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Abstract: Effective semantic segmentation of Airborne Laser Scanning (ALS) point clouds is a crucial
field of study and influences subsequent point cloud application tasks. Transformer networks have
made significant progress in 2D/3D computer vision tasks, exhibiting superior performance. We
propose a multilevel geometric feature embedding transformer network (MGFE-T), which aims
to fully utilize the three-dimensional structural information carried by point clouds and enhance
transformer performance in ALS point cloud semantic segmentation. In the encoding stage, compute
the geometric features surrounding tee sampling points at each layer and embed them into the
transformer workflow. To ensure that the receptive field of the self-attention mechanism and the
geometric computation domain can maintain a consistent scale at each layer, we propose a fixed-
radius dilated KNN (FR-DKNN) search method to address the limitation of traditional KNN search
methods in considering domain radius. In the decoding stage, we aggregate prediction deviations at
each level into a unified loss value, enabling multilevel supervision to improve the network’s feature
learning ability at different levels. The MGFE-T network can predict the class label of each point in
an end-to-end manner. Experiments were conducted on three widely used benchmark datasets. The
results indicate that the MGFE-T network achieves superior OA and mF1 scores on the LASDU and
DFC2019 datasets and performs well on the ISPRS dataset with imbalanced classes.

Keywords: self-attention mechanism; geometric feature embedding; fixed-radius dilated KNN search;
multilevel loss aggregation; point cloud semantic segmentation

1. Introduction

As a form of 3D data representation, point clouds precisely convey the spatial location
and three-dimensional structure of objects. Airborne LiDAR is an efficient method for
acquiring large-scale surface point cloud data, significantly contributing to fields such as
real-world 3D modeling, topographic surveying, urban planning, and design. Achieving
high-precision semantic segmentation of point cloud data is crucial in the point cloud data
processing workflow, as it directly influences the effectiveness of downstream tasks in
leveraging the value of point cloud data.

Semantic segmentation techniques based on deep learning have seen significant ad-
vancements in the field of computer vision. However, unlike rasterized image data, point
clouds are irregular, unordered, and unstructured, meaning that semantic segmentation
frameworks popular in the image domain cannot be directly applied to point clouds. Early
scholars primarily focused on converting irregular point clouds into regular data structures
to facilitate the use of Convolutional Neural Networks (CNNs) for deep learning tasks.
The multi-view CNN [1,2] projects 3D point clouds or shapes onto multiple 2D images,
integrates multiple-view information into a single and compact shape descriptor, and then
applies a 2D convolutional network for classification. Beyond projection to 2D images,
some scholars have also applied 3D convolutional networks to process data through point
cloud voxelization [3,4]. While converting point clouds to regular structures successfully
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enables the application of convolutional networks to point cloud tasks, the conversion into
2D images results in the loss of 3D information, and the voxelization approach is limited
by its 3D volumetric resolution and the computational cost of 3D convolutions.

To achieve point-based semantic segmentation, it is essential for the network model
to exhibit both permutation invariance and rotation invariance with respect to the set of
points. The PointNet [5] network innovatively employs symmetric functions, such as max
and sum functions, to address the challenge of the disordered nature of point cloud data. To
tackle the limitation of PointNet’s disregard for local feature information, the subsequently
proposed PointNet++ [6] further improves network performance by aggregating local point
features while progressively downsampling the point cloud at the set abstraction layer.
PointNet++ marks a significant maturation in point-based deep learning tasks. So far, net-
work architectures for point cloud learning tasks can be broadly categorized into four models:
the MLP network [6–8], the point convolutional network [9–12], the graph convolutional
network [13–15], and the transformer network [16,17]. These network structures share a
common approach to semantic segmentation tasks. In the network encoding stage, point-
wise domain information is comprehensively extracted and aggregated in high-dimensional
space. In the network decoding stage, the high-dimensional feature information is restored
to the original point positions via interpolation. Notably, the residual connection [18] has
become an indispensable module in deep learning networks, directly adding the inputs of
the modular units with the outputs in the form of a skip connection, effectively solving the
vanishing gradient problem in deep neural networks.

Unlike other point cloud data, ALS point clouds exhibit distinct characteristics. Firstly,
objects are horizontally distributed with a significant variation in size. Secondly, there is
a minimal overlap in the vertical direction, though elevation changes between points are
significant. Lastly, the point cloud is characterized by sparsity and non-uniform density
while encompassing a wide area. To cope with the new challenges posed by large-scale
point clouds, scholars have re-examined the limitations of existing networks in outdoor
scenes and made improvements. LGENet [19] resampled the point cloud on a 0.24 m
grid during the data loading stage to mitigate the negative effects of the inhomogeneous
densities of the ALS point cloud. Several studies [20–23] have added spectral information
to the initial input point features to enrich the initial point features. To adapt the network
to the complex structure of objects in the ALS point cloud, additional features based on geo-
metric computation, such as structural features [22], height above ground [24], and normal
vectors [25], were added to the network, yielding significant improvements. Additionally,
some attention mechanisms have also been added to segmentation networks to improve the
accuracy of point-by-point classification. GADH-Net [26] designed an elevation attention
module to adjust the final category probability maps, which improves the recognition
of categories with relatively stable elevation distributions. Jiang [27] used FCN [28] to
separate ground and non-ground points and designed a Ground-Aware Attention module
to improve the segmentation performance of small, sparse urban objects. GraNet [29]
integrated Attention Pooling and a Global Relation-Aware Attention module to capture
global attention from the structural relations of all points and channels, positioned at the
network’s end to enhance high-dimensional features. Additionally, the network structure
based on the idea of dense connectivity [26,30] has also been applied to the ALS point cloud
task, yielding better results.

Inspired by the self-attention mechanism, we propose a novel ALS semantic segmen-
tation network named Multilevel Geometric Feature Embedding Transformer (MGFE-T).
The main contributions of this paper are as follows:

(1) The GFE-T module is specifically designed to enhance the network’s ability to learn
and capture local geometric features. By embedding these geometric features into the
point transformer, the network effectively learns local geometric structure features,
enhancing its classification capability.

(2) We propose the FR-DKNN method, which effectively addresses the issue of incon-
sistent neighborhood ranges in KNN due to uneven point cloud distributions by
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using dilated K-nearest neighbor queries within a fixed radius. This ensures that
the network retains robust discriminative capability when learning neighborhood
features of the points.

(3) Based on the proposed GFE-T module and FR-DKNN method, we design MGFE-
T, a transformer ALS point cloud semantic segmentation network with multilevel
geometric feature embedding and multilevel loss aggregation (M-Loss) supervising
the network at each level.

(4) We conducted experiments on the LASDU, DFC2019, and ISPRS datasets, demonstrat-
ing the excellent performance of the proposed method. Ablation experiments were
conducted to verify the effectiveness of each module in the network. Cross-validation
across datasets demonstrated the reliable generalization ability of the network.

The remainder of this paper is organized as follows: Section 2 presents the overall
network architecture and elaborates on the GFE-T module and FR-DKNN method. Section 3
describes the dataset, evaluation metrics, and experimental results. Section 4 presents
ablation experiments to verify the effectiveness of the proposed module. Section 5 examines
the generalization capabilities of the proposed method. Section 6 concludes the paper with
a summary.

2. Methods

In this section, we first describe the overall semantic segmentation network structure,
highlighting its backbone network and the application of new modules. Then, we discuss
the embedding of geometric features in Section 2.2 and propose a fixed-radius KNN query
method in Section 2.3. Finally, we detail the loss function used for network training in
Section 2.4.

2.1. Overall Architecture

Following Point Transformer [31], we have developed a new network architecture
named MGFE-T, as illustrated in Figure 1. The MGFE-T network consists of standard
encoding and decoding stages. The input is segmented point cloud data containing N
points, each with five attributes: X, Y, Z (the coordinates of the points normalized to the
origin), reflection intensity, and height. In the downsampling stage, we used the Farthest
Point Sampling [6] (FPS) method to gradually reduce the number of training points and
minimize memory usage. In the upsampling stage, we applied spatial interpolation to
combine features from the downsampling stage and gradually restore feature dimensional-
ity. The outputs of each network layer were aggregated using multilevel loss, and a fully
connected layer was employed to map high-dimensional features to their corresponding
semantic classes.
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To enable efficient extraction of high-dimensional and geometric features, we designed
the GFE-T block and embedded it into the encoding stage of the network. The structure of
the GFE-T block is depicted in Figure 2. To ensure a stable receptive field for the sampling
points in each layer when computing local features, we used FR-DKNN for domain search.
The residual connection was also used to transform the GFE-T Block’s focus from learning
the mapping function to learning the residual term, improving the deep network’s ability
to learn features.
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2.2. Geometric Feature Embedding Transformer
2.2.1. Point Transformer

Self-attention networks have achieved notable success in natural language process-
ing [32–34] and 2D image analysis [35–37]. Since the self-attention operator is insensitive to
the arrangement and cardinality of the input elements, it is also suitable for point cloud
data structures with inherently disordered nature.

In the self-attention operator of Point Transformer, the initialization of the query
(Q), key (K), and value (V) matrices is crucial. The query and key matrices calculate the
attention score for each point, which is then used to compute a weighted sum with the value
matrix, ultimately producing the operator’s output. To allow the network to understand
the positional relationship between the points, positional encoding was integrated into
the computation of the score and value. For the point set X (i) =

{
Pj
}k

j=1 consisting of the
center point Pi and its k nearest points, the center point feature xi is transformed by the
self-attention operator into the feature yT

i , which can be expressed as follows:

yT
i = ∑xj∈X (i)

(
mlp

(
φ
(

xj
)
− ψ(xi) + δ

))
⊙
(
α
(
xj
)
+ δ
)

(1)

δ = mlp
(

pj − pi
)

(2)

where xj represents the features of the neighborhood points, φ, ψ, and α denote the linear
mapping or multilayer perceptron used to initialize the Q, K, and V, δ is the positional
encoding, and pi and pj are the 3D spatial coordinates.

2.2.2. Geometric Feature Embedding

ALS point cloud contains various objects that have unique geometric and structural
differences. For instance, points on roofs and floors have planar properties, while points
on trees have significant elevation differences and uneven distributions. Therefore, it is
plausible that prior computational geometric properties can provide essential reference
information for point cloud segmentation tasks.

We computed a set of low-dimensional geometric features within the point domain
while extracting local features based on the Transformer. Specifically, we derived the low-
dimensional features that characterize the geometric structure of the point set X (i) based
on its covariance matrix eigenvalues λ1 ≥ λ2 ≥ λ3, including neighborhood linearity Lλ,
planarity Pλ, sphericity Sλ, omnivariance Oλ, anisotropy Aλ, and change of curvature Cλ,
defined as follows:

Lλ = λ1−λ2
λ1

Pλ = λ2−λ3
λ1

Sλ = λ3
λ1

Oλ = 3
√

λ1λ2λ3

Aλ = λ1−λ3
λ1

Cλ = λ3
λ1+λ2+λ3

(3)
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In addition to the aforementioned features, we computed two additional attributes
based on the absolute elevation value of each point in the point set X (i), the elevation range
Rz = zmax − zmin and the elevation variance Varz. The final geometrically computed low-
dimensional feature was defined as an 8-dimensional vector [Lλ, Pλ, Sλ, Oλ, Aλ, Cλ, Rz, Varz].

To tackle the challenge of integrating high-dimensional abstract features with low-
dimensional geometric features, we propose a module called the Geometric Feature Em-
bedding Transformer (GFE-T). Specifically, the geometric computational features are trans-
formed into high-dimensional features with an equal number of channels as yT

i , employing
a sequential combination of a linear layer, a batch normalization layer, and a ReLU activa-
tion layer. Subsequently, the two sets of features are concatenated, and the final output is
projected to match the original input features’ channel count through the MLP (Multi-Layer
Perceptron). After the GFE-T module transforms the input features, its output feature yi
can be expressed as:

yi = mlp
(

cat
(

yT
i , LBR([Lλ · · ·Varz])

))
(4)

The structure of GFE-T is illustrated in Figure 3. After passing through the GFE-T
module, the points not only carry high-dimensional features derived from the learning
mechanism but also improve the ability of the features to characterize geometric structures.
As a result, the network can better focus on the geometric structure differences between
different objects more effectively.
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2.3. Fixed-Radius Dilated KNN

The main methods for querying adjacent points in point cloud segmentation tasks
include KNN, Ball Query, and Dilated KNN [9,24,38]. Due to the embedding of low-
dimensional geometric features in the GFE-T module, new requirements have been in-
troduced for domain search. Firstly, the k neighboring points of all sampling points at
any level should form a region with a consistent spatial scale, enabling the calculation of
comparable geometric features. Secondly, k neighboring points should provide sufficient
receptive fields so that centroid points can gather more domain information.

We propose a Fixed-radius Dilated KNN Search (FR-DKNN) method, which builds
upon the Dilated KNN [24]. As illustrated in Figure 4, compared to other methods, FR-
DKNN not only effectively expands the receptive field but also ensures the spatial scale
consistency of domain search results. FR-DKNN is highly effective at extracting stable local
features within a domain, particularly when processing point cloud data characterized by
significant density variations or uneven distributions.
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During the process of querying neighboring points for sampling point P, our method
initially selects d × k points, with d representing the dilation rate. These points are then
filtered using the constraint radius Rl . The value of Rl is determined by the hierarchical
level at which the current point is situated. After filtering, k points are randomly selected
from the remaining points to obtain the final query result. The FR-DKNN method can be
formalized as follows:

FR_DKNNP = Randomk

(
FRl

{
Pj

∣∣∣ ∀Pj ∈ N dk
0 (P)

})
(5)

where N dk
0 (P) denotes the domain comprising d × k neighboring points around the center

point P, FRl represents the radius constraint, and Randomk indicates the final random
sampling process. Notably, when d is sufficiently large, FR-DKNN becomes equivalent to
Ball Query, and when d is set to 1, it is consistent with KNN query results.

During implementation, the radius constraint for each network layer is pre-evaluated
to ensure optimal performance. For a given dataset, the first step involves downsampling
it L times. This generates a series of point clouds, denoted as {S0, S1, S2, . . . , Sl}, where Sl
represents the point cloud at each network layer. A point-by-point dilated KNN query is
conducted to calculate the neighborhood radius. The neighborhood radii of all points are
sorted, and the median radius is chosen as the constraint radius for the FR-DKNN method
at the current layer. To enhance efficiency, random sampling may be used when Sl contains
numerous points, selecting only a portion of the points for domain radius estimation in
order to avoid time-consuming operations on all points.

2.4. Multilevel Loss Aggregation

Semantic segmentation networks usually rely solely on the final layer’s output to
compute the prediction error, overlooking the downsampled features from intermediate
layers. However, the downsampled point cloud in intermediate layers still provides
valuable semantic signals that can optimize the output of each layer in the decoding
phase. Inspired by RFFS-Net [30], as illustrated in Figure 1, we employed a multilevel loss
aggregation (M-loss) approach. Specifically, during the downsampling stage, we recorded
the true labels of each sampling point, mapped the decoding stage outputs at corresponding
levels to the predicted labels, computed the losses at each level, and represented the final
loss of the network as the sum of these losses, denoted as Loss = ∑L

l=0 λlLl . The loss value
at each level is calculated as follows:

Ll = − 1
N ∑N

i=1

(
c·yi,c·log

exp(xn,c)

∑C
j=1 exp

(
xn,j
)) (6)

where yi,c denotes the value of the c-th element in the one-hot encoded label of the sample
point. exp

(
xn,j
)

represents the predicted probability for the j-th class output by the network.
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c represents the weight assigned to each class label during loss computation. If the
number of points in the j-th class is Mc, then the weight c is computed as follows:

c =
1/

√
Mc

∑C
j 1/Mj

(7)

3. Results
3.1. Datasets

To assess the effectiveness of the proposed method, we conducted experiments on
three widely recognized benchmark datasets: LASDU [39], DFC2019 [40], and ISPRS [41].

(1) LASDU: The LASDU dataset is a large ALS point cloud data collected at an altitude
of about 1200 m in the Heihe River Basin in northwest China. As shown in Figure 5,
the points in the dataset are labeled into a total of five classes: ground, buildings, trees,
low vegetation, and artifacts. Considering the balanced distribution of the labels of each
category in each section, the publisher suggests using Sections 2 and 3 as training data and
Sections 1 and 4 as test data.
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(2) DFC 2019: The DFC2019 dataset is the ALS point cloud data provided by the Data
Fusion Contest 2019, collected from the urban areas of Jacksonville, Florida and Omaha,
Nebraska, USA. As shown in Figure 6, the 110 files in the dataset are regular independent
regions in which each point is labeled into six classes: ground, high vegetation, building,
water, bridge deck, and unlabeled.

Remote Sens. 2024, 16, x FOR PEER REVIEW 8 of 19 
 

 

 
Figure 5. Preview of the LASDU dataset. 

(2) DFC 2019: The DFC2019 dataset is the ALS point cloud data provided by the Data 
Fusion Contest 2019, collected from the urban areas of Jacksonville, Florida and Omaha, 
Nebraska, USA. As shown in Figure 6, the 110 files in the dataset are regular independent 
regions in which each point is labeled into six classes: ground, high vegetation, building, 
water, bridge deck, and unlabeled. 

 
Figure 6. Preview of the DFC2019 dataset (3 of 110 files). 

Consistent with existing research work, we divided the 110 files into two groups, one 
containing 100 files for the training set and the other containing 10 files as the test set. The 
distribution of each category in the training and test sets is shown in Table 1. 

Table 1. Class distribution statistics for the training and test sets in the DFC2019 dataset. 

Class 
Training Data Test Data 

Number Ratio Number Ratio 
Ground 49,517,558 64.63% 4,701,150 66.78% 

High_veg 11,152,546 14.56% 944,234 13.41% 
Building 10,136,608 13.23% 915,618 13.01% 

Water 1,295,778 1.69% 80,387 1.14% 
Bridge 869,547 1.13% 90,032 1.28% 

Unlabeled 3,642,710 4.75% 308,205 4.38% 
Sum 76,614,747 7,039,626 

(3) ISPRS: The ISPRS dataset was obtained by airborne LiDAR scanning in Vaihingen, 
Germany. As shown in Figure 7, the ISPRS dataset was divided into two parts: a training 
set and a test set. The points in the dataset were labeled into a total of nine classes: pow-
erline, low vegetation, impervious surfaces, car, fence/hedge, roof, facade, shrub, and tree. 

Figure 6. Preview of the DFC2019 dataset (3 of 110 files).

Consistent with existing research work, we divided the 110 files into two groups, one
containing 100 files for the training set and the other containing 10 files as the test set. The
distribution of each category in the training and test sets is shown in Table 1.
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Table 1. Class distribution statistics for the training and test sets in the DFC2019 dataset.

Class
Training Data Test Data

Number Ratio Number Ratio

Ground 49,517,558 64.63% 4,701,150 66.78%
High_veg 11,152,546 14.56% 944,234 13.41%
Building 10,136,608 13.23% 915,618 13.01%

Water 1,295,778 1.69% 80,387 1.14%
Bridge 869,547 1.13% 90,032 1.28%

Unlabeled 3,642,710 4.75% 308,205 4.38%

Sum 76,614,747 7,039,626

(3) ISPRS: The ISPRS dataset was obtained by airborne LiDAR scanning in Vaihingen,
Germany. As shown in Figure 7, the ISPRS dataset was divided into two parts: a training set
and a test set. The points in the dataset were labeled into a total of nine classes: powerline,
low vegetation, impervious surfaces, car, fence/hedge, roof, facade, shrub, and tree.
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3.2. Implementation Details

To optimize the efficiency and performance of the experimental process, we parti-
tioned the large-scale scenes into regular data blocks and downsampled them according to
the density distribution of the points. Specifically, the LASDU dataset was divided into
40 m × 40 m blocks, the DFC2019 dataset into 80 m × 80 m blocks with 0.5 m voxel down-
sampling, and the ISPRS dataset into 24 m × 24 m blocks with 0.24 m voxel downsampling.
The overlap of neighboring blocks was set to 10 m across all datasets.

Before feeding the block data into the network for training, we translated the point
coordinates to the origin of the 3D coordinate system to stabilize the coordinates in the
horizontal and vertical directions. To further enhance the training data, we performed
data augmentation and generalization on each block, including random rotation around
the Z-axis, random jitter of point positions, and scaling adjustments. When input into the
network, each point is represented as a five-dimensional row vector [X, Y, Z, I, H], where
X, Y, and Z are the coordinates of the points after translation, I denotes intensity, and H
represents relative height. During testing, we applied the same data partitioning strategy
as used in training but without augmentation.

All experiments were conducted using the PyTorch framework on a GPU 3060 machine
for all datasets. The dilation rate was configured to d = 2, and the number of neighboring
points was set to k = [8, 16, 16, 16, 16]. For each layer, the program automatically evaluated
the constraint radius. Additionally, the loss coefficient for each level in the M-loss module
was set to λ = [1.0, 0.2, 0.2, 0.2, 0.2].



Remote Sens. 2024, 16, 3386 9 of 18

3.3. Evaluation Metrics

Commonly used metrics in the semantic segmentation task of ALS point clouds include
Intersection over Union (IoU) and its mean value (mIoU), the F1 score and its mean value
(mF1), as well as overall accuracy (OA). The F1 score offers a comprehensive evaluation
of precision and recall for each category, which is particularly useful when dealing with
imbalanced sample distributions, effectively assessing the classification performance of
individual categories.

In this study, as in most research works, the F1 score, mean F1 score (mF1), and overall
accuracy (OA) were selected as evaluation indices. The formulas for these metrics are
calculated as follows:

Precisionc =
TPc

TPc + FPc
(8)

Recallc =
TPc

TPc + FNc
(9)

F1c =
precisionc × recallc

precisionc + recallc
(10)

OA =
∑C

c=1 TPc

Number o f all points
(11)

where TP represents true positives, FP denotes false positives, and FN indicates false nega-
tives.

3.4. Experimental Results
3.4.1. Result of the LASDU

The segmentation results for the LASDU dataset are summarized in Table 2, which
include results from other ALS point cloud segmentation networks for comparison. The
MGFE-T network demonstrates a commendable F1 score across all categories, particularly
excelling in ground, low vegetation, and artifacts. The overall accuracy (OA) and mean
F1 score (mF1) achieved the highest levels reported to date, significantly outperforming
other methods with scores of 89.1% and 80.1, respectively. Although the F1 score for
tree segmentation is 1.1 lower than that of VD-LAB [42], the score for low vegetation is
0.9 higher, indicating that our model tends to confuse some trees with low vegetation.
Figure 8 illustrates the segmentation results for the MGFE-T network and the baseline
(Point Transformer), highlighting that the incorporation of the GFE-T module notably
enhanced the segmentation results for building and artifact categories. This improvement
is attributed to the distinct geometric features, such as flat-roof structures, which are more
easily distinguishable.

Table 2. Comparison of results between MGFE-T and other ALS point cloud semantic segmentation
methods on the LASDU dataset (bold indicates the best results, underlining indicates the second-
best results).

Method Ground Building Trees Low_veg Artifacts OA mF1

GraNet [29] 89.9 95.8 86.1 64.7 42.4 86.2 75.8
VD-LAB [42] 91.2 95.5 87.2 73.5 44.6 88.0 78.4

RFFS [30] 90.9 95.4 86.8 71.0 44.4 87.1 77.7
RRDAN [43] 91.6 96.6 84.1 66.3 48.3 87.7 77.4
MCFN [44] 91.6 96.7 85.9 67.1 43.8 88.0 77.0

IPCONV [45] 90.5 96.3 85.8 59.6 46.3 86.7 75.7
Ours 92.6 96.6 86.1 74.4 50.7 89.1 80.1
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3.4.2. Result of the DFC2019

The semantic segmentation results of our method on the DFC2019 dataset are pre-
sented in Table 3. The F1 score of the MGFE-T network exceeds 90 across all categories,
with notable enhancements in the water and bridge categories. The overall accuracy (OA)
of the entire test set is 98.5%. Although this is only 0.1 higher than the second-ranked
LGENet [19], the mean F1 (mF1) score of 95.7 represents a substantial improvement. We
visualized several segmentation results, and Figure 9 demonstrates that, compared to the
baseline, the MGFE-T network significantly improves the classification of high vegetation
and mitigates the issue of the baseline network confusing building roofs with bridge decks.

Table 3. Comparison of results between MGFE-T and other ALS point cloud semantic segmentation
methods on the DFC2019 dataset (bold indicates the best results, underlining indicates the second-
best results).

Method Ground High_veg Building Water Bridge OA mF1

LGENet [19] 99.3 98.3 92.8 47.4 79.1 98.4 83.4
DA-Net [21] 99.3 97.6 92.7 41.6 85.1 98.3 83.3

Local and [27] 98.9 96.1 90.2 41.6 83.7 94.8 81.4
RFFS-Net [30] 96.6 96.1 88.7 77.8 81.0 94.3 88.0
RRDAN [43] 99.1 98.1 95.8 62.8 82.3 98.1 87.6
IPCONV [45] 98.8 97.3 92.9 92.1 58.2 97.1 87.9

Ours 99.6 96.6 95.0 94.0 93.3 98.5 95.7
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Figure 9. Visualization of semantic segmentation results for some regions of the DFC2019 dataset
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of MGFE-T, respectively).

3.4.3. Result of the ISPRS

The segmentation results of the ISPRS dataset are shown in Table 4. Compared
with other methods, the MGFE-T network demonstrates a better performance in low_veg,
imp_surf, roof, facade, and tree. The OA of our method is 85.2%, which achieves the
best result. Disappointingly, the F1 score for fence/hedge was not good, resulting in an
mF1 score of only 71.3. This is due to two reasons. Firstly, there are fewer samples of
fence/hedge in the dataset, resulting in the network not being able to learn its features
adequately. Second, fence/hedge has a complex interleaved spatial distribution with shrub
and their elevations are similar, resulting in a large number of fence/hedge being incorrectly
classified into shrub. The visualization of the segmentation results of the MGFE-T network
and the baseline on the ISPRS dataset is given in Figure 10, which shows that our proposed
method has a significant improvement in the classification performance.

Table 4. Comparison of results between MGFE-T and other ALS point cloud semantic segmentation
methods on the ISPRS dataset (bold indicates the best results, underlining indicates the second-
best results).

Method Power Low_veg Imp_surf Car Fence/Hedge Roof Facade Shrub Tree OA mF1

GraNet [29] 67.7 82.7 91.7 80.9 51.1 94.5 62.0 49.9 82.0 84.5 73.6
VD-LAB [42] 69.3 80.5 90.4 79.4 38.3 89.5 59.7 47.5 77.2 81.4 70.2

RFFS [30] 75.5 80.0 90.5 78.5 45.5 92.7 57.9 48.3 75.7 82.1 71.6
RRDAN [43] 72.2 81.7 91.2 84.6 44.8 94.7 65.2 52.0 85.3 84.9 74.6
MCFN [44] 74.5 82.3 91.8 79.0 37.5 94.7 61.7 48.7 83.3 84.4 72.6

IPCONV [45] 66.8 82.1 91.4 74.3 36.8 94.8 65.2 42.3 82.7 84.5 70.7
Ours 70.7 84.0 91.8 79.6 23.6 95.0 63.4 49.5 84.3 85.2 71.3
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The ISPRS benchmark datasets have attracted numerous researchers to conduct ex-
periments since their release. These experiments encompass machine learning methods,
deep learning, and a combination of both. Pirotti et al. [46] enabled the Random Forest
(RF) method to achieve favorable classification results by testing various combinations of
feature numbers and decision trees. Atik et al. [47] evaluated the performance of various
machine learning algorithms on the dataset, including RF and Support Vector Machines
(SVMs). Additionally, there are also studies [23,48] that use RF for feature optimization,
subsequently employing these features to train deep learning models. The results of the
aforementioned methods are presented in Table 5. In addition, to better illustrate the
comparison, our method and the RRDAN method with the best-combined performance
are also added. Since these methods focus on different categories, we show F1 scores and
their averages for only three categories that are addressed in all methods. From the results,
it can be seen that the Random Forest method achieves the best results; however, in the
experiments by Atik et al. [47], SVM results are better than RF, but the results achieved
still lag behind the other methods. This suggests that the performance of machine learning
methods depends on the selection of initial features and that higher results are achieved
when appropriate features and parameter settings are selected. Comparing the two listed
methods that combine machine learning and deep learning, OFFS-Net [23] achieves the best
results and outperforms all methods in the categories Imp_surf and Roof, while the method
of H-MLP [48] does not highlight the advantages of combining the two methods. From
the results in Tables 4 and 5, it can be concluded that the deep learning-based methods are
more stable, which is, of course, due to the well-designed network model architecture and
the long time of training on large-scale datasets. In addition, the comparison results also
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illustrate that if additional effective features can be input before training, this will improve
the performance of the network.

Table 5. Experimental results of machine learning and deep learning methods on the ISPRS dataset.
OFFS-Net(S) is a deep learning method that does not use optimal features.

Method Imp_surf Roof Tree mF1

Machine Learning RF (Pirotti et al. [46]) 92.6 96.2 84.1 91.0
SVM (Atik et al. [47]) 87.7 74.6 67.8 76.7

Deep Learning
RRDAN [43] 91.2 94.7 85.3 90.4

Ours 91.8 95.0 84.3 90.4
OFFS-Net(S) [23] 90.2 94.6 82.3 89.0

Combined ML and DL
H-MLP [48] 83.3 94.7 - -

OFFS-Net [23] 92.4 95.3 83.6 90.4

4. Ablation Study
4.1. Impact of Query Radius on Performance

In the FR-DKNN method, radius selection varies with point density across datasets,
making a uniform radius unsuitable for all datasets. Therefore, pre-evaluating the radius is
essential. Specifically, before training, the 2 × k nearest points for each point are queried
to form a local spherical neighborhood, and the local radius for each point is computed.
This process results in a sorted list of N radius values, Rsort = [r1, r2, r3, . . . , rn(max)]. To
further explore the impact of radius size, nine comparative experiments are conducted
using radii located at the 10–90% positions of the sorted results.

As shown in Figure 11, while the overall accuracy (OA) value does not exhibit sig-
nificant variation, the average F1 score displays a clear trend of initially increasing and
then decreasing. The best result is achieved when the radius is set at the 50th percentile.
According to these comparative experiment findings, we establish the query radius for the
FR-DKNN method as the 50th percentile of the radius sorted list for each dataset before
network training. It is worth noting that the radius is computed based on the 2 × k nearest
neighbors. Even if the chosen radius considers only 50% of the points, most points still
have at least k neighbors for feature extraction.
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4.2. Impact of Network Depth on Performance

We conducted comparative experiments on the LASDU dataset to validate the ra-
tionale for configuring the MGFE-T network with four layers. Two control experiments
were conducted, involving three and five downsampling operations on the input data,
respectively. As shown in Table 6, with a network depth of four layers, the model achieved
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an overall accuracy (OA) of 80.1% and an average F1 score (mF1) of 89.1, demonstrating
the best performance. These results indicate that increasing the number of layers to four
yields the optimal model performance, striking a balance between accuracy and the F1
score. Fewer than four layers may limit the network’s learning capacity, while more than
four layers may result in overfitting or diminishing returns in performance.

Table 6. Experimental results with varying network depths.

Layers OA (%) mF1

3 79.3 88.9
4 80.1 89.1
5 79.0 88.8

4.3. The Effectiveness of the Proposed Module

Compared with the baseline network Point Transformer, the MGFE-T network has
three improvements: the GFE-T module, the FR-DKNN method, and the M-Loss strategy.
We performed ablation experiments on the LASDU dataset, and the experimental results are
shown in Table 7, which shows that our proposed semantic segmentation network MGFE-T
(Model A) improves by 2.5 in mF1 and by 1.1% in overall OA compared to the baseline.

Table 7. Ablation experiments on the LASDU dataset (bold indicates the best values, wavy lines
indicate the worst values). Model A refers to our proposed MGFE-T method. Model B does not
embed geometric features, Model C uses KNN for neighborhood queries instead of FR-DKNN, and
Model D does not utilize multilevel loss aggregation.

Model GFE-T FR-DKNN M-Loss Ground Building Trees Low_veg Artifacts OA mF1

baseline 91.7 96.1 86.5 70.6 43.1 88.0 77.6
A

√ √ √
92.6 96.6 86.1 74.4 50.7 89.1 80.1

B
√ √

92.0 96.4 86.4 73.3 49.2 88.5 79.5
C

√ √
92.0 96.4

:::
86.2

:::
72.0

:::
48.6

:::
88.4

:::
79.0

D
√ √

92.2 96.6 86.3 72.1 49.7 88.7 79.4

(1) Efficacy of GFE-T: Compared with Model A, Model B removes the GFE-T module.
From the experimental results, it can be seen that the addition of GFE-T has a stable
improvement effect on the classification accuracy of all five categories, indicating that
geometric features play an effective role in ALS point cloud semantic segmentation.

(2) Efficacy of FR-DKNN: Compared with Model A, Model C removes the FR-DKNN
module. From the experimental results, it can be seen that the FR-DKNN module effectively
improves the classification ability of the network for trees and low_veg. This is due to
the uneven distribution of the points of this type of object, and the addition of the radius
constraint can effectively extract the local high-dimensional features and geometric features
and enhance the network’s recognition ability.

(3) Efficacy of M-Loss: From the experimental results of Model A and Model D, it can
be seen that the addition of the M-Loss strategy improves both the overall OA and mF1,
indicating that it is effective in supervising the network across multiple levels.

4.4. Complexity and Runtime Analysis

This study investigates the influence of the different modules of the MGFE-T network
on its complexity and running time. Table 8 presents the differences in parameter counts,
complexity, and execution time among various models trained over 200 epochs with the
same input data. Relative to the baseline network (Point Transformer), our method (Model
A) exhibits a 14.57% increase in parameter counts and a 10.65% increase in complexity. This
increase is primarily due to the integration of geometric features from point clouds, which
are subsequently fused with self-learned features. The experimental results of Model A
and Model B indicate that embedding geometric features increases the model’s parameters
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by 1.1 M and computational complexity by 1 G. A comparison between Model A and
Model D reveals that the inclusion of M-Loss does not significantly increase the parameter
count. The experimental results for Model C demonstrate that the FR-DKNN method does
not significantly impact the parameter count or complexity of the model. This is because
the FR-DKNN module operates independently of convolutional operators and does not
involve the computation of model parameter weights.

Table 8. Parameters, complexity, and runtime of different models (200 epochs). The “M” stands for
million, and the “G” stands for billion. Model A refers to our proposed MGFE-T method. Model
B does not embed geometric features, Model C uses KNN for neighborhood queries instead of
FR-DKNN, and Model D does not utilize multilevel loss aggregation.

Model #Params #FLOPs #Time

baseline 7.41 M 9.39 G 2 h 48 m
A (Ours) 8.49 M 10.39 G 3 h 29 m

B (No GFE-T) 7.59 M 9.61 G 3 h 11 m
C (No FR-DKNN) 8.49 M 10.39 G 2 h 55 m

D (No M-Loss) 8.31 M 9.84 G 3 h 27 m

Custom operators are extensively used in point cloud deep learning tasks. Therefore,
in addition to comparing model parameters, it is essential to compare the total program
execution times of different models. Table 8 illustrates the training time for the ISPRS dataset
over 200 epochs, including all steps from the initial data input, partitioning, augmentation
to the final output of model training results. Compared to the baseline model, the runtime
of MGFE-T has increased by 41 min. The FR-DKNN method, which applies a fixed-
radius constraint to KNN queries, is mainly responsible for this increase in processing
time. In addition, comparing Model A and Model B, the GFE-T module only added
18 min (9.4%) to the training time, thanks to our streamlined approach to geometric feature
computation. Meanwhile, it is worth noting that the M-Loss has a negligible impact on the
additional training and testing time required for the network. This is due to the fact that it
predominantly relies on CUDA-based dense computations.

5. Generalization Performance

To further validate the generalization capability of our model, two experiments were
conducted. The first experiment involved training the model on the LASDU dataset
and then testing it on the LASDU test set. The second experiment involved training the
model on the DFC2019 dataset and then applying it directly to the LASDU test set without
retraining. Due to differences in semantic categories between the two datasets, performance
was evaluated on the three common categories: Ground, Building, and Trees. Precision, as
defined by Equation (8), was used as the evaluation metric.

Table 9 presents the results of the generalization experiments. The increase in Preci-
sion for Ground in Experiment 2 by 6.2 can be attributed to the DFC2019 dataset providing
more training data, which allowed the network to learn more representative ground
features. Given the similarity of ground features across datasets, the higher precision
in Experiment 2 compared to Experiment 1 is reasonable. Conversely, the accuracy for
Building and Trees decreased slightly due to differences in building types and tree species
between the LASDU and DFC2019 datasets. This is because the features learned from
DFC2019 were insufficient for accurately representing Building and Trees in LASDU. This
highlights the importance of dataset diversity and representativeness for model general-
ization. Overall, the results presented in Table 9 demonstrate that our method exhibits
reliable generalization capability.
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Table 9. Generalization performance results on the LASDU dataset.

Experiment Ground Building Trees

exp. 1 Train on LASDU, Test on LASDU 92.6 96.2 84.1
exp. 2 Train on DFC2019, Test on LASDU

(∆)
98.8

(+6.2)
95.6

(−0.6)
82.2

(−1.9)

6. Conclusions

In this paper, we proposed a multilevel geometric feature embedding transformer
for airborne point cloud semantic segmentation networks, embedding low-dimensional
geometric features to enhance the network’s ability to learn local structural features during
feature extraction via the self-attention mechanism. To address the issue of KNN queries
providing scale-inconsistent neighborhood ranges, we introduced the FR-DKNN method,
extending KNN neighborhood point queries within a fixed-radius range to tackle the
challenge of uneven point cloud density. Finally, we employed a multilevel loss aggregation
strategy to achieve multilevel supervised learning in the network. Experiments conducted
on three popular benchmark datasets demonstrate the outstanding performance of the
proposed method. Additionally, we conducted generalization experiments and ablation
studies on the DFC2019 and LASDU datasets, further validating the effectiveness of the
proposed method.

The transformer self-attention mechanism performs well in urban scenes and shows
potential for other point cloud processing tasks. In future research, we aim to explore its
performance in weakly supervised semantic segmentation and instance segmentation and
extend its application to other environments, such as railways and forests.
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