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Abstract: To address the problem that conventional neural networks trained on radar echo data
cannot handle the phase of the echoes, resulting in insufficient information utilization and limited
performance in detection and classification, we extend neural networks from the real-valued neural
networks to the complex-valued neural networks, presenting a novel algorithm for classifying
small sea surface targets. The proposed algorithm leverages an improved residual fusion network
and complex time–frequency spectra. Specifically, we augment the Deep Residual Network-50
(ResNet50) with a spatial pyramid pooling (SPP) module to fuse feature maps from different receptive
fields. Additionally, we enhance the feature extraction and fusion capabilities by replacing the
conventional residual block layer with a multi-branch residual fusion (MBRF) module. Furthermore,
we construct a complex time–frequency spectrum dataset based on radar echo data from four
different types of sea surface targets. We employ a complex-valued improved residual fusion
network for learning and training, ultimately yielding the result of small target classification. By
incorporating both the real and imaginary parts of the echoes, the proposed complex-valued improved
residual fusion network has the potential to extract more comprehensive features and enhance
classification performance. Experimental results demonstrate that the proposed method achieves
superior classification performance across various evaluation metrics.

Keywords: target classification; residual network; complex neural networks; time–frequency spectra

1. Introduction

For a considerable period, the detection and classification of small targets on the sea
surface have posed significant challenges to maritime detection, primarily attributed to
the intricate sea surface environment, the interference of sea clutter, and the faint returns
from small targets on the sea. These small targets typically exhibit minimal radar cross
section (RCS) and slow movement. In addition, the physical mechanism of sea clutter
generation is complex and depends on many factors, resulting in sea clutter exhibiting
inhomogeneous non-stationary and non-Gaussian statistical characteristics, which makes it
difficult to detect small targets on the sea surface [1]. Conventional algorithms for detection
and classification of sea surface targets primarily rely on statistical models, with their
efficacy contingent upon the alignment between the established clutter distribution model
and realistic clutter nature. While statistical model-based techniques work effectively in
certain contexts, the inherent complexity and variability of sea clutter frequently cause a
disparity between the established statistical model and the realistic clutter nature, leading
to a sharp deterioration in detection performance.

In recent years, deep learning has been developing rapidly [2–4]. With its inherent su-
periority, deep learning is capable of end-to-end learning, directly from raw radar echo data
to the generation of target detection results, and has also been widely applied in the field of
radar target detection. The application of artificial intelligence to maritime target detection
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techniques was first proposed at the end of the last century. Haykin et al. first proposed
a new method for detecting signals in noise in 1995, using neural networks to realize the
separation of signals and noise in sea clutter [5]. Subsequently, new artificial intelligence
techniques have been continuously introduced, and great progress has been made in the
fields of artificial intelligence-based sea target detection [6–9], target classification [10,11],
and clutter suppression [12–15].

Target classification is also known as pattern recognition, and common classification
algorithms in machine learning are the K-nearest neighbor (KNN) [16], support vector
machine (SVM) [17], random forest (RF) [18], and convolutional neural network (CNN).
Among these, CNNs stand out for automated feature extraction capabilities. Commonly
utilized CNN architectures comprise the LeNet [19], AlexNet [20], Visual Geometry Group
(VGG) [21], and Deep Residual Network (ResNet) [22]. In recent years, researchers have
integrated CNNs with tasks of maritime target detection and classification, presenting
a series of algorithms. In 2019, Mou et al. constructed a dataset of radar plane position
indicator (PPI) images and and trained an improved CNN, which successfully verified the
feasibility of CNN in maritime target detection [23]. In 2022, Shi et al. demonstrated the
successful application of CNNs for the classification of sea clutter and small targets [10].
In 2023, Qu et al. creatively used the time–frequency spectra of radar echoes as the feature
inputs, constructed a dataset of radar time–frequency images, and achieved good classifica-
tion and detection performance with a CNN [24]. In 2023, Xu et al. employed the concept of
migration learning and combined a pre-trained CNN and block-whitened time–frequency
spectra, achieving an effective classification of different sea targets in the background of
strong clutter [25]. It is worth mentioning that, in 2018, Trabelsi et al. proposed the deep
complex network (DCPN), which extended the learning range of neural networks from real
numbers to complex numbers, and experimentally validated that complex-valued convolu-
tional neural networks (CV-CNN) can achieve better classification performance [26]. This
successful attempt paved the way for new applications of CV-CNNs. Scholars have since
combined these networks with tasks in their respective fields, demonstrating experimen-
tally that CV-CNNs achieve strong performance in areas such as detection, classification,
and clutter suppression. In 2019, Zhang et al. introduced CV-CNNs for the classification of
synthetic aperture radar (SAR) images, investigating the impact of various complex-valued
activation functions on classifier performance [27]. They also creatively proposed the
complex-valued adaptive moment estimation (CV-Adam) optimization algorithm tailored
for CV-CNNs. In 2020, Yu et al. introduced a new CV-CNN, the complex-valued full convo-
lutional neural network (CV-FCNN), specifically for SAR image classification. CV-FCNN
replaces the pooling and fully connected layers in CV-CNN with convolutional layers,
thereby avoiding complex pooling operations and reducing the risk of overfitting, which
resulted in high classification accuracy [28]. In 2021, Zhang et al. further advanced SAR im-
age classification by proposing an amplitude–phase-type activation function better suited
for CV-CNNs, experimentally demonstrating its superiority over real-valued convolutional
neural networks (RV-CNNs) [29]. In 2022, Wang et al. used the complex-valued radar echo
signals as inputs, and utilized complex-valued U-Net (CV-UNet) to differentiate between
targets and clutter to achieve the suppression of sea clutter, which greatly improved the
target detection probability [30]. In 2022, Zhang et al. extended CV-CNNs to the realm of
graph neural networks (GNNs), proposing a novel complex-valued graph neural network
(CV-GNN) for ISAR (inverse synthetic aperture radar) image classification [31]. Recently,
in 2024, Zhou et al. integrated the strengths of complex-valued neural networks with
attention mechanisms to perform automatic target recognition for SAR images featuring
multi-scale attributes [32]. Theoretically, complex-valued convolutional neural networks
offers considerable promise in detection and classification of maritime targets, a field that
has hitherto received little attention and that therefore requires further research.

Typically, radar echoes are in the form of complex numbers, containing magnitude and
phase information. However, in the current practices of target detection and classification,
radar echo data are often processed to be in the form of real numbers for the purpose of
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neural network training, which may involve transforming the data into the magnitude
spectra, power spectra, or images. Unfortunately, such processes come with the expense
of overlooking crucial phase information. Therefore, this paper addresses the issue of
inadequate utilization of radar echo data and the difficulty of classifying small maritime
targets in complex, non-uniform sea clutter environments. We extend the classification
neural network from the real-valued neural network to the complex-valued neural network,
introduce and improve a complex-valued residual network, and construct a complex-
valued time–frequency spectrum small target classification dataset using four different
radar-measured echo data. Based on this, we propose a small maritime target classification
algorithm that leverages an improved residual fusion network and complex time–frequency
spectra. In this paper, our main innovative work is as follows:

1. The measured radar echo data from four different small targets were collected,
and a corresponding complex time–frequency spectrum dataset was constructed
for the first time using the short-time Fourier transform (STFT). This dataset will be
used in subsequent small maritime target classification experiments. The complex
time–frequency spectrum dataset is stored in the form of complex numbers, which pre-
serves the phase information of the radar echoes and is helpful for target classification.

2. Our complex-valued improved residual fusion network is constructed upon the
ResNet50. It employs the complex-valued residual unit as the fundamental module,
integrating the spatial pyramid pooling (SPP) module for feature fusion across various
receptive fields. Furthermore, the conventional residual block layer is replaced with
the multi-branch residual fusion (MBRF) module to maximize feature information
utilization. Simultaneously, the fully-connected linear classification layer of the net-
work is substituted with two 1 × 1 convolutional layers. This modification not only
reduces the network’s parameter count to a certain extent but also can improves
classification accuracy.

We conducted simulation experiments with the complex-valued improved residual
fusion network using the above complex time–frequency spectrum dataset, and the ex-
perimental results show that our proposed improved residual fusion network achieves a
significant improvement in all classification performance evaluation metrics.

The structure of this paper is organized as follows. Section 2 introduces the founda-
tional principles of complex-valued classification neural networks and provides detailed
descriptions of the component modules of the improved residual fusion network, along
with the overall network architecture. In Section 3, we elaborate on the dataset, loss function,
network parameter settings, and model evaluation metrics used in this study. Subsequently,
we conduct a comparison experiment of real-valued neural network, a comparison ex-
periment of complex-valued neural network, and an ablation experiment to assess the
effectiveness and robustness of the proposed classification algorithm. Finally, Section 4
concludes the paper with a summary of our results and a discussion of future work.

2. Classification Network Design
2.1. Overview of Complex-Valued Neural Networks
2.1.1. Complex-Valued Convolution

Usually, the CNN extracts the features we need from input data through multiple
convolutional layers for subsequent network detection or classification. In the convolution
operation, the convolutional kernel operates on the original input feature map in a sliding
window manner to generate the output feature map, as shown in Figure 1.
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Figure 1. Real-valued convolution operation.

Complex-valued convolution is fundamentally similar to real-valued convolution.
However, to handle input feature maps in the form of complex numbers, the convolution
kernel in complex-valued convolution also takes on a complex form, comprising real and
imaginary parts. The corresponding complex-valued convolution kernel can be represented
as W = a + ib , where a and b are the real and imaginary parts of the complex-valued
convolution kernel, respectively. When performing complex-valued convolution oper-
ations, the complex-valued convolution formula can be derived from the principle of
complex multiplication:

Y = X ∗ W

= (x + iy) ∗ (a + ib)

= (x ∗ a − y ∗ b) + i(x ∗ b + y ∗ a),

(1)

where X = x + iy denotes the complex-valued input feature map, W = a + ib denotes
the complex convolution kernel, and Y denotes the complex-valued output feature map.
From Equation (1), it can be seen that the complex-valued convolution is actually a combi-
nation of four independent real-valued convolution operations, and the specific process is
clearly represented in Figure 2.
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Figure 2. Complex-valued convolution operations.

2.1.2. Complex-Valued Batch Normalization

Batch normalization (BN) is usually used in conjunction with a convolutional layer,
which processes the input data so that the output data are all standard normal distributions.
This operation has been shown to be effective in achieving better convergence and faster
training of the network, in addition to preventing the occurrence of overfitting. For the
BN layer of the complex-valued neural network, the batch input dataset is assumed to be
X : A = {X1, X2, · · · , Xn}, where X = x + iy and n is the size of Batchsize. The BN process
also consists of four major steps.
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1. Find the mean of the input data, where the expression for the mean solution is

E(X) =
[

E(R(X))
E(I(X))

]
=


1
n

n
∑

i=1
R(Xi)

1
n

n
∑

i=1
I(Xi)

 (2)

where R(·) and I(·) denote the operations of extracting the real and imaginary parts of
a complex number, respectively, and E(·) denotes the operation of finding the mean.

2. Find the covariance matrix of the input data, which is expressed as

V =

[
Cov{R(X), R(X)} Cov{R(X), I(X)}
Cov{I(X), R(X)} Cov{I(X), I(X)}

]
(3)

where Cov denotes the covariance operation.
3. Normalize the input data using the obtained mean and covariance matrices.

X̃ = V− 1
2 (X − E(X)) (4)

4. To enhance the network’s expressive capability, perform scaling and shifting transfor-
mations on the normalized data to obtain the final output Ỹ:

Ỹ = γX̃ + β (5)

where the translation parameter β is initialized with a value of 0 + i0 and its real and
imaginary parts are two trainable parameters; the scale scaling parameter

γ =

[
γrr γri
γir γii

]
is initialized with a value of γ =

[ 1√
2

0

0 1√
2

]
and it contains

three trainable parameters γrr , γii, and γri .

2.1.3. Complex-Valued Activation Function

The convolutional operation in neural networks is a linear operation. Therefore, to en-
hance the network’s ability to perform nonlinear fitting during the training and learning
process, the involvement of activation functions is typically required to work in tandem.
Common neural network activation functions are Sigmoid, Tanh, ReLU, LeakyReLU,
and Softmax.

The complex-valued activation function is defined by treating the real and imaginary
parts separately and performing the activation operation independently. This can be
expressed by

y = H(R(x) + iI(x)) = H(R(x)) + iH(I(x)) (6)

where H(·) represents the activation function used. The activation function used in this
paper is the complex ReLU activation function, i.e., H(·) = ReLU(·).

2.1.4. Complex-Valued Pooling

The pooling layer is a standard component of neural networks, typically employed for
feature dimensionality reduction. It decreases the output size of the neural network feature
map, enhancing computational efficiency and mitigating overfitting. Unlike convolutional
layers, the pooling process lacks learnable parameters and solely executes straightforward
operations on the input data. Common pooling methods include maximum pooling and
average pooling. The pooling process is illustrated in Figure 3.
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Figure 3. Pooling operation (kernel size = 2).

Similarly, complex-valued pooling is also established on the foundation of real-valued
pooling. It divides the complex number into real and imaginary parts, respectively, con-
ducting pooling operations on each part independently before merging them.

2.2. Improved Residual Fusion Network

This subsection provides a detailed description of the complex-valued improved
residual fusion network utilized in this paper, which is built upon ResNet50 [22]. ResNet
offers significant advantages over mainstream CNN. By employing residual units as the
base module, ResNet can construct networks that are deeper than traditional CNNs without
encountering the issues of vanishing or exploding gradients. Additionally, ResNet features
fewer parameters compared to conventional CNNs. Despite the increased depth of the
ResNet, the actual number of parameters does not grow as rapidly due to the presence
of residual connections. This characteristic facilitates faster and more efficient training.
ResNet primarily aims to address the challenges of gradient vanishing and explosion
associated with increasing network depth. Common variants of ResNet include ResNet50
and ResNet101, where the numbers 50 and 101 denote the respective number of layers in
the residual network.

The residual network is composed of multiple residual blocks, with the internal
structure of each block illustrated in Figure 4. Each residual block includes a shortcut
connection that adds the input directly to the block’s output. This shortcut ensures that
gradients are correctly propagated during backpropagation, preventing issues such as
gradient disappearance and explosion that arise from having an excessively deep network.
This added branch is referred to as a shortcut. The residual block can be implemented
in two forms, as shown in Figure 5: the identity block and the convolution block. In the
identity block, the input and output of the residual block are directly summed and merged
through the shortcut branch, used when the input and output dimensions are the same.
The convolution block, on the other hand, adjusts the dimensions of the input and output
through a convolutional layer in the shortcut branch before summing them, used when the
input and output dimensions differ. Each residual layer in ResNet includes a convolution
block and several identity blocks. Since different residual layers have varying feature
dimensions, the convolution block serves to adjust the feature dimensions at the beginning
of each residual block to match the input requirements of the specific residual layer.

The ResNet50 network involved in this paper is stacked by four residual block layers,
and the number of residual blocks stacked within each residual block layer is 3, 4, 6, and 3
in order. The specific network structure is shown in Figure 5.
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2.2.1. SPP Module

As previously mentioned, the pooling operation serves the purpose of reducing feature
dimensionality and resizing the feature map, thus resulting in less redundant information
and better computational efficiency. However, the simple operations of taking the mean
or maximum value during pooling often result in the loss of useful information, leading
to underutilization of the extracted features.Moreover, radar echoes contain a significant
amount of valuable information, especially regarding small targets. Due to their limited
receptive field range, small targets are prone to being overlooked in the pooling process,
potentially leading to their omission. Alternatively, reducing the size of the pooling kernel to
address this issue may result in the loss of feature information redundancy. To resolve these
conflicts, we employ the spatial pyramid pooling (SPP) module instead of the conventional
pooling layer. This approach aims to enhance feature utilization by fusing feature maps
with different receptive fields, thereby optimizing network performance.

As is well known, different sizes of pooling kernels correspond to different receptive
fields of the original feature map. A smaller pooling kernel corresponds to a smaller recep-
tive field, enabling the feature maps after dimensionality reduction to retain more detailed
information from the original maps. Conversely, a larger pooling kernel corresponds to a
larger receptive field, allowing the feature maps after dimensionality reduction to capture
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more high-dimensional feature information. The spatial pyramid pooling (SPP) module
capitalizes on this principle by generating feature maps across different receptive fields
using pooling kernels of various sizes, which are then fused together. The specific structure
of the SPP module is depicted in Figure 6. In our experiments, we set the pooling kernel
sizes to 1, 3, 5, and 7, respectively. This configuration enables us to capture a diverse range
of receptive field sizes, allowing for more effective utilization of feature information.

Maxpooling 1

（size=3）
Maxpooling 2

（size=5）
Maxpooling 3

（size=7）

Concat+Conv2D

Input

Output

Shortcut

Figure 6. The structure of SPP.

2.2.2. MBRF Module

As depicted in Figure 5, the ResNet50 comprises four residual block layers, connected
in series to form the primary structure of the network. Each residual block layer consists
of several residual blocks arranged sequentially. Residual networks are renowned for
their ease of optimization and their ability to enhance accuracy through appropriate in-
creases in network depth. However, excessively deep networks may result in the loss of
important information. The radar echo data, after undergoing deep convolution, yield
higher-dimensional feature information. However, for the classification of small targets
on the sea surface, the underlying details of the feature information are crucial and cannot
be overlooked. Achieving a better balance between network depth and the transfer of
information across shallow layers is essential. Therefore, we propose to laterally increase
the network width without altering the network depth, thereby broadening the branch
of feature information transmission. By establishing the multi-branch residual fusion
module, we aim to enhance the utilization rate of feature information, thereby optimizing
network performance.

The MBRF module presents a denser residual structure compared to the common
residual module, transforming the internal residual network into a series–parallel structure.
The residual blocks between layers remain connected in a sequential manner. However,
within each residual block layer, the residual blocks are no longer simply connected in
series. Instead, the output of each residual block is used as a skip connection to the end of
that residual block layer. These feature maps are then fused together to form the output
of the residual block layer, which is passed as input to the next residual block layer. The
specific network structure of the MBRF module is illustrated in Figure 7, where only the
first residual block layer is taken as an example. In addition to considering the output of
each residual block separately as a parallel branch, we incorporate an additional original
input branch as a large residual connection linked to the final output of the network.
This consolidation can enhance feature fusion effects. Therefore, the final output of each
residual block layer integrates multi-scale feature information, significantly reducing the
loss of shallow details and thereby enhancing the utilization of small target features. This
improvement plays a critical role in small target classification tasks.
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Figure 7. The structure of MBRF (residual block refers to the convolution block and identity block
mentioned in Figure 5).

2.2.3. Overall Network Architecture

In general, the sea surface environment is complex, and the radar echo data carry a lot
of sea clutter information. When the target is small or far away, the echo signal of the target
is weak and can easily be lost in the clutter signal, which brings great difficulties to both
detection and classification. As a matter of fact, the problem of classifying small maritime
targets is more difficult compared to other types of targets because small maritime targets
can be caused by Doppler aliasing with sea clutter. Therefore, our method in this paper
chooses to utilize the time–frequency ridge differences to classify the targets and further
improves the classification performance through the proposed network.

Deep learning relies on learning the features extracted by neural networks to perform
detection and classification tasks, so the performance of the network is closely related to the
completeness of the feature information. Increasing the number of layers in the network
can extract higher dimensional feature information and improve network performance,
but at the cost of losing detailed features, resulting in missed detection or misclassification
of small targets. This issue is particularly pronounced in sea surface target detection and
classification, where, when the signal-to-clutter ratio is low, the distinguishing features
between the target and clutter become less apparent, resulting in poor performance in
detection and classification. To address this issue, we propose a complex-valued improved
ResNet, which has shown significant performance improvements in the classification of
small sea surface targets.

First, most neural networks are real-valued, requiring radar echo data to be converted
into amplitude or power values for training and learning. This conversion results in
the loss of phase information carried in the echo data, leading to underutilization of the
data. To overcome this, we extend real-valued networks to complex-valued networks,
allowing the original echo data to be directly input into the network for training and
learning after preprocessing. The complex-valued networks can simultaneously learn am-
plitude and phase information, making them highly suitable for sea surface target detection
and classification.

Second, our proposed improved network model builds on ResNet50 and introduces
the MRBF and SPP modules. Compared to the original ResNet, MRBF adds numerous
skip connections in the feature extraction module. This transforms the originally serial
connections into a combination of serial and parallel connections, allowing the network to
increase its width without reducing its depth. This structural improvement can retain more
detailed features and reduce the possibility of losing detailed feature information, which is
often the key to correctly classifying small surface targets, making the improved ResNet
more conducive to detecting and classifying small surface targets.

In summary, this paper combines the SPP module and the MBRF module with the
ResNet50 network to construct our improved residual fusion network. The network is
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shown in Figure 8, and the parameter settings, inputs, and outputs of each layer of the
network are detailed in Table 1.

1×1Conv2D
Avgpooling

…

Conv
Batch Norm

ReLU

Input

SPP

Convolution Block

Identity Block

Identity Block

Concat + Conv + Batch Norm + ReLU

Convolution Block

Identity Block

Identity Block

Concat + Conv + Batch Norm + ReLU

Identity Block

Concat + Conv + Batch Norm + ReLU

Output

+

Figure 8. Overall architecture of the improved residual fusion network.

Table 1. Composition of each layer of the improved residual fusion network and feature map
output size.

Layer Name Component Output Size (Batch Size, Number of Channels,
Feature Map Size)

Input 32 × 1 × 96 × 64
Convolution layer 1 Complex convolution (kernel size = 7) 32 × 64 × 48 × 32

SPP module Complex maxpooling (kernel size = 3, 5, 7) 32 × 64 × 24 × 16
MBRF module 1 Complex residual block × 3 32 × 256 × 24 × 16
MBRF module 2 Complex residual block × 4 32 × 512 × 12 × 8
MBRF module 3 Complex residual block × 6 32 × 1024 × 6 × 4
MBRF module 4 Complex residual block × 3 32 × 2048 × 3 × 2

Pooling Complex avgpooling (output size = 1) 32 × 2048 × 1 × 1
Convolution layer 2 Complex convolution (kernel size = 1) 32 × 4 × 1 × 1

Output 32 × 4 × 1 × 1

3. Experimental Design and Analysis of Results

In our experiments, we first conduct target detection on the radar echo data to identify
the distance unit where the target is located. Subsequently, we construct our complex time–
frequency spectrum dataset based on the acquired target echo data using time–frequency
transformation. Finally, we assign labels to the dataset and input it into the improved
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complex residual fusion network for training, thereby obtaining the final classification
results. The overall flow of the experiment is illustrated in Figure 9. In this subsection, we
will provide a detailed description of the dataset used for the experiment, the loss function
employed for neural network training, the parameter design of the network model, and an
analysis of the experimental results.
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Figure 9. Overall flow chart of the experiment.

3.1. Dataset

In this paper, we opt for the time–frequency spectrum as the input data for target
classification, as it amalgamates the strengths of both the time and frequency domains.
Moreover, to preserve the original phase information of the data, we forgo constructing
a time–frequency images dataset and directly create the dataset in the form of complex
numbers using the original time–frequency spectrum data. The time–frequency spec-
tra of the radar echoes, post time–frequency transformation, are directly input into the
complex-valued neural network in the form of a complex matrix for feature extraction and
classification purposes.

3.1.1. Description of Data Sources

In constructing the target classification dataset, we select four types of representative
radar-measured echo data of small targets on the sea surface for our experiment, namely
floating orbs on the sea surface, floating fishing boats, speedboats, and unmanned aerial
vehicles (UAVs). The first two types of target data are sourced from radar echo data
collected by a team from McMaster University, Canada, using an IPIX (Intelligent Pixel
processing X-band) radar in 1993 and 1998, respectively. The third type of target data was
collected by the Fynmeet radar, situated on the west coast of South Africa, in 2006. Lastly,
the fourth type of sea surface low-altitude UAV target data was collected by a radar located
on Lingshan Island, operating at X-band, in dwell mode, and in VV polarization, at an
altitude of approximately 430 m.

3.1.2. Data Set Construction and Data Preprocessing

The original radar echo signal comprises a two-dimensional distance pulse matrix,
where small targets typically occupy only one distance unit. Thus, we initially conduct
target detection on the radar echo to identify the distance unit where the target is located.
Subsequently, the echo data from this distance unit is extracted individually as the target
echo signal. To construct the time–frequency spectrum dataset, we perform time–frequency
transformation on the target echo signal using the short-time Fourier transform (STFT).
The STFT yields complex-valued data, containing both the time and frequency features of
the target. The time–frequency transformation converts the one-dimensional target echo
sequence into a two-dimensional time–frequency spectrum, facilitating preliminary feature
extraction. Schematics of the time–frequency spectra for the four types of small targets
in the dataset used in this experiment are illustrated in Figure 10. It is intuitively clear
from the figure that the fourth type of targets has the most distinctive features, whereas the
first and second categories of targets show similar features on the time–frequency spectra,
which are more difficult to distinguish.
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Figure 10. Time–frequency spectrums of four types of small surface targets: (a) Class 1 (IPIX 93);
(b) Class 2 (IPIX 98); (c) Class 3 (CSIR); (d) Class 4 (UAV)

The complex time–frequency spectrum dataset constructed encompasses four types of
target data, with the number of samples for each type and their respective dataset divisions
listed in Table 2. To ensure smooth convergence of the network during training and to
expedite the process, the complex time–frequency spectrum data undergo normalization
before being input into the network for training.

Table 2. Data sample size and dataset division.

Target Class Total Number of Samples Train Set Test Set

Target 1 8074 6257 1817
Target 2 4585 3685 900
Target 3 7785 5812 1973
Target 4 7857 5892 1965

3.2. Neural Network Parameterization
3.2.1. Loss Function

The cross-entropy loss is a commonly used loss function for target classification,
expressed by

CELoss = −
n

∑
i=1

log(pi) (7)

where γ ≥ 0 , n is the number of samples, and pi is the probability that sample i belongs
to the correct category i. The focal loss used in this paper is improved on the basis of the
cross-entropy loss, and its formula is

FocalLoss = −
n

∑
i=1

(1 − pi)
γ log(pi) (8)
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The focal loss function is based on the cross-entropy loss function with the addition of
the adjustment factor (1 − pi)

γ . The higher the confidence score of the sample through the
network output, the lower the value of the corresponding adjustment factor. The purpose of
this operation is to reduce the weight of easy-to-categorize samples in the training process,
so that the network is more inclined to the training of difficult-to-categorize samples in
the training process, thus improving the network classification performance. In the paper
published in 2018, Kaiming He’s team first proposed the focal loss function, and they
experimentally verified that their network works best when the value of γ is taken as
2 [33]. In the experiments conducted in this paper, various values were also set for training.
The final experimental results indicate that our network achieves the best classification
performance when the value of γ is set to 1. These experimental results are presented in
Table 3. Because the research in this paper focuses on complex-valued residual networks,
the experiments in the following table are all done on the complex-valued ResNet50.

Table 3. Comparison of the classification performance under different values of γ.

γ
Classification Performance

Accuracy Kappa Coefficient

0.5 0.927 0.905
1 0.937 0.913

1.5 0.921 0.902
2 0.913 0.881

2.5 0.901 0.864
3 0.898 0.857

3.2.2. Training Parameter Design

In this paper, the network is built under the pytorch framework for experimental
validation, and the hardware configuration of the experiment is as follows: the CPU is 12th
Gen Intel(R) Core(TM) i5-12400F, the GPU is NVIDIA GeForce RTX 3060, and the running
memory is 32GB. The rest of the relevant parameter settings for the training and simulation
experiments are shown in Table 4.

Table 4. Parameter settings for simulation experiments.

Parameters Values

Epoch 50
Batch size 32

Learning rate 0.0001
Optimizer Adam

3.3. Experimental Results and Analysis

In this subsection, we validate the performance of the proposed improved residual
fusion network using the measured radar echoes. Initially, we introduce some evaluation
metrics used to measure the target classification results. Subsequently, we set up compari-
son experiments between the real-valued neural network and the complex-valued neural
network, as well as the ablation experiment of the improved residual fusion network.
Finally, we conduct a comprehensive evaluation and analysis based on the results obtained
from the experiments.

3.3.1. Evaluation Indicators

The common evaluation metrics for classification problems include accuracy, precision,
recall, and F1 score. In this paper, we also introduce the Kappa coefficient as a evaluation
metric to address potential network model bias resulting from imbalanced proportions of
positive and negative samples. Before introducing the aforementioned evaluation indices,
we first explain the concept of a confusion matrix. The confusion matrix is a metric used to
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assess the performance of a model, primarily employed in judging the performance of a
classifier. For a multi-classification problem, the confusion matrix is defined as shown in
Table 5 (taking the four-classification task involved in this experiment as an example and
Class 1, Class 2, Class 3, and Class 4 represent the four types of sea targets mentioned in
Section 3.1: floating orbs, floating fishing boats, speedboats, and UAVs, respectively), where
TPi indicates that the sample of class i is correctly classified as class i, and FiPj indicates
that the sample of class i is incorrectly classified as class j.

Table 5. Multi-classification confusion matrix.

Prediction

Class 1 Class 2 Class 3 Class 4

True

Class 1 TP1 F1P2 F1P3 F1P4
Class 2 F2P1 TP2 F2P3 F2P4
Class 3 F3P1 F3P2 TP3 F3P4
Class 4 F4P1 F4P2 F4P3 TP4

1. Accuracy, Precision and Recall;

Accuracy is defined as the proportion of results predicted by the model as positive
samples to the total number of samples, serving as an evaluation of the overall performance
of the classifier. In a multi-classification problem, when calculating the accuracy of a
category, the samples of this category are considered as positive samples, whereas the rest
of the samples are treated as negative samples. The rest of the indicators in the calculation of
positive and negative sample definition are similar to this. The accuracy can be expressed as

Accuracy =

n
∑

i=1
TPi

n
∑

i=1
TPi +

n
∑

j=1,j ̸=i
FjPi

(9)

Precision is defined as the proportion of all samples that are actually categorized
correctly out of those predicted by the model to be positive. Distinguished from the
accuracy, the precision is an evaluation index for the classification results of a certain
category. The precision can be written as

Precision =
TPi

TPi +
n
∑

j=1,j ̸=i
FjPi

(10)

Recall is defined as the proportion of all positive samples for which the model predicts
correctly, and is also specific to a certain category. The recall can be expressed as

Recall =
TPi

TPi +
n
∑

j=1,j ̸=i
FiPj

(11)

The overall precision and recall in a multicategorization task refer to the average
precision and average recall across all categories.

2. F1 score;

The F1 score is a comprehensive evaluation metric that jointly considers precision and
recall, calculated based on precision and recall. The F1 score is represented as

F1 =
2 × Precision × Recall

Precision + Recall
(12)
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3. Kappa Coefficient.

In classification tasks where there is an imbalance in the proportion of samples in the
dataset, such as a ratio of positive to negative samples of 1:9, the model may achieve a
high accuracy by correctly categorizing negative samples while incorrectly categorizing
positive samples. However, in reality, the positive samples are not correctly recalled at all.
To address this issue, we need to introduce an evaluation metric that penalizes the model
for its “bias” to supplement the lack of accuracy and enhance the overall performance of
the model. We call this the Kappa coefficient, which is expressed as

Kappa =
p0 − pe

1 − pe
(13)

Here, p0 = Accuracy , pe =

n
∑

i=1

(
TPi+

n
∑

j=1,j ̸=i
FjPi

)
×
(

TPi+
n
∑

j=1,j ̸=i
Fi Pj

)
(

n
∑

i=1

(
TPi+

n
∑

j=1,j ̸=i
FjPi

))2 . According to Equation (13),

the more unbalanced the confusion matrix is, the lower the kappa coefficient will be,
which represents stronger “bias” of the model and poorer accuracy of inaccurate the
classification results.

3.3.2. Comparison Experiments, Ablation Experiments, and Analysis of
Experimental Results

1. Comparison Experiments

To validate the effectiveness of our structural improvements and the advantages
of extending real-valued neural networks to complex-valued ones, we conducted a se-
ries of comparative experiments on the classification performance of both real-valued
and complex-valued neural networks. The CNNs used in these experiments include
AlexNet [20], VGG16 [21], MobileNet [34], CNN-LSTM [35], FCNN [28], ResNet50 [22],
and our proposed Im-ResNet50. The corresponding complex-valued neural networks
were built on the same underlying network architectures. The training data were sourced
from the complex time–frequency spectrogram dataset we constructed. For the complex-
valued neural networks, the complex time–frequency spectrum matrix is normalized and
input into the networks for training. For the real-valued neural networks, the complex
time–frequency spectrum matrix is first modulated, then normalized, and subsequently
fed into the networks for training. Furthermore, the experimental settings of hyperpa-
rameter, training loss function, and experimental environment are kept consistent across
all networks.

First, we conducted the comparison experiment under the real-valued neural network,
the results of which are shown in Figure 11 and Table 6.

Table 6. Comparison of the performance of different real-valued classification networks.

Accuracy Precision Recall F1 Score Kappa Coefficient

AlexNet 0.868 0.825 0.829 0.824 0.821
VGG16 0.878 0.844 0.845 0.842 0.835

MobileNet 0.879 0.864 0.853 0.852 0.837
CNN-LSTM 0.876 0.818 0.832 0.822 0.830

FCNN 0.876 0.822 0.865 0.830 0.829
ResNet50 0.888 0.863 0.857 0.856 0.848

Improved ResNet50 0.893 0.874 0.866 0.868 0.855
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 11. Confusion matrix for different real-valued classification networks: (a) AlexNet; (b) VGG16;
(c) MobileNet; (d) CNN-LSTM; (e) FCNN; (f) ResNet; (g) Improved ResNet.

As shown in the confusion matrices in Figure 11, overall, the probability of correctly
classifying Class 1 and Class 3 targets is higher, whereas Class 2 and Class 4 targets are
relatively more difficult to classify accurately. The experimental results in Table 6 indicate
that our Im-ResNet outperforms the original ResNet50 across all evaluation metrics. This
improvement is attributed to the introduction of the MRBF and SPP modules, which en-
hance feature reuse within the network and increase the classification accuracy for all target
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types, particularly those that are more difficult to classify. Additionally, compared to other
real-valued classification neural networks, our Im-ResNet demonstrates superior classifica-
tion performance, further validating the effectiveness of the structural enhancements we
proposed for Im-ResNet.

Next is the comparison experiment using the complex-valued neural networks, the re-
sults of which are shown in Figure 12 and Table 7.

Table 7. Comparison of the performance of different complex-valued classification networks.

Accuracy Precision Recall F1 Score Kappa Coefficient

CV-AlexNet 0.872 0.815 0.828 0.818 0.825
CV-VGG16 0.899 0.870 0.870 0.868 0.864

CV-MobileNet 0.892 0.841 0.858 0.846 0.852
CV-CNN-LSTM 0.885 0.829 0.846 0.838 0.842

CV-FCNN 0.893 0.853 0.859 0.854 0.854
CV-ResNet50 0.912 0.858 0.890 0.863 0.878

CV-Im-ResNet50 0.940 0.913 0.918 0.915 0.917

Comparing the confusion matrices in Figures 11 and 12, it is evident that complex-
valued neural networks perform better overall than real-valued neural networks in clas-
sifying the more challenging second and fourth types of targets. The experimental re-
sults in Tables 6 and 7 further demonstrate that, under the same network’s structure,
complex-valued neural networks achieve superior classification performance compared
to real-valued neural networks, with improvements across all evaluation metrics. This is
due to the ability of complex-valued neural networks to fully leverage both amplitude and
phase information, thereby enhancing the utilization of feature information. Additionally,
from the classification results of all complex-valued neural networks presented in Table 7,
our proposed CV-Im-ResNet outperforms the other complex-valued networks across all
evaluation metrics, further confirming the effectiveness and superiority of the proposed
CV-Im-ResNet.

Finally, combining the experimental results in Tables 6 and 7, all the improvements
we made to the original ResNet50 contribute to the improvement of the classification
performance, and the proposed CV-Im-ResNet has the optimal classification performance,
in which the classification accuracy is improved from 88.8% to 94%, and the Kappa coeffi-
cient also increases by about 7 percentage points. This result indicates that our proposed
CV-Im-ResNet has better robustness and superiority.

2. Ablation Experiments with the Improved Residual Fusion Network

To validate the effectiveness and rationality of each module in our proposed improved
residual fusion network, we conducted ablation experiments to verify their contributions.
These experiments involve retaining only the SPP module, the MBRF module, or the
1 × 1 convolutional classification module, individually, while comparing their classification
performance against the original ResNet50. Since this study is based on the complex time-
frequency spectrum dataset, all experiments are conducted on the complex neural network.
Table 8 presents the results of the ablation experiments for various evaluation metrics.

Table 8. Results of ablation experiments.

Accuracy Precision Recall F1 Score Kappa Coefficient

CV-ResNet50 0.912 0.858 0.890 0.863 0.878
CV-ResNet50 + SPP 0.934 0.899 0.915 0.905 0.909

CV-ResNet50 + MBRF 0.936 0.898 0.913 0.908 0.911
CV-ResNet50 + 1 × 1 Conv Classification 0.920 0.882 0.905 0.895 0.892

CV-Im-ResNet 0.940 0.913 0.918 0.915 0.917
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 12. Confusion matrix for different complex-valued classification networks: (a) CV-
AlexNet; (b) CV-VGG16; (c) CV-MobileNet; (d) CV-CNN-LSTM; (e) CV-FCNN; (f) CV-ResNet;
(g) CV-Im-ResNet.

From Table 8, it can be observed that the introduction of each individual module con-
tributes to the improvement of the network’s classification performance. The network with the
added SPP module shows improvements in all classification performance metrics compared
to the original network. This is because the SPP module can simultaneously consider feature
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information from different receptive fields, alleviating the problem of small target information
loss caused by deep convolutional networks. The introduction of the MBRF module also
significantly improves the network’s classification performance, with particularly notable
enhancements in accuracy, F1 score, and Kappa coefficient, making it the most outstanding
among all individual modules. This is due to the fact that the MBRF module widens the
network’s width laterally without changing its depth, and the jump connections across dif-
ferent feature dimensions ensure the completeness of feature information during forward
propagation, thus improving feature utilization. Additionally, the 1 × 1 convolutional classifi-
cation module also contributes to the improvement in classification performance. Although its
impact on classification performance is not as pronounced as the first two modules, its main
role is to reduce the network’s parameter compared to the original fully connected linear
classification layer, thereby improving the training speed. Finally, the CV-Im-ResNet, which
integrates all modules, performs the best in all experiments, achieving the highest values for
all evaluation metrics. This indicates that the introduction of each module contributes to the
network’s classification performance, and that the collective effects of all these modules result
in a higher level of overall classification performance of the network.

4. Conclusions

To address the challenges posed by the insufficient utilization of radar echo data in
complex and non-uniform sea clutter backgrounds, as well as the difficulty in classifying
small targets on the sea surface, we propose a classification algorithm for small sea surface
targets based on an improved residual fusion network and complex-valued time–frequency
spectra. This algorithm introduces SPP and MBRF modules on top of the ResNet50,
enabling more effective feature fusion and utilization. Additionally, by combining the
complex-valued time–frequency spectrum dataset with complex-valued neural networks,
we fully exploit both the magnitude and phase information in the data, thereby enhancing
the performance of the small target classifier. Our experimental results also demonstrate
that the proposed CV-Im-ResNet50 improves classification accuracy from 88.8% to 94%
compared to the original ResNet50, with the Kappa coefficient increasing by 7 percentage
points. This not only validates the effectiveness of the network’s structural enhancements
but also highlights the strong suitability and excellent generalization capability of complex-
valued neural networks for sea surface target detection tasks. However, the proposed
CV-Im-ResNet inevitably faces challenges, such as increased network width and longer
training time, due to the introduction of the complex-valued convolution. Future work
will focus on optimizing the network structure to obtain a more lightweight classification
network without sacrificing classification performance.
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