.

2. The Understanding of Maneuvering Trajectory for Three-Dimensional and
Forward-Looking Missile-Borne SAR

As illustrated in Figure 1, we here simulate multiple actual ballistic trajectories (note
that the data source cannot be disclosed). Each trajectory exhibits a significant deviation arc
caused by ballistic maneuvers, and these maneuvering paths are typically underutilized
during the guidance process. Given this, we are exploring the potential value of these
trajectories. From Figure 1b,c, it is evident that the maneuvering trajectories include pull
deviations in the X-cross-track, Y-track, and Z-vertical dimensions. From a detection
standpoint, this implies three-dimensional degrees of freedom/apertures, which could
enable the possibility of three-dimensional target detection. To further clarify this, we also
provide the aperture size of the maneuvering trajectories in the standard coordinate system,
as shown in Table 1. It is clear from these data that utilizing these maneuvering trajectories
for three-dimensional imaging detection is indeed feasible.

Table 1. The 3D trajectory drop of multiple simulated actual ballistics.

Ballistic Trajectory Drop-X Trajectory Drop-Y Trajectory Drop-Z

trajectory 1 32,910 m 54,860 m 22,370 m

trajectory 2 9060 m 79,400 m 2440 m

trajectory 3 16,490 m 93,000 m 15,710 m

trajectory 4 34,272 m 82,530 m 34,070 m
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Figure 1. Multiple simulated actual ballistics. (a) The 3D spatial trajectory of ballistics. (b) The 2D 
profile trajectory of ballistics in the Y–Z plane. (c) The 2D profile trajectory of ballistics in the X–Y 
plane. 

Using the parameters in Table 1, we analyze the changes in the view angle between 
the observation angle and the target along the maneuvering trajectory segment. Typi-
cally, an angle within a range of plus or minus 5 degrees is considered to fall within the 
forward-looking category. As shown in Figure 2, the overall angle change caused by the 
maneuvering trajectory remains within 3 degrees, with a slight reduction in the later 
stages due to the trajectory maneuvering back. In summary, it can be concluded that this 
maneuvering trajectory enables both forward-looking and 3D imaging simultaneously, 
offering a distinct advantage over the traditional large squint SAR mode. 

 
Figure 2. The angle change caused by maneuvering trajectory. 

After completing the feasibility analysis of three-dimensional forward-looking im-
aging, another crucial factor to consider is the resolution capability afforded by the ma-
neuvering trajectory, as this directly determines its practical application potential. For 
simplicity, we assume the target is located at the origin, and the position coordinates of 
the missile platform at the -thi  slow time are ( ), ,i i ix y z . The pitch and azimuth angles 
from the missile platform relative to the target are denoted as ( )ϕ it  and ( )θ it , respec-
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Figure 1. Multiple simulated actual ballistics. (a) The 3D spatial trajectory of ballistics. (b) The
2D profile trajectory of ballistics in the Y–Z plane. (c) The 2D profile trajectory of ballistics in the
X–Y plane.

Using the parameters in Table 1, we analyze the changes in the view angle between
the observation angle and the target along the maneuvering trajectory segment. Typi-
cally, an angle within a range of plus or minus 5 degrees is considered to fall within the
forward-looking category. As shown in Figure 2, the overall angle change caused by the
maneuvering trajectory remains within 3 degrees, with a slight reduction in the later stages
due to the trajectory maneuvering back. In summary, it can be concluded that this maneu-
vering trajectory enables both forward-looking and 3D imaging simultaneously, offering a
distinct advantage over the traditional large squint SAR mode.
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After completing the feasibility analysis of three-dimensional forward-looking imag-
ing, another crucial factor to consider is the resolution capability afforded by the maneuver-
ing trajectory, as this directly determines its practical application potential. For simplicity,
we assume the target is located at the origin, and the position coordinates of the missile
platform at the i−th slow time are (xi, yi, zi). The pitch and azimuth angles from the missile
platform relative to the target are denoted as φ(ti) and θ(ti), respectively. Thus, the vector
representation of the line between the target and the platform can be expressed as

r(φ(τi), θ(τi)) = ri


cos(φ(τi)) cos(θ(τi))

cos(φ(τi)) sin(θ(τi))

sin(φ(τi))

 (1)
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in which ri =
√

x2
i + y2

i + z2
i . Assuming that the radar system sends broadband linear

frequency modulation signals and processes them with dechirp, then the echo signal can
be written as

S(τi, θi, φi) = rect
(

t − 2ri/c
Tp

)
exp(−jkri) (2)

where k = 4π( fc + γt)/c ( fc is the center frequency, γ is the frequency modulation rate and
c is the light speed). Define Ω(τi, φi,θi) = kri as the phase history of signal echo propagation;
then, its spatial frequencies at the standard wavenumber spectrum geometry—kx-ky-kz, as
shown in Figure 3—are as follows:

kx = ∂Ω
∂x = k cos(φ(τi)) cos(θ(τi))

ky = ∂Ω
∂y = k cos(φ(τi)) sin(θ(τi))

kz =
∂Ω
∂z = k sin(φ(τi))

(3)
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Figure 3. Wavenumber spectrum geometry, in which kx-ky-kz denotes the standard wavenumber
spectrum geometry and Kh-Kv-Ku denotes the wavenumber spectrum geometry along the line of
sight direction. In addition, the green and blue squares correspond to the Kh-Kv plane and kx-ky

plane, respectively.

In theory, its 3D resolution corresponds to the wavenumber spectrum widths projected
on the kx, ky and kz axes, that is,

δkx = c/2/[max(kx)− min(kx)]

δky = c/2/
[
max

(
ky
)
− min

(
ky
)]

δkz = c/2/[max(kz)− min(kz)]

(4)

However, it is relatively difficult to solve Formula (4) directly due to the irregular, asym-
metric and non-straight maneuvering trajectory. Therefore, we give an alternative—Kh-Kv-Ku,
as shown in Figure 3, which is established based on the maneuvering trajectory. The ad-
vantage of this coordinate system design is that it allows for the detailed calculation of
resolution based on the actual ballistic trajectory. Here, we assume that the azimuth angle
and pitch angle at the initial time of maneuvering trajectory are θ(τ0) and φ(τ0). Then,
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the Kh-Kv-Ku coordinate system can be realized by rotating θ(τ0) along the kz axis and
π/2 − φ(τ0) along the kx axis, respectively. The red grid area denotes the 3D wavenumber
spectrum, which begins at the initial time of the maneuvering trajectory and ends at the
end of the maneuvering trajectory on the horizontal plane. The width is determined by the
bandwidth B = γ · Tp of the transmitted signal. Based on the above coordinate system de-
sign, we define the range dimension by the line-of-sight at initial time, and the normalized
Ku axis can be written as (Λ notes the normalized operation)

Λ
Ku = [cos(φ(τ0)) cos(θ(τ0)), cos(φ(τ0)) sin(θ(τ0)), sin(φ(τ0))] (5)

At this moment, the projection of the wavenumber spectrum along the Ku axis can be
easily calculated, as follows:

BKu = max


4π( fc + B)

c
Λ

Ku ×


cos(φ(τk)) cos(θ(τk))

cos(φ(τk)) sin(θ(τk))

sin(φ(τk))


− min


4π fc

c
Λ

Ku ×


cos(φ(τl)) cos(θ(τl))

cos(φ(τl)) sin(θ(τl))

sin(φ(τl))


 (6)

where k, l(k, l = 1, 2, · · · , N) is the k/l−th sampling position of the maneuvering trajectory.
Form Formula (6), we can infer the value of BKu in advance, while the maneuvering
trajectory is determined. Then, the resolution can be written as

δKu =
c

2BKu
(7)

Furthermore, Figure 4 gives the projection of the wavenumber spectrum along the Kh
and Kv axis, and the definition of normalized Kh axis can be written as

Λ
Kh = [sin(θ(τ0)),− cos(θ(τ0)), 0] (8)
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As shown in Figure 4a, we first project the wavenumber spectrum onto the kx-ky
plane with the range of value being [

[
4π fc cos(φ(τi))/c, 4π( fc + B) cos

(
φ
(
τj
))

/c
]
, i, j =

1, 2, · · · , N], and then project it vertically onto the Kh axis. So, the bandwidth on the Kh
axis can be written as
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BKh = max
{

4π( fc + B)
c

cos(φ(τk)) sin(θ(τk)− θ0)

}
− min

{
4π fc

c
cos(φ(τl)) sin(θ(τl)− θ0)

}
(9)

where θ0 is the azimuth angle at the initial time. Similarly, Figure 4b gives the process of
projection onto the Kv axis, and its bandwidth can be written as

BKv = max
{

4π( fc+B)
c

√
1 − cos(φ(τk))

2 sin(θ(τk)− θ0)
2 · sin(φ0 − φnew_k)

}
−min

{
4π fc

c

√
1 − cos(φ(τl))

2 sin(θ(τl)− θ0)
2 · sin(φ0 − φnew_l)

} (10)

where φ0 is the pitch angle at the initial time and the definition of φnew is

φnew = a sin
sin(φ(τ))√

1 − cos(φ(τ))2 sin(θ(τ)− θ0)
(11)

Based on the above analysis, we can determine the 3D resolution of the rotated Ku-
Kh-Kv coordinate system. This resolution can also be used to calculate the 3D resolution in
the standard coordinate system, as follows:

Bkx

Bky

Bkz

 =


cos φ0 cos θ0 sin θ0 sin φ0 cos θ0

cos φ0 sin θ0 − cos θ0 sin φ0 sin θ0

sin φ0 0 − cos φ0




BKu

BKh

BKv

 (12)

and

δkx ≈ c
2Bkx

= c
2(BKu cos φ0 cos θ0+BKv sin φ0 cos θ0+BKh sin θ0)

δky ≈ c
2Bky

= c
2(BKu cos φ0 sin θ0+BKv sin φ0 sin θ0−BKh cos θ0)

δkz ≈ c
2Bkz

= c
2(BKu sin φ0−BKv cos φ0)

(13)

To validate the accuracy of the 3D resolution derived above, we use the simulation
parameters listed in Table 1. Figure 5 illustrates the 3D envelope at the scenario center,
demonstrating the feasibility of 3D imaging using the maneuvering trajectory. For this
simulation, we selected maneuvering trajectory 2, with a center frequency of 40 GHz and
a transmitting bandwidth of 400 MHz. A comparison between the estimated and actual
values of 3D resolution is presented in Table 2, showing that the estimated values align
closely with the true values. However, since the 3D resolution is fundamentally a multi-
dimensional variable function influenced by factors such as center frequency, transmitting
bandwidth, pitch angle, and azimuth angle, we further investigate the impacts of these
parameters. Here, we define the ranges of center frequency, bandwidth, pitch angle, and
azimuth angle as [20 GHz ∼ 40 GHz], [200 MHz ∼ 800 MHz], [50◦, 80◦] and [30◦, 60◦],
respectively (note that while the angle range is broad, it will only apply to a small portion
of this range in practice). Figure 6 illustrates the variation in 3D resolution. It can be
observed that the 3D resolution is significantly influenced by bandwidth, increasing as both
bandwidth and center frequency rise. From Figure 6a,d,g,j, we see that the resolution in the
kz dimension is less affected by azimuth angle, though its upper bound increases with a
rising pitch angle. In the kx dimension, as shown in Figure 6b,e,h,k, the upper bound of the
resolution increases rapidly with the azimuth angle. Finally, Figure 6c,f,i,l indicate that the
upper bound of the resolution in the ky dimension is inversely proportional to the azimuth
angle but directly proportional to the pitch angle.
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In summary, we have demonstrated the feasibility of 3D forward-looking imaging
using the maneuvering trajectory and conducted a detailed analysis of its resolution and in-
fluencing factors. The subsequent section will focus on the image processing methodology.

3. Three-Dimensional Super-Resolution Imaging Combining Axis Rotation and
Compressed Sensing

Before proceeding with imaging processing, it is essential to first analyze the repre-
sentation of the echo signal. Assuming the 3D scenario is discretized into uniform 3D
grids-Ω ∈ M × N × L and a linear frequency modulation signal is transmitted, the received
echo signal, denoted as Formula (2), can be rewritten as:

S(τi, θi, φi) =
∫
Ω

δΩ · rect
(

t − 2ri/c
Tp

)
exp(−jkri)

=
∫
Ω

δΩ · rect
(

t − 2ri/c
Tp

)
exp

{
−jk

(
xΩ cos(φ(τi)) cos(θ(τi))
+yΩ cos(φ(τi)) sin(θ(τi)) + zΩ sin(φ(τi))

)} (14)

where δΩ denotes the reflection coefficient of Ω. In order to get a more intuitive under-
standing of Formula (14), we perform matrix processing on it, as follows:
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De f ine :

αi =


exp{−jk(x1 cos(φ(τi)) cos(θ(τi)))}
exp{−jk(x2 cos(φ(τi)) cos(θ(τi)))}
...
exp{−jk(xM cos(φ(τi)) cos(θ(τi)))}

βi =


exp{−jk(y1 cos(φ(τi)) sin(θ(τi)))}
exp{−jk(y2 cos(φ(τi)) sin(θ(τi)))}
...
exp{−jk(yN cos(φ(τi)) sin(θ(τi)))}



χi =


exp{−jk(z1 sin(θ(τi)))}
exp{−jk(z2 sin(θ(τi)))}
...
exp{−jk(zL sin(θ(τi)))}

 Ωδ =

[
δ(x1, y1, z1), δ(x2, y1, z1), · · · , δ(xM, y1, z1), · · · ,
δ(x1, yN , zL), · · · , δ(xM, yN , zL)

]

⇓

S = A(K)×(M·N·L) =


α1 ⊗β1 ⊗ χ1
α2 ⊗β2 ⊗ χ2
· · ·
αK ⊗βK ⊗ χK

 · Ωδ

(15)

where ⊗ denotes the Kronecker product [41]. For Formula (15), there are two ways to solve
it. One way is the time domain algorithm, such as BP, FBP or FFBP, which performs imaging
through point by point compensation. However, it is time-consuming and inefficient. The
other way involves solving a linear programming problem efficiently. However, the
computational complexity of this method is primarily determined by the sampling ratio
of Ω, which corresponds to the measurement matrix A. If the size of A is too large, even
traditional toolboxes become inefficient. So, can we combine these two approaches to
reduce the size of A while also minimizing the 3D compensation required by the time
domain algorithm?

To address this, we start by examining the wavenumber spectrum and its correspond-
ing resolution. Figure 5 shows that the resolutions along ky and kz axes are at the sub-meter
level, while that along the kx axis is on the order of ten meters. This discrepancy is also
evident from the wavenumber spectrum projection results in Figure 7. Based on these char-
acteristics, we propose an efficient super-resolution imaging algorithm that utilizes FFBP to
image the ky-kz plane and compress sensing to achieve a super-resolution reconstructed
along the kx axis. However, this algorithm still faces a significant issue: the imaging area
range along the kx axis is equal to its theoretical resolution (i.e., the imaging area range is
constrained by the kx axis resolution, and the scatters with different ky/kz positions within
one kx axis resolution unit will be focused at the same position). Consequently, once the
spacing of any two scatters exceeds the kx axis resolution, the false scatters may appear in
the ky-kz imaging plane. So, what can be done to alleviate this issue? In other words, how
does one reduce the resolution of the kx axis?
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(b) kx-ky wavenumber spectrum projection plane. (c) kz-kx and kz-ky wavenumber spectrum
projection plane.
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In order to solve this, we further analyze the wavenumber spectrum projection results.
Upon closer inspection of Figure 7b, it becomes apparent that the projection bandwidth
along the kx axis is not minimal in the current kx-ky axes definition. Therefore, we propose
rotating the coordinate system to reduce the kx axis resolution and broaden the range of
the observation area. As illustrated in the inset of Figure 7b, we define new kx

′-ky
′ axes by

rotating the ky axis to align with the initial azimuth position (i.e., by rotating θ0 with the kz
axis as the rotation axis). The projection bandwidth of the new coordinate system can then
be expressed as follows: 

Bkx′

Bky′

Bkz′

 =


0 1 0

cos φ0 0 sin φ0

sin φ0 0 − cos φ0




BKu

BKh

BKv

 (16)

For verification, we select two scatters separated by 18 m along the kx axis for ver-
ification. Figure 8a,b present a comparison of the 3D resolution, where the solid line
corresponds to the standard coordinate system and the dashed line corresponds to the
rotated co-ordinate system. Figure 8a indicates that the resolutions along the (ky, kz) and
(ky

′, kz
′) axes are approximately the same, which aligns with the findings from the previous

theoretical analysis in Formula (16). In contrast, Figure 8b illustrates that the resolution
along the kx axis is significantly smaller than that of the kx

′ axis. Based on these conclu-
sions, Figure 8c shows the ky-kz and ky

′-kz
′ reconstructed plane. The ky-kz reconstructed

plane shows a false scatter due to the separation between the two scatters exceeding the
resolution along the kx aixs. However, the ky

′-kz
′ reconstructed plane eliminates the false

scatter, indicating that the kx
′ axis resolution is greater than the separation between the

two scatters. Therefore, we can conclude that the coordinate system rotation approach is
indeed feasible.
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Figure 8. The 3D resolution verification after axis rotation. (a) The comparison between the kz/ky

axis and the kz
′/ky

′ axis. (b) The comparison between the kx axis and kx’ axis. (c) The comparison
between ky-kz and ky

′-kz
′ focused plane.

After the ky
′ and kz

′ positions are extracted from the ky
′-kz

′ reconstructed plane, the
next task is to get the kx

′ positions of all scatters. As the ky
′ and kz

′ positions are known,
the set Ω will reduce to M × J, and J ≪ N, L denotes the number of extracted positions.
Therefore, both the measurement matrix A and reflection coefficient vector Ωδ will achieve
dimensionality reduction, and can be rewritten as

A′
K×(M×J×J) = [α1 ⊗ (β1 · χ1),α2 ⊗ (β2 · χ2), · · · ,αK ⊗ (βK · χK)]

T

Ω′
δ =

[
δ(x1, y1, z1), δ(x2, y1, z1), · · · , δ(xM, y1, z1), · · · , δ

(
x1, yJ , zJ

)
, · · · , δ

(
xM, yJ , zJ

)]
⇓

S = A′ · Ω′
δ

(17)
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For Formula (17), we can convert it into the following typical linear programming
problem [32]:

minimize
∥∥A′ · Ω′

δ − S
∥∥2

2 + λ
∥∥Ω′

δ

∥∥
1 (18)

where ∥·∥1 denotes the L1 norm and λ > 0 is the regularization parameter. To solve
the Formula (18), high-quality implementations of the interior-point method including
l1-magic [42] and PDCO [43] can be used, which utilize iterative algorithms, such as the
conjugate gradients (CG) [44] or LSQR algorithm [45], to compute the search step. After
applying compressed sensing, we obtain the reflection coefficients and positions of all
scatters. Summarizing the entire processing procedure, the flowchart of the proposed
dimension-reduction super-resolution 3D imaging algorithm is shown in Figure 9.
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4. Simulation and Results

Here, we conduct the simulation verification in three steps. First, we verify the
feasibility of the proposed 3D imaging algorithm using multiple scatters with both identical
and varying reflection coefficients. Next, we explore the boundaries of the algorithm and
examine the effects of signal-to-noise ratio and sampling rate on imaging performance.
Finally, we validate the algorithm using point cloud models of actual complex target objects.
It is important to note that the maneuvering trajectory II is used in all the simulations below.

4.1. 3D Imaging for Multi-Scatters with the Same and Varying Reflection Coefficients

To verify the feasibility of the proposed imaging algorithm, we not only present
the final imaging results, but also demonstrate the corresponding parameter extraction
process. First, consider Figure 10, where five scatters with varying reflection coefficients
are depicted. Figure 10a,b show the ky

′-kz
′ positions and the kx

′ positions, respectively. It
is also evident that the vertical axis in Figure 10b corresponds to the reflection coefficients.
In Figure 10a, it can be observed that the number of scatters is reduced to three. This
reduction occurs because the three scatters distributed along the kx

′ axis fall within a single
kx

′ axis resolution unit, causing them to overlap in the ky
′-kz

′ focused plane. To separate
these three scatters, we apply compressed sensing to achieve super-resolution extraction, as
shown in Figure 10b, where the five scatters reappear, and their kx

′ positions and reflection
coefficients are effectively extracted. Finally, the complete 3D imaging result and detailed
comparisons are presented in Figure 10c and Table 3. Similarly, Figure 11 presents the
3D imaging process for seven scatters with identical reflection coefficients, with detailed
comparisons shown in Table 4. Overall, both the 3D imaging and parameter comparison
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results demonstrate that the proposed algorithm is a feasible and high-performance 3D
imaging processing method for the maneuvering trajectory.
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Table 3. Detailed parameter comparison of five scatters with varying reflection coefficients.

Parameters Reflection Coefficients 3D Positions

True 1.00 2.40 3.60 1.60 3.00 (0, 0, 0) (0, 4, 4) (0, 4, −4) (4, 0, 0) (−4, 0, 0)
Reconstructed 0.948 2.40 3.578 1.558 2.973 (−0.02, 0, 0) (0.10, 4, 4) (−0.13, 4, −4) (4.07, 0, 0) (−4.05, 0, 0)

Table 4. Detailed parameter comparisons of seven scatters with same reflection coefficients.

Parameters Reflection Coefficients 3D Positions

True 10.00 10.00 10.00 10.00 10.00 10.00 10.00 (0, 0, 0) (0, 4, 4) (0, 4,
−4) (4, 0, 0) (−4, 0,

0) (0, 4, 0) (0, −4,
0)

Reconstructed 9.83 9.94 9.81 9.93 9.93 9.90 9.86 (−0.02,
0, 0)

(0.10, 4,
4)

(−0.13,
4, −4)

(4.07, 0,
0)

(−4.05,
0, 0)

(0.05, 4,
0)

(−0.08,
−4, 0)

4.2. Effects of the Signal-to-Noise Ratio and Sampling Rate on 3D Imaging Processing

Figure 12 illustrates the effects of signal-to-noise ratio (SNR) and sampling rate on 3D
imaging processing, where real scatters are denoted by blue pentagrams and reconstructed
scatters by red hexagons. The positions of the multi-scatters are referenced in Table 4.
As shown in Figure 12a,d,g, the shapes of the multi-scatters are well reconstructed at
a high sampling rate of M = 12,000, even with an SNR of −10 dB. In the middle row,
where M = 8000, the performance slightly declines compared to M = 12,000, with a small
offset appearing along the kx

′ axis. Meanwhile, Figure 12c,f show similar performances to
M = 8000, but in Figure 12i, there is a phenomenon of missing scatters, and the shapes of the
multi-scatters are not properly reconstructed. To further evaluate the resolution capability
in detail, we here analyze it by reconstructing the position error of a multi-point target with
two perspectives: the number of kx/cross-track dimension grids and the signal-to-noise
ratio of echoes. Here, the definition of reconstruction error is

Perror =
K

∑
i=1

(xi − x̃i)

K
(19)

where K denotes the number of scatters, and xi and x̃i represent the true kx position
and estimated kx position, respectively. Then, we conduct 100 Monte Carlo experiments
to provide a relatively clear demonstration of resolution ability, as shown in Figure 13.
Regarding doubts as to why this approach is used to evaluate resolution capability, here, we
will provide an explanation. The three-dimensional imaging process proposed in this paper
is essentially achieved by extracting and reconstructing the target scattering point position
and reflection coefficient. Therefore, we evaluate the resolution capability of the proposed
algorithm by using the positioning accuracy of scattered points in three-dimensional space.

Figure 13 shows three curves, each corresponding to a different number of sampling
grids. Overall, when the SNR is negative, the positioning error across all curves is relatively
high. However, at an SNR of 0 dB, there is a noticeable drop in positioning error, which
continues to decrease as the SNR increases. A further comparison of the curves for different
sampling grids reveals that the more sampling grids there are, the smaller the positioning
error becomes. This can be explained by the fact that increasing the number of sampling
grids results in a finer division of the kx axis space, thereby increasing the likelihood of
accurately sampling the true target position. However, this also leads to a corresponding
increase in computational load.
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result with SNR = 0 dB, M = 8000; (f) 3D imaging result with SNR = 0 dB, M = 4000; (g) 3D imaging
result with SNR = −10 dB, M = 12,000; (h) 3D imaging result with SNR = −10 dB, M = 8000; (i) 3D
imaging result with SNR = −10 dB, M = 4000.
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4.3. 3D Imaging Verification with the Point Cloud Models of Actual Complex Tank Object

To further validate the practical applicability of the proposed algorithm, we selected
a complex tank object for verification. The 3D imaging results are presented in Figure 14,
with the sampling rate set at M = 50,000 and SNR = 10 dB. In Figure 14b, the 2D position
parameters of the tank object in the ky

′-kz
′ focused plane are shown, where the shape of the

tank is clearly discernible. The image appears clear, with sidelobes effectively eliminated, as
indicated by the ample minimum value on the color bar. Figure 14c,d display the projections
of the 3D imaging result in the kx

′-ky
′ and kx

′-kz
′ planes, respectively. Although a slight

offset is observed, the overall shape of the tank remains identifiable. Overall, the tank object
is accurately and effectively reconstructed, demonstrating the feasibility and practicality
of the proposed algorithm for the 3D imaging of complex real-world objects under a
maneuvering trajectory.
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5. Conclusions

Building on a comprehensive understanding of actual ballistic trajectories, this paper
delves into the maneuvering trajectory characteristics of missile platforms, verifying the
feasibility of 3D forward-looking imaging. This research represents a significant innovation
in the field of missile technology, offering a viable technical solution for achieving forward
detection in three-dimensional space.
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The main contributions of this study are as follows. First, it introduces and validates
the use of maneuvering trajectories for 3D forward-looking imaging—a concept not ex-
plored in the existing literature. Second, the paper provides an in-depth analysis of 3D
resolution and its influencing factors, offering valuable theoretical insights that can inform
future ballistic design. Finally, the study proposes a novel 3D super-resolution imaging
algorithm that combines axis rotation with compressed sensing. The effectiveness and
accuracy of this algorithm are validated through several rigorous experiments.

Author Contributions: Conceptualization, software and validation, writing—review and editing,
T.G. and Y.G.; methodology, T.G. and Y.G.; software and validation, C.Z. and T.Z.; investigation,
J.Z.; data curation, T.G.; writing—original draft preparation, T.G.; writing—review and editing, Y.G.;
supervision, G.L.; funding acquisition, Y.G. All authors have read and agreed to the published version
of the manuscript.

Funding: This research was supported by several foundations, including the National Natural Science
Foundation of China under Grant No. 62301438 and Grant No. 62301598, the Fundamental Research
Funds for the Central Universities under Grant D5000230324, and the Natural Science Basic Research
Program of Shaanxi under Grant No. 2023-JC-QN-0638.

Data Availability Statement: The data presented in this study are available on request from the corre-
sponding author. The data are not publicly available due to privacy and highly military confidential.

Conflicts of Interest: The authors declare that they have no known financial interests or personal
relationships that could have appeared to influence the work reported in this paper. All authors have
contributed to this research without any bias or vested interest from external entities. Furthermore, the
research was conducted independently of any commercial or governmental influence. The findings
and conclusions presented are solely based on scientific analysis and data, ensuring objectivity
and academic integrity. The authors affirm that there are no conflicts related to the publication of
this manuscript, including affiliations, financial support, or intellectual property. Any potential
conflicts that could arise in the future will be promptly disclosed and addressed according to the best
ethical practices.

References
1. Cumming, I.G.; Wong, F.H. Digital Processing of Synthetic Aperture Radar Data: Algorithm and Implementation; Artech House:

Norwood, MA, USA, 2005.
2. Moreira, A.; Prats-Iraola, P.; Younis, M.; Krieger, G.; Hajnsek, I.; Papathanassiou, K.P. A tutorial on synthetic aperture radar. IEEE

Geosci. Remote Sens. Mag. 2013, 1, 563–583. [CrossRef]
3. Chen, X.; Sun, G.-C.; Xing, M.; Li, B.; Yang, J.; Bao, Z. Ground Cartesian back-projection algorithm for high squint diving Tops

SAR imaging. IEEE Trans. Geosci. Remote Sens. 2021, 59, 5812–5827. [CrossRef]
4. Deng, Y.; Sun, G.-C.; Han, L.; Wang, Y.; Zhang, Y.; Xing, M. 2-D Wavenumber Domain Autofocusing for High-Resolution Highly

Squinted SAR Imaging Based on Equivalent Broadside Model. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5220515. [CrossRef]
5. Xu, H.P.; Zhu, Y.D.; Kang, C.H.; Zhou, Y.Q. A new deramp NECS imaging algorithm for missile borne hybrid SAR. Chin. J.

Electron. 2011, 20, 769–774.
6. Liu, D.; Shi, H.; Liu, H.; Yang, T.; Guo, J. Enhanced Forward-Looking Missile-Borne Bistatic SAR Imaging with Electromagnetic

Vortex. IEEE Sens. J. 2023, 23, 8478–8490. [CrossRef]
7. Qian, G.; Wang, Y. Analysis of Modeling and 2-D Resolution of Satellite–Missile Borne Bistatic Forward-Looking SAR. IEEE Trans.

Geosci. Remote Sens. 2023, 61, 5222314. [CrossRef]
8. Li, X.; Zhou, S.; Yang, L. A new fast factorized back-projection algorithm with reduced topography sensibility for missile-borne

SAR focusing with diving movement. Remote Sens. 2020, 12, 2616. [CrossRef]
9. Wang, C.; Sun, H.; Zhang, X.-Y.; Zhang, R. A unified back-projection correction algorithm for squint SAR based on SPECAN

processing. In Proceedings of the 2019 IEEE International Conference on Signal, Information and Data Processing (ICSIDP),
Chongqing, China, 11–13 December 2019; pp. 1–4.

10. Tang, S.; Zhang, L.; Guo, P.; Zhao, Y. An omega-K algorithm for highly squinted missile-borne SAR with constant acceleration.
IEEE Geosci. Remote Sens. Lett. 2014, 11, 1569–1573. [CrossRef]

11. Chen, S.; Zhao, H.; Zhang, S.; Chen, Y. An extended nonlinear chirp scaling algorithm for missile borne SAR imaging. Signal
Process. 2014, 99, 58–68. [CrossRef]

12. Li, Z.; Xing, M.; Liang, Y.; Gao, Y.; Chen, J.; Huai, Y.; Zeng, L.; Sun, G.C.; Bao, Z. A frequency-domain imaging algorithm for
highly squinted SAR mounted on maneuvering platforms with nonlinear trajectory. IEEE Trans. Geosci. Remote Sens. 2016, 54,
4023–4038. [CrossRef]

https://doi.org/10.1109/MGRS.2013.2248301
https://doi.org/10.1109/TGRS.2020.3011589
https://doi.org/10.1109/TGRS.2023.3328392
https://doi.org/10.1109/JSEN.2022.3233084
https://doi.org/10.1109/TGRS.2023.3335908
https://doi.org/10.3390/rs12162616
https://doi.org/10.1109/LGRS.2014.2301718
https://doi.org/10.1016/j.sigpro.2013.12.017
https://doi.org/10.1109/TGRS.2016.2535391


Remote Sens. 2024, 16, 3378 17 of 18

13. Zhang, Y.; Lu, C.; Zhang, H.; Li, H. A Modified CSA for Missile-Borne SAR with Curved Trajectory. In Proceedings of the 2020
IEEE Radar Conference (RadarConf20), Florence, Italy, 21–25 September 2020; pp. 1–6.

14. Saeedi, J. Feasibility study and conceptual design of missile-borne synthetic aperture radar. IEEE Trans. Syst. Man Cybern. Syst.
2020, 50, 1122–1133. [CrossRef]

15. Zhu, D.; Xiang, T.; Wei, W.; Ren, Z.; Yang, M.; Zhang, Y.; Zhu, Z. An extended two step approach to high-resolution airborne and
spaceborne SAR full-aperture processing. IEEE Trans. Geosci. Remote Sens. 2021, 59, 8382–8397. [CrossRef]

16. Tang, S.; Zhang, X.; He, Z.; Chen, Z. Practical Issue Analyses and Imaging Approach for Hypersonic Vehicle-Borne SAR with
Near-Vertical Diving Trajectory. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5204316. [CrossRef]

17. Dong, L.; Han, S.; Zhu, D.; Mao, X. A Modified Polar Format Algorithm for Highly Squinted Missile-Borne SAR. IEEE Geosci.
Remote Sens. Lett. 2023, 20, 4012905. [CrossRef]

18. Zheng, Y.; Guan, J.; Jiang, G.; Yi, W.; Yang, X.; Yin, H. A Modified Algorithm for Highly Squinted Missile-Borne SAR Imaging
with Large Acceleration. IEEE Access 2024, 12, 48640–48653. [CrossRef]

19. Zebker, H.; Goldstein, R. Topographic mapping from interferometric SAR observations. J. Geophys. Res. 1986, 91, 4993–4999.
[CrossRef]

20. Zhu, X.; Bamler, R. Tomographic SAR inversion by L1-norm regularization—The compressive sensing approach. IEEE Trans.
Geosci. Remote Sens. 2010, 48, 3839–3846. [CrossRef]

21. Bi, H.; Zhang, B.; Hong, W.; Zhou, S. Matrix-Completion-Based Airborne Tomographic SAR Inversion under Missing Data. IEEE
Geosci. Remote Sens. Lett. 2015, 12, 2346–2350. [CrossRef]

22. Reale, D.; Fornaro, G.; Pauciullo, A.; Zhu, X.; Bamler, R. Tomographic imaging and monitoring of buildings with very high
resolution SAR data. IEEE Geosci. Remote Sens. Lett. 2011, 8, 661–665. [CrossRef]

23. Gu, T.; Liao, G.; Li, Y.; Liu, Y.; Guo, Y. Airborne Downward-Looking Sparse Linear Array 3-D SAR Imaging via 2-D Adaptive
Iterative Reweighted Atomic Norm Minimization. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5202513. [CrossRef]

24. Gu, T.; Liao, G.; Li, Y.; Guo, Y.; Liu, Y. DLSLA 3-D SAR Imaging via Sparse Recovery through Combination of Nuclear Norm and
Low-Rank Matrix Factorization. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5208213. [CrossRef]

25. Shao, M.; Su, C.; Zhang, Z.; Zhang, B. The application of the alternate descent conditional gradient method in tomographic SAR
off-grid imaging. In Proceedings of the IET International Radar Conference (IRC 2023), Chongqing, China, 3–5 December 2023;
pp. 3259–3264.

26. Tian, W.; Xie, X.; Deng, Y.; Yang, Z.; Hu, C. An Improved Imaging Method Based on Optimal Topographic Imaging Plane
Reconstruction for Nonlinear Trajectory SAR. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5216217. [CrossRef]

27. Meng, D.; Hu, D.; Ding, C. A New Approach to Airborne High Resolution SAR Motion Compensation for Large Trajectory
Deviations. Chin. J. Electron. 2012, 21, 764–769.

28. Gorovyi, I.M.; Bezvesilniy, O.O.; Vavriv, D.M. Estimation of uncompensated trajectory deviations and image refocusing for
high-resolution SAR. In Proceedings of the 2015 German Microwave Conference, Nuremberg, Germany, 16–18 March 2015;
pp. 186–189.

29. Ran, L.; Liu, Z.; Zhang, T.; Li, T. Autofocus for correcting three dimensional trajectory deviations in synthetic aperture radar.
In Proceedings of the 2016 CIE International Conference on Radar (RADAR), Guangzhou, China, 10–13 October 2016; pp. 1–4.

30. Ran, L.; Liu, Z.; Zhang, L.; Li, T.; Xie, R. An Autofocus Algorithm for Estimating Residual Trajectory Deviations in Synthetic
Aperture Radar. IEEE Trans. Geosci. Remote Sens. 2017, 55, 3408–3425. [CrossRef]

31. Liu, Y.; Wang, W.; Pan, X.; Gu, Z.; Wang, G. Raw Signal Simulator for SAR with Trajectory Deviation Based on Spatial Spectrum
Analysis. IEEE Trans. Geosci. Remote Sens. 2017, 55, 6651–6665. [CrossRef]

32. An, Z.; Xiong, F.; Li, C. A Trajectory Tracking Method Using Convex Optimization. In Proceedings of the 2020 39th Chinese
Control Conference (CCC), Shenyang, China, 27–29 July 2020; pp. 3281–3287.

33. Chen, X.; Li, Z.; Yang, Y.; Qi, L.; Ke, R. High-Resolution Vehicle Trajectory Extraction and Denoising from Aerial Videos. IEEE
Trans. Intell. Transp. Syst. 2021, 22, 3190–3202. [CrossRef]

34. Donoho, D.L. Compressed sensing. IEEE Trans. Theory 2006, 52, 1289–1306. [CrossRef]
35. Kim, S.-J.; Koh, K.; Lustig, M.; Boyd, S.; Gorinevsky, D. An Interior-Point Method for Large-Scale ℓ -Regularized Least Squares.

IEEE J. Sel. Top. Signal Process. 2007, 1, 606–617. [CrossRef]
36. Austin, C.D.; Ertin, E.; Moses, R.L. Sparse signal methods for 3D radar imaging. IEEE J. Sel. Topics Signal Process. 2011, 5, 408–423.

[CrossRef]
37. Tang, G.; Bhaskar, B.N.; Shah, P.; Recht, B. Compressed sensing off the grid. IEEE Trans. Inf. Theory 2013, 59, 7465–7490. [CrossRef]
38. Qiu, W.; Zhou, J.; Zhao, H.; Fu, Q. Three-Dimensional Sparse Turntable Microwave Imaging Based on Compressive Sensing.

IEEE Geosci. Remote Sens. Lett. 2015, 12, 826–830. [CrossRef]
39. Bu, H.; Tao, R.; Bai, X.; Zhao, J. A Novel SAR Imaging Algorithm Based on Compressed Sensing. IEEE Geosci. Remote Sens. Lett

2015, 12, 1003–1007. [CrossRef]
40. Peng, X.; Tan, W.; Hong, W.; Jiang, C.; Bao, Q.; Wang, Y. Airborne DLSLA 3-D SAR image reconstruction by combination of polar

formatting and L1 regularization. IEEE Trans. Geosci. Remote Sens. 2016, 54, 213–226. [CrossRef]
41. Weidner, R.J.; Mulholland, R.J. Kronecker product representation for the solution of the general linear matrix equation. IEEE

Trans. Autom. Control. 1980, 25, 563–564. [CrossRef]

https://doi.org/10.1109/TSMC.2017.2718114
https://doi.org/10.1109/TGRS.2020.3033120
https://doi.org/10.1109/TGRS.2023.3254164
https://doi.org/10.1109/LGRS.2023.3324327
https://doi.org/10.1109/ACCESS.2024.3382946
https://doi.org/10.1029/JB091iB05p04993
https://doi.org/10.1109/TGRS.2010.2048117
https://doi.org/10.1109/LGRS.2015.2477854
https://doi.org/10.1109/LGRS.2010.2098845
https://doi.org/10.1109/TGRS.2021.3058299
https://doi.org/10.1109/TGRS.2021.3100715
https://doi.org/10.1109/TGRS.2024.3422664
https://doi.org/10.1109/TGRS.2017.2670785
https://doi.org/10.1109/TGRS.2017.2731364
https://doi.org/10.1109/TITS.2020.3003782
https://doi.org/10.1109/TIT.2006.871582
https://doi.org/10.1109/JSTSP.2007.910971
https://doi.org/10.1109/JSTSP.2010.2090128
https://doi.org/10.1109/TIT.2013.2277451
https://doi.org/10.1109/LGRS.2014.2363238
https://doi.org/10.1109/LGRS.2014.2372319
https://doi.org/10.1109/TGRS.2015.2453202
https://doi.org/10.1109/TAC.1980.1102357


Remote Sens. 2024, 16, 3378 18 of 18

42. Candès, E.; Romberg, J. L-Magic: A Collection of MATLAB Routines for Solving the Convex Optimization Programs Central to
Compressive Sampling 2006. Available online: www.acm.caltech.edu/l1magic/ (accessed on 7 July 2024).

43. Saunders, M. PDCO: Primal-Dual Interior Method for Convex Objectives 2002. Available online: https://github.com/
mxsaunders/pdco (accessed on 5 September 2024).

44. Hager, W.W.; Zhang, H. A survey of nonlinear conjugate gradient methods. Pac. J. Optim. 2006, 2, 35–58. [CrossRef]
45. Paige, C.; Saunders, M. LSQR: An algorithm for sparse linear equations and sparse least squares. ACM Trans. Math. Softw. 1982, 8,

43–71. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

www.acm.caltech.edu/l1magic/
https://github.com/mxsaunders/pdco
https://github.com/mxsaunders/pdco
https://doi.org/10.1006/jsco.1995.1040
https://doi.org/10.1145/355984.355989

	Introduction 
	The Understanding of Maneuvering Trajectory for Three-Dimensional and Forward-Looking Missile-Borne SAR 
	Three-Dimensional Super-Resolution Imaging Combining Axis Rotation and Compressed Sensing 
	Simulation and Results 
	3D Imaging for Multi-Scatters with the Same and Varying Reflection Coefficients 
	Effects of the Signal-to-Noise Ratio and Sampling Rate on 3D Imaging Processing 
	3D Imaging Verification with the Point Cloud Models of Actual Complex Tank Object 

	Conclusions 
	References

