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Abstract: Plantation distribution information is of great significance to the government’s macro-
control, optimization of planting layout, and realization of efficient agricultural production. Ex-
isting studies primarily relied on high spatiotemporal resolution remote sensing data to address
same-spectrum, different-object classification by extracting phenological information from temporal
imagery. However, the classification problem of orchard or artificial forest, where the spectral and
textural features are similar and their phenological characteristics are alike, still presents a substantial
challenge. To address this challenge, we innovatively proposed a multi-index entropy weighting
DTW method (ETW-DTW), building upon the traditional DTW method with single-feature inputs.
In contrast to previous DTW classification approaches, this method introduces multi-band informa-
tion and utilizes entropy weighting to increase the inter-class distances. This allowed for accurate
classification of orchard categories, even in scenarios where the spectral textures were similar and
the phenology was alike. We also investigated the impact of fusing optical and Synthetic Aperture
Radar (SAR) data on the classification accuracy. By combining Sentinel-1 and Sentinel-2 time series
imagery, we validated the enhanced classification effectiveness with the inclusion of SAR data. The
experimental results demonstrated a noticeable improvement in orchard classification accuracy under
conditions of similar spectral characteristics and phenological patterns, providing comprehensive
information for orchard mapping. Additionally, we further explored the improvement in results
based on two different parcel-based classification strategies compared to pixel-based classification
methods. By comparing the classification results, we found that the parcel-based averaging method
has advantages in clearly defining orchard boundaries and reducing noise interference. In conclusion,
the introduction of the ETW-DTW method is of significant practical importance in addressing the
challenge of same-spectrum, different-object classification. The obtained orchard distribution can
provide valuable information for the government to optimize the planting structure and layout and
regulate the macroeconomic benefits of the fruit industry.
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1. Introduction

The fruit industry plays a significate role in improving land productivity and economic
conditions of farmers [1]. In 2019, China’s fruit tree planting area was about 1227 hectares,
with an output of about 190 million tons (National Bureau of Statistics data, https://www.
stats.gov.cn/ [accessed on 12 March 2024]), ranking first in the world for many years.
In areas such as Shaanxi Province and Shanxi Province, the fruit industry has become
a pillar industry of the local economy. In realizing the sustainable development of fruit
production, quantifying the spatial scope and growth time dynamics of orchards will help
the government to better optimize resource distribution and the planting structure. Based
on the traditional ground sampling survey method, a lot of personnel and material resources
are required, and real-time orchard distribution and health status information cannot be
obtained [2]. Satellite remote sensing technology has long been used to assess the dynamics
of land ecosystems [3–5] and is suitable for capturing the changing events of geophysical
processes due to its rich data volume on spatial and temporal scales [6–10]. With the
continuous development of satellite sensor technology, the spatial and temporal resolutions
of remote sensing images are continuously optimized, and satellite remote sensing has
become an efficient and accurate means of monitoring large-scale farmland [11–13].

Satellite image classification based on single-temporal data may not be satisfactory
in complex crop-growing systems [14]. Time-series satellite image data can capture the
seasonal characteristics of horticulture crops. Through long-term observation of satellite
images, different phenological features that can characterize crop development can be
extracted, which is one of the methods to solve the bottleneck of crop classification accu-
racy [15]. Moderate resolution images such as Landsat, IKONOS, and SPOTS were widely
used to distinguish crop planting intensity and planting structure extraction at a field
scale [16,17]. EI et al. [18] used SPOTS-5 time series images as a data source to extract the
distribution and harvest of sugarcane. Murakanmi et al. [19] implemented crop identifica-
tion with multitemporal HRV data. However, during the growth stage of crops, soil surface
and vegetation growth conditions vary with the seasons and field conditions. Capturing
these differences is an essential element in identifying land use types, and obtaining more
high-quality images is crucial [20].

Despite recent progress, the temporal resolution of optical images limited crop devel-
opment throughout the growing season due to cloud cover [17]. Fortunately, synthetic aper-
ture radar (SAR) satellites, such as Sentinel-1, are not affected by cloudy and rainy weather
and can provide reliable long-term observations for monitoring crop growth [21,22]. Some
studies have tried to classify crop types using Sentinel-1 dual polarimetry imagery [23].
SAR satellites are capable of the penetration of waves into the ground (few centimeters),
capturing backscattering images of different types of vegetation, monitoring ground rough-
ness and capturing the geometry associated with vegetation canopy structure [24]. The
complementarity of optical and radar data enhances the overall performance of land cover
classification. In different scenarios, these combinations can achieve higher accuracy results,
such as crop monitoring [25], grassland monitoring [26], wildfire assessment [27], and
invasive plant monitoring [28].

In regard to crop type mapping, existing methods can be mainly divided into two
categories. The first type of method considers satellite image time series (SITS) as simple
stacks of multiple features [29]. Such stacks of features have been applied to machine
learning (ML) algorithms for classification, including decision tree (DT) [30], random forest
(RF) [31], and support vector machine (SVM) [32]. However, these methods have no
strategy to extract phenological information into a classification scheme, i.e., disrupting the
stacking order of time series images will not improve the image classification performance.
At the same time, machine learning methods have strong sample dependence and under
the condition of a lack of samples, the classification performance may not be satisfactory.

The second type of time series classification method uses knowledge of phenology
or time-varying features to describe temporal contextual information to improve crop
identification [33]. For expressing the temporal dependencies of the time-series datasets

https://www.stats.gov.cn/
https://www.stats.gov.cn/


Remote Sens. 2024, 16, 3390 3 of 26

caused by crop phenology [34,35], the phenological sequence pattern (PSP) method [36],
Conditional Random Fields (CRF) [37] and Hidden Markov Model (HMM) [38] have been
applied to crop mapping as statistical models. However, the above methods combined with
phenology knowledge are still difficult to apply for crop mapping. In practical applications,
there are three main obstacles: (1) drawbacks in sample availability that can be overcome by
reference to past data; (2) irregular temporal sampling of images and missing information
in the dataset (e.g., cloud pollution) can obscure the analysis [39]; and (3) variability in
proposed periodic phenomena (e.g., vegetation cycles influenced by weather conditions).
Such uncertainty is usually caused by random variation in agroclimatic conditions and
agricultural practices, which manifests itself as a misalignment of time series from a
particular crop type to different plots [33,40,41].

Dynamic Time Warping (DTW) has been proven to be a suitable classifier to solve the
above problem, as it allows for taking the similarity of temporal sequences into account as
a function of crop phenology [42]. Each land-cover class has a distinct phenological cycle
that is relevant for space-time classification. The DTW method warps time to match the two
series and the DTW distance is calculated as resemblance measure for the two temporal
profiles [39]. Recently, DTW has become a focus for remote sensing classification [43].
Petitjean et al. [41] presented a method based on Formosat-2 for image time series analysis
that is able to handle irregularly sampled sequences using DTW theories. Dong et al. [44]
proposed a phenology time-weighted DTW (PT-DTW) method that needed less sampling
effort for Sentinel 2A/B time series images, and a specific vegetation index was suggested for
mapping winter wheat. Maus et al. [42] introduced a time-weighted DTW method (TWDTW)
to classify crops with an Enhanced Vegetation Index (EVI) from MODIS data. Gella et al. [45]
investigated DTW strategies to classify crops in complex farming areas using Sentinel-1 dual
polarimetry (VV + VH) and TerraSAR-X single polarimetry (HH) images.

Building on the progress in crop mapping using the DTW algorithm, we added three
issues that need further research: (1) Previous studies have examined optical and SAR
images separately, but there is a lack of research on combining Sentinel-1 (S1) and Sentinel-2
(S2) imagery with long time-series using DTW theories; (2) For DTW classifiers, there has
been limited exploration on complex agricultural land characterized by diverse crop types,
close phenological stages, and intricate spatial patterns [39,45], especially for horticultural
crops; and (3) The DTW classifiers typically utilize a single attribute feature as input, such
as a single band or a single index. The lack of research on using multidimensional attributes
as input severely limits its classification performance in complex scenarios.

For orchard classification, current research methods remain limited, despite the
progress made by the aforementioned techniques in crop classification. The spectral confu-
sion between orchards and native vegetation is a well-known challenge in forestry and tree
crop systems [46]. Most studies have primarily focused on the extraction of single orchard
types [43,47], using either single-date or time-series spectral features (such as optimal band
selection [48], red-edge spectral indices (RESI) [47], and normalized difference indices
(NDIs) [49]) to identify the most effective spectral combinations for distinguishing orchards
from other land cover types. Texture information can effectively capture the spatial distribu-
tion characteristics of remote sensing images and mitigate the effects of the “same spectrum,
different objects” or “same object, different spectra” phenomena. It has been proven to
be effective in orchard classification [50,51]. Radar data responds differently to orchard
canopy roughness, structure, and moisture content. When combined with optical imagery,
it can significantly improve classification accuracy [52–54]. However, the fine-grained
identification of multiple orchard types remains a challenge [52], as orchards such as apple
and peach have similar planting structures and spectral characteristics, particularly during
their phenological periods. Additionally, the fragmentation of orchard planting plots can
introduce uncertainty in classification, further increasing the difficulty in distinguishing
multiple orchard types.

To address the aforementioned issues, we proposed a classification method based on
the TWDTW theory and leveraging entropy weighting to fuse multiple attributes (ETW-
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DTW). This method was applied to long time-series S1/2 imagery to extract orchard
distributions with four closely related phenological stages and fragmented plots. Subse-
quently, we examined the contribution of SAR imagery to orchard classification, along
with the impacts of pixel scale, post-processing scale, and parcel scale on the classification
results. Finally, we discussed the strengths and limitations of the ETW-DTW algorithm in
orchard classification and provided insights into future prospects.

2. Materials and Methods
2.1. Study Area and Datasets

The study area is located in Miaoshang Township, Qiji Township and Linjin Township
(110◦17′30.7′′E–110◦54′38.9′′E 34◦58′52.9′′N–35◦18′47.6′′N) in the southern part of Linyi
County, Shanxi Province. The area is in the Yuncheng Basin, with typical temperate
continental climate characteristics, with four distinct seasons, more drought and less rain
in spring and summer, more cloudy and rainy weather in autumn and more drought in
winter. The county has sufficient sunshine and an average maximum daily temperature
of 19.7 ◦C. Due to its excellent geographical and climatic conditions, it is very suitable
for the growth of fruit crops and is known as the “Hometown of fruits” (Figure 1). Five
major crops in the region were selected as classification targets: apples, jujubes, peaches,
persimmon, and corn. The study area is characterized by narrow, fragmented planting
plots with a relatively complex planting structure.

Remote Sens. 2024, 16, x FOR PEER REVIEW 4 of 26 
 

 

particularly during their phenological periods. Additionally, the fragmentation of orchard 
planting plots can introduce uncertainty in classification, further increasing the difficulty 
in distinguishing multiple orchard types.  

To address the aforementioned issues, we proposed a classification method based on 
the TWDTW theory and leveraging entropy weighting to fuse multiple attributes (ETW-
DTW). This method was applied to long time-series S1/2 imagery to extract orchard dis-
tributions with four closely related phenological stages and fragmented plots. Subse-
quently, we examined the contribution of SAR imagery to orchard classification, along 
with the impacts of pixel scale, post-processing scale, and parcel scale on the classification 
results. Finally, we discussed the strengths and limitations of the ETW-DTW algorithm in 
orchard classification and provided insights into future prospects. 

2. Materials and Methods 
2.1. Study Area and Datasets 

The study area is located in Miaoshang Township, Qiji Township and Linjin Town-
ship (110°17′30.7″E–110°54′38.9″E 34°58′52.9″N–35°18′47.6″N) in the southern part of 
Linyi County, Shanxi Province. The area is in the Yuncheng Basin, with typical temperate 
continental climate characteristics, with four distinct seasons, more drought and less rain 
in spring and summer, more cloudy and rainy weather in autumn and more drought in 
winter. The county has sufficient sunshine and an average maximum daily temperature 
of 19.7 °C. Due to its excellent geographical and climatic conditions, it is very suitable for 
the growth of fruit crops and is known as the “Hometown of fruits” (Figure 1). Five major 
crops in the region were selected as classification targets: apples, jujubes, peaches, persim-
mon, and corn. The study area is characterized by narrow, fragmented planting plots with 
a relatively complex planting structure. 

 
Figure 1. (a) Topography of the study area; (b) the location of the study area in Shanxi Province and 
the position highlighted by a black triangle; (c) a typical fruit plantation landscape in Miaoshang 
county via Google Earth (Google Earth, Image © 2020 DigitalGlobe). 

The phenological characteristics of crop types are the key elements for how to classify 
SITS data. Due to its unique geographical conditions, apples bloom ten days earlier than 
those in other major apple-growing areas in China, with flowering from late February to 
mid-April and fruiting in June, the fruit bulges from July to August and ripens from Sep-
tember to October. Peach trees bloom from March to early April, fruiting from April to 
May, and mature from June to September. The flowering period of jujube trees is May to 

Figure 1. (a) Topography of the study area; (b) the location of the study area in Shanxi Province and
the position highlighted by a black triangle; (c) a typical fruit plantation landscape in Miaoshang
county via Google Earth (Google Earth, Image © 2020 DigitalGlobe).

The phenological characteristics of crop types are the key elements for how to classify
SITS data. Due to its unique geographical conditions, apples bloom ten days earlier than
those in other major apple-growing areas in China, with flowering from late February
to mid-April and fruiting in June, the fruit bulges from July to August and ripens from
September to October. Peach trees bloom from March to early April, fruiting from April to
May, and mature from June to September. The flowering period of jujube trees is May to
July, the fruiting period is August, and the maturity period is September to October. The
flowering period of persimmon trees is May to June, July to September, and the maturity
period is October. Wheat and corn are planted in rotation (Figure 2).
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2.2. Sentinel-1/2 Time Series Images Pre-Processing

As a kind of high-resolution remote sensing data, Sentinel satellite data provides a
new opportunity for qualitative and quantitative monitoring of large-scale farmland [55].
Sentinel-2 (S2) satellites are composed of Sentinel-2A and Sentinel-2B, and the two satellites
work together to make their revisit cycle reach five days. They carry a multi-spectral
instrument (MSI), which can cover visible light, near-infrared to short-wave infrared. The
number of bands is 13, including three red-edged bands that are beneficial for observing
vegetation [56]. In this study, Google Earth Engine (GEE) was used to obtain the product
of the Sentinel-2 Multi-Spectral Instrument, the Level 2A surface reflectance (“COPER-
NICUS/S2_SR”). A total of 69 Sentinel-2 L2A optical imaging products from November
2019 to December 2020 were selected in the study area (Figure 3a,b). In order to prevent
the influence of rain and snow weather on the observation data throughout the year, a
combination of six bands (Blue, Green, Red, NIR, SWIR1, and SWIR2), the Normalized
Difference Snow Index (NDSI), and the Normalized Difference Moisture Index (NDMI)
were used to calculate the cloud score and mask cloud and snow pixels in Sentinel-2 images.
Finally, pixels contaminated by cloud shadows were removed based on solar geometry and
cloud position, resulting in a high-quality observation image of the study area (Figure 3c).
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The Sentinel-1 (S1) is an active microwave remote sensing data equipped with a syn-
thetic aperture radar (SAR), which has the ability to penetrate clouds and is not susceptible
to cloudy or rainy weather [57]. In this study, we used the Sentinel-1 Level 1 Ground Range
Detected (GRD) product that uses the Wide swath (IW) mode providing data in VV (vertical
transmit/vertical receive band of dual-polarization) and VH (vertical transmit/horizontal
receive band of dual-polarization) polarizations. A total of 31 Sentinel-1 GRD products
from November 2019 to December 2020 were selected in the study area (Figure 3b). The
Sentinel-1 Toolbox (https://sentinel.esa.int/web/sentinel/toolboxes/sentinel-1/ [accessed
on 1 April 2018]) was used to preprocess Sentinel-1 images to generate calibrated, ortho-
corrected estimates of decibels via log scaling. The multi-looking is executed by averaging
the cells and/or using resolution azimuths, thus increasing the radiometric resolution but
decreasing the spatial resolution. “Scatter” (scattered noise level) is produced by interfer-
ence that has a “salt and pepper” effect on the image. The speckle-filter is used to enhance
the Lee filter proposed by Lee [58] with a window size of 7 × 7. Finally, the pixel-by-pixel
backscattering coefficient in decibels is obtained.

2.3. Field Survey Data

Field data collection was carried out during the growth period from August to Septem-
ber 2020. The Qianxun SR2 satellite RTK receiver mobile device (Zhejiang Qianxun Space
Intelligence Co., Ltd., Hangzhou, China) with centimeter-level positioning accuracy was
used to collect the geographic coordinates of the research site and the corresponding land
cover type. Simultaneously, auxiliary visual discrimination was carried out on decimeter-
level high-resolution Google images in 2020, and a total of 106 land cover category samples
were collected. In the study area, relatively evenly distributed samples were obtained by
this method, including: 25 apple orchards, 15 persimmon orchards, 17 peach orchards,
21 corn orchards, and 28 jujube orchards (Table 1). In this study, 15 training samples
were selected based on the orchard scale, representing 15 distinct orchards. During field
sampling, we surveyed and documented orchards with healthy growth conditions and
homogeneous planting structures. The selection of training samples was constrained by
conditions where the length and width of the orchards were both greater than 50 m, and the
spatial distance between orchards of the same type was more than 500 m. Based on these
criteria, we selected the three most representative orchards for each category for further
analysis and calculation. For the validation samples, relatively evenly distributed samples
were obtained, including 25 apple orchards, 15 persimmon orchards, 17 peach orchards,
21 corn fields, and 28 jujube orchards.

Table 1. The number of reference (ref.) and validation (valid.) orchard samples.

Class Ref. Valid.

Jujube 3 25
Corn 3 18

Persimmon 3 12
Apple 3 22
Peach 3 14
Total 15 91

3. Methods

The proposed ETW-DTW orchard classification method consists of the following
four steps (Figure 4): (1) Sentinel-1/2 time series images pre-processing using Harmonic
Analysis of Time Series (HANTS); (2) reduction of the features using a two-step approach;
(3) the ETW-DTW distance, combined with entropy weighting, is calculated and utilized
for mapping orchard distributions on pixels and plot scales; and (4) accuracy evaluation is
performed using the measured samples as a validation set.

https://sentinel.esa.int/web/sentinel/toolboxes/sentinel-1/
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3.1. Sentinel-1/2 Time Series Images Pre-Processing Using HANTS

The original S1 images contain severe speckle noise. Even after the noise is removed
by the classical enhanced LEE algorithm, the calculated radar vegetation index time series
cannot clearly map the phenological information of various fruit trees. Effective pheno-
logical information is generally further extracted through curve smoothing and filtering.
Similarly, time-series optical imagery is subjected to atmospheric conditions or snow/cloud
pollution, potentially resulting in abrupt changes in the temporal profile. Therefore, the
original optical and SAR data cannot be directly applied to the phenological extraction of
crops. Additionally, each image in the whole time series collection does not cover the entire
research area, and also the time is different when the satellite transits different orbits. In the
research area, some regions can achieve higher temporal resolution, while others cannot.
To address the issue of temporal and spatial heterogeneity in the images, we generated a
total of 33 S2 and 30 S1 image datasets separately at ten-day intervals [59] through median
synthesis. Although composite images are used in the processing of time series datasets and
observations of poor quality are removed, uncertainties such as aerosols and bidirectional
reflectivity can introduce some noise into the dataset, hindering further analysis. HANTS [60]
has been proven to be an effective method for denoising time-series data.

The HANTS algorithm is based on the least squares curve fitting process of harmonic
components and considers the most important frequencies in the time profile. The curve
fitted by the HANTS transform is described as the sum of its mean and several cosine
functions of different frequencies [61]:

y(t) = a0 +
N

∑
i=1

a0cos(wit − θi) (1)

where y(t) is the fitted value at time t, a0 is the average value of the whole time series,
N is the number of harmonics, ai is the amplitude of harmonic i, wi is the frequency of
harmonic i, and θi refers to the phase of harmonic i. In order to accurately describe the
phenological characteristics of land types, features of dataset are constructed based on the
HANTS model. On this basis, the first three decomposed harmonics traverse each pixel
value of the image along the time axis, enabling the fitted curves to accurately capture the
phenological information of crops.
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For S1 datasets, the HANTS method was employed to smooth the SAR collection
across the entire SITS. VV, VH, VV+VH, and VV/VH were selected as the SAR feature for
classification. For S2 datasets, it has been pointed out that among the original multispectral
of broadbands, the red band, near-infrared band (NIR), and short-wave infrared band
(SWIR) contributed the most to the classification of orchards [62]. Therefore, we screened
a large number of vegetation indices to ensure the presence of these three bands. At the
same time, our selection was guided by differences in the nutritional composition of fruits.
We found that apples have higher anthocyanin content and lower carotenoid content in the
later stage of maturity, while peaches have higher anthocyanin and beta-carotene content.
Persimmons mainly contain dihydroxycitrazine and zeaxanthin. Combining the above,
two original bands, including NIR and SWIR, and four nutrient-related bands vegetation
indices (VIs), such as the Normalized Difference Vegetation Index (NDVI), Ratio Vegetation
Index (RVI), Enhanced Vegetation Index (EVI), Green Chlorophyll Vegetation Index (GCVI),
and water content related Modified Normalized Difference Water Index (MNDWI) were
calculated by the following equations:

NDVI =
NIR − RED
NIR + RED

(2)

RVI =
RED
NIR

(3)

EVI = 2.5 × NIR − RED
NIR + 6 × RED − 7.5 × BLUE + 1

(4)

GCVI =
NIR

GREEN
(5)

MNDWI =
SWIR1 − GREEN
SWIR1 + GREEN

(6)

where BLUE, GREEN, RED, NIR, and SWIR1 are represented by B2, B3, B4, B8, and B11 on
the Sentinel-2 image, respectively. They have been reconstructed using the HANTS model.

The above image preprocessing work was completed on the GEE platform and down-
loaded locally through Google Drive for subsequent processing.

3.2. Reduction of the Feactures

In the reconstructed S1/2 bands and indexes, there is inevitably information redun-
dancy, which increased the unnecessary amount of calculation. A two-step approach [63]
was employed to selected the features of high importance and eliminate the indices with
strong correlation. Firstly, the importance of each period for each feature was analyzed
using the significance function of random forest (RF), where the Gini index based on each
candidate predictor with a heuristic method is used as the importance measure [64–66]. In
this process, we obtained ranking of importance and patterns of change of the 12 indices
over the entire time range. Secondly, we utilized the average time series curves for each
class and each feature to calculate the correlation matrix [67]. A threshold of 0.95/−0.95
was applied to remove the most correlated indices, and the features with a break low Gini
index in the classification application were also sifted out.

3.3. Classification Method
3.3.1. Theoretical Background of Time Weighted Dynamic Time Warping

The Time Weighted Dynamic Time Warping (TWDTW) algorithm is a nonlinear dis-
tortion algorithm that combines time distortion matching and inter-sequence distance
measurement [42]. Based on the principle of dynamic programming, the global optimiza-
tion problem is decomposed into a local optimization problem [68]. It has time matching
flexibility and has been shown to be more suitable for the classification of time series
curves than simple Euclidean distance [69]. The algorithm judges the similarity of the
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two curves by calculating the shortest distance between the two curves. The smaller the
TWDTW distance, the more similar the curves are. The basic principle of the algorithm is
as follows [39,70]. It takes the cumulative distance matrix M as the calculation goal, and
assumes two time series curves, whose lengths are m and n, respectively:{

Q1 = {a1 , a2. . . ,ai,. . . ,am}
Q2 = {b1 , b2, . . . ,bi,. . . ,bn}

(7)

where am and bn are elements of one-dimensional sequences Q1 and Q2, respectively.
The cumulative distance matrix M has m rows and n columns, and the elements of

any of the i rows and j columns Di, j represent the distance from ai to bi:

Di, j = dED(ai, bj) =
√(

ai − bj
)2

+
1

1+e−α(|i−j|−β)
. (8)

where i and j is the time of observation in Q1 and Q2, respectively; α is a constant to control
the steepness of the slope; and β is the maximum lag for the warping match, which is a
constant defined by users.

The accumulation of each distance is called the path P of the Q1 curve to the Q2 curve.
There is one such path P and it satisfies P = {p1 , p2. . . ,pl}, max(m, n) ≤ l ≤ n + m − 1.
Finding the shortest path Pmin is the core of the TWDTW algorithm, and selecting the path
at the same time needs to satisfy the following three conditions at once: (a) continuity,
(b) boundary, and (c) monotonicity.

Firstly, all paths P that satisfy the above conditions need to be calculated, which can
be obtained by calculating the cumulative distance matrix M:

M(i,j) = Di,j + min{M(i − 1, j), M(i, j − 1), M(i − 1, j − 1)} (9)

where M(i − 1, j), M(i, j − 1) and M(i − 1, j − 1) are the upper, left neighboring, and upper
left elements of the M(i, j) element of the M matrix, respectively.

In the calculated matrix M, each element represents the cumulative distance in the
recursive process. The optimal path accumulation value is M(m, n) in the lower right
corner of the matrix M, which is the distance between the two curves based on the TWDTW
algorithm. This method can quantify the similarity of the two curves. The larger the
TWDTW distance, the lower the similarity of the two curves, and the smaller the distance,
the higher the similarity [39].

3.3.2. Entropy Weight of Index Feature

For SITS data analysis, using a single index to represent crop phenological information
is a commonly used classification method in the TWDTW algorithm [71]. However, in
this study, the phenological period and texture of each target class are similar, and the
separability calculated with a single-band temporal curve for the TWDTW distance is not
significant. Thus, this study proposed the ETW-DTW method to determine the weight of
each input timing curve on each reference category.

Different from an analytic hierarch process (AHP), Fuzzy comprehensive evaluation
(FCE) using an entropy weight method with an objective weight assignment avoids the
subjectivity participation of decision makers. According to the basic principles of informa-
tion theory, entropy is a measure of system disorder [72,73]. Information entropy (H(U))
can be represented as follows:

H(U)= E[−logpi]= −
n

∑
i=1

pilogp i (10)
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where n = 1,2,3,. . . is the number of all possible values for the source, pi represents
the corresponding probability of the source value, and E is the statistical average of the
uncertainty of the source value, which can represent the information entropy.

For a certain index, the degree of dispersion of the index can be represented by the
entropy value. The smaller the information entropy, the greater the degree of its dispersion,
indicating higher information. Conversely, the greater the information entropy, the smaller
the degree of dispersion of the index. In this experiment, assuming each class is i, i ∈ [1, n],
where n represents the number of target classes. Selected j as the type of time series curve,
j ∈ [1, m], where m represents the number of features of optical and SAR SITS. Based on
the entropy method, the determination of the weight of j has the following steps:

1. Sample TWDTW distance calculation. Based on the j average timing curve of class
i, the TWDTW distances, Di

j, between the j and all samples including class i are
calculated by the following equation:

Di
j =

{
di

1_j, di
2_j, . . . ,di

h_j

}
(11)

where h is the total number of samples, which represents all TWDTW distances
(mentioned in Section 3.3.1) between all classes on the j curve when the reference is
class i. The more discrete Di

j is, the greater the distance between each class, which

means greater divisibility. A wider Di
j means a smaller distance between classes and

weaker differentiability.
2. Sample size equalization is crucial. The sample size of different classes directly

influences the gain of information entropy based on each class. To prevent uncertainty
in entropy values due to sample number imbalances, we normalized and equalized
the TWDTW distance data obtained for each class. First, assuming Di

j follows a
normal distribution, distance data beyond the 95% confidence interval were treated
as outliers and discarded. Secondly, to mitigate the impact of sample imbalance on
entropy gain, we constrained the overall sample size using the minimum number of
samples, ensuring an equal number of samples for each class.

3. TWDTW distance set reorganization. The TWDTW distance results for each index
by column were recombined into the TWDTW distance matrix D, and each column
represents the TWDTW distance set of the j index based on various standard curves:

D =


D1

1 D1
2 · · · D1

m
D2

1 D2
2 · · · D2

m
...

... Di
j

...
Dn

1 Dn
2 · · · Dn

m

 (12)

4. Data standardization. Given that the TWDTW distance reflects the curve similarity
and that it exhibits the characteristic that smaller values indicate higher similarity, in
the calculation of entropy weight, the elements in the D matrix are treated as negative
indicators. The elements of D are standardized as follows:

Dr
i,j =

Dmax − Di
j

Dmax − Dmin
(13)

where Dr is obtained by normalization of D, and Dr
i,j represents the elements of the i

class and j time series curve of the i class after standardization.
5. Calculate the TWDTW distance information entropy Ei

j, based on the j-exponential
time series curve of class i under the action of j:

Ei
j= −k

h

∑
i=1

Dr
i,jln(Dr

i,j

)
, k =

1
ln(h)

(14)
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6. The final weight Wi
j can be expressed as follows:

Wi
j =

1 − Ei
j

∑m
j=1 (1−Ei

j

) (15)

In summary, the core of the ETW-DTW method lies in using the TWDTW approach
to compute the similarity between curves, where this similarity is based on the average
temporal curve of a specific index for a given class. For instance, Di

j represented the set
of TWDTW distances between all temporal index curves j of class i and their average
temporal curve. This set clearly represented the within-class distance of class i samples
for the temporal index j. Using this method, we calculated the distances for all classes
and temporal index curves and integrated them into an orderly D matrix. To eliminate
the influence of outliers and address class imbalance issues, we applied quantile calcu-
lation and standardization to the elements of the D matrix, ensuring the comparability
between each element (the TWDTW distance set of each sample relative to its reference
curve). In the prepared D matrix, each row represents m distance sets for m indices rel-
ative to their corresponding references within class i, while each column represents n
distance sets for n classes relative to their corresponding references for index j. Here, we
innovatively introduced the concept of entropy weight, determined based on information
entropy theory. Taking the temporal index curve with j = 1 as an example, for the set
of n distances Di

1, we can compute n information entropies Ei
1. A smaller Ei

1 indicates
that, when using the first temporal index as the classification reference, the distance set
of class i contains more information, meaning it has stronger separability, and thus is as-
signed a higher weight Wi

1 (Equation (15)). Furthermore, using this method, we computed
the entropy weights for each index corresponding to each class, resulting in an entropy
weight matrix.

3.3.3. Mapping Fruit-Tree Plantation Using ETW-DTW Method

The minimum distance method is a commonly used approach for determining cate-
gories in classification methods based on DTW theory. In this study, due to the introduction
of multi-band temporal information, we proposed a minimum distance classification
method based on the entropy weight matrix (Section 3.3.2) that enhanced inter-class sepa-
rability. The workflow is shown in Figure 5. Firstly, for any X to be classified on the dataset,
Matrix DX can be obtained by calculating by row. Line i records the TWDTW distances
between the j-sequence curve of class i as the reference and the j-sequence features of x
to be classified, respectively. Rows 1 to the n represent the i class as the standard, such
as apples, peaches, etc., and columns 1 to m represent various timing features, such as
NDVI, NIR, etc. Secondly, based on each category, the weighted distance values di of the
ith row and m features are calculated. di is calculated according to Equation (16), which
is the sum of each element in the ith row of the distance matrix and the corresponding
entropy weight:

di =
m

∑
j=1

(D xi, j × Wi
j

)
(16)

where Wi
j is the entropy weight of the features obtained in Section 3.3.2, Dxi, j is the

TWDTW distance of j timing curves between X and reference I, and the number of features
and categories are m and n, respectively.

Among the n di obtained, the class attribute of the X to be classified, TX, is the
minimum value of di:

TX= argmin(di) (17)
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3.4. Classification Based on Parcel

For the classification of remote sensing images, the most commonly used method
is based on the pixel scale. However, it does not utilize the neighborhood information
between images, especially for SAR images polluted by speckle noise [74]. To verify the
impact of the classification scale on the results, we applied the proposed approach at both
pixel and parcel scales. For the pixel basis, the X to be classified is each pixel in the temporal
remote sensing images. For the parcel basis, the easiest way is to use a spatial filter [75],
such as a mode filter or majority voting. Another approach is to combine it with spatial
additional information. Hence, we had two options, called P1 and P2. P1 used the parcel
boundaries that we obtained manually on 2020 Google Earth images and the results of
pixel classification assigned the parcel to the class with the maximum number of pixels in
the parcel. In P2, temporal optical and SAR features were averaged over the polygon based
on boundaries (obtained from the 2020 Google earth image manually), and the SITS of the
average plot was taken as the minimum unit of classification.

3.5. Accuracy Evaluation

In order to evaluate the accuracy of spatial mapping of the target categories, the most
commonly used four indicators, Overall Accuracy (OA), Kappa Coefficient (Kappa Coef-
ficient), Producer Accuracy (PA) and User Accuracy (UA) [76], were selected to evaluate
the classification accuracy. The OA and Kappa values are both between 0–1. The closer the
value is to 1, the higher the accuracy of the distribution extraction. PA and UA represent
the classification accuracy of a single category, and the larger the value, the higher the
classification accuracy. Also, the F1-score is used to measure the accuracy of the model. It
is the harmonic mean of precision and recall, where precision is the ratio of true positives
to all positives, and recall is the ratio of true positives to all actual positives. The F1-score is
a better measure of model accuracy than either precision or recall alone, as it takes both
into account.

4. Results
4.1. Results of Preprocessing
4.1.1. HANTS Simulation of the Time Series Images

As description in article [77], three parameters including the number of frequencies, a
high/low suppressions flag and a valid data range were set in the HANTS analysis. The
number of frequencies was set to be 1, as the annual scale. The high/low suppressions flag
was set to low, considering the cloud and snow contamination led to a low value on the
images. The valid data range was set according to different feature characteristics. The
HANTS model was applied to every pixel of the S1/2 time series of 2020. An example
(NDVI) of the HANTS fitted result and origin time profile is show in Figure 6. The red
points are the original values of the NDVI temporal profile, and the HANTS fitted curve is
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depicted by the bule line. The simulation results demonstrated that HANTS could fit the
vegetation index time curve well even in the presence of noticeable data gaps.
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Figure 6. Example of the HANTS-fitted and the original NDVI time series in 2020. The red points
represent the original values of the NDVI temporal profile, and the HANTS fitted curve is illustrated
by the bule line.

4.1.2. Feature Reduction

On the training set, a two-step approach, as described in Section 3.2, was employed for
the temporal index of each class sample, conducting correlation and importance analyses.
The results are illustrated in Figure 7. The results showed that three SAR indices, namely
VV + VH, VV, and VH, which were ranked low in importance in each period (Figure 7f),
were excluded. The correlation matrix [67], calculated using the reference time series curves
of each class and each feature, is shown in Figure 7a–e. RVI, EVI, GCVI, GREEN were
removed as they were more related to others. Finally, five time series indices, including
NDVI, MNDWI, NIR, SWIR, VV/VH, were retained as classification features.
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Figure 7. The order and change law of index materiality. (a) The correlation of each index in jujube
samples; (b) the correlation of each index in persimmon samples; (c) the correlation of each index in
apple samples; (d) the correlation of each index in peach samples; (e) the correlation of each index in
corn samples; (f) the importance of each index in each period.

Time series curves depicting NDVI, MNDWI, NIR, SWIR, and VV/VH for jujubes, ap-
ples, persimmons, peaches, and corn are presented in Figure 8. Corn, being a food crop,
exhibited distinct phenological differences compared to fruit trees, notably evident in the
NDVI time series curve (Figure 8a). For the remaining horticultural crops, including jujubes,
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apples, persimmons and peaches, the time series curves for each optical and SAR index
exhibit a remarkably similar shape. This similarity in the temporal patterns poses a challenge
for our refined orchard classification, making it more difficult to distinguish between these
horticultural crops based solely on the available single index. According to field investigations,
in Miaoshang Township, Linyi County, it was observed that the cultivation of jujubes predom-
inantly follows the “greenhouse planting management technology.” The use of jujube tree
buckle sheds plays a significant role in reducing natural fertilizer loss, maintaining the ground
temperature, accelerating sap flow, and facilitating precise water and fertilizer management
as well as yield control. The implementation of buckle sheds resulted in distinctive spectral
differences between jujube trees and other fruit trees. In the MNDWI curves (Figure 8b), lower
values correspond to higher water content. The regions covered by the plastic film exhibited a
lower water content. Conversely, other fruit trees in the natural environment, influenced by
the canopy and soil water content, showed relatively high MNDWI values. This difference
enhanced the separability between jujubes and other fruit trees.
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Figure 8. Differences in timing curves of each index or band from November 2019 to April 2020.
(a) NDVI timing reference curve for each category; (b) MNDWI timing reference curve for each
category; (c) NIR timing reference curve for each category; (d) SWIR timing reference curve for
each category; (e) VV/VH timing reference curve for each category; the buffer band is the standard
deviation of each timing curve.
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NIR is related to temperature and moisture. It can be observed (Figure 8c) that in May
2020, the apple curve led by reaching a peak of 0.38, while peaches reached a peak close
to 0.40 in July and entered the defoliation period in late October. The slope of the peach
curve was significantly higher than that of the apple curve, providing a theoretical basis for
the classification of apples and other categories. Persimmons exhibited distinctive wave
patterns on the short-wave infrared (SWIR) (Figure 8d) that were quite different from those
of the other categories. From early January to mid-February 2020, the patterns showed a
continuous upward trend, reaching a peak close to 0.30, significantly higher than the other
classes. Subsequently, there was a decline to a minimum value in May 2020, followed by a
slight rise to a second peak of 0.23. During this time, the value was lower than for the other
types of fruit trees. Afterward, the value dropped sharply to around 0.17 in September 2020,
consistently smaller than the other fruit types. Between May and October, the short-wave
infrared reflectivity of persimmon orchards remained lower than that of other orchards.
The strong absorption of water by short-wave infrared indicates that the water content of
persimmon trees during the growth period was higher than that of other orchards.

4.2. The Results of Classification
4.2.1. Entropy Weight Matrix

The key to constructing the ETW-DTW classification method was to select a subset
of the classification features and determine the corresponding weight coefficient. In this
study, the entropy weight method was employed to quantify the TW-DTW distance weight
coefficients of NDVI, MNDWI, NIR, SWIR and VV/VH. A combined classification model
was then constructed to classify the fruit trees. Figure 9 displays the results of the entropy
matrix, where the horizontal axis represents the five classification features and the ordinate
shows the four types of fruit trees. The matrix indicates the weight of each time series
index when the four types of orchards are used as the standard. From Figure 9, it was
evident that MNDWI had the largest weight in the classification of most crops, particularly
in peach classification, with a value of 0.367. NIR exerted the highest impact on jujube
classification, with a value of 0.305. NDVI and SWIR contributed similar weights among the
target categories, with an average value of 0.207. SAR data contributed to the classification
model, with the VV/VH index weights for jujube, persimmon, peach, and apple being
0.145, 0.0672, 0.104, and 0.0915, respectively.
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smaller weights. For instance, when classifying with the apple category as the standard curve, the
pixels/plots to be classified need to calculate TW-DTW distances with the respective NDVI, NIR,
SWIR, MNDWI, and VV/VH temporal curves of apples. The obtained distances were then multiplied
by the corresponding weights of each index to derive the final ETW-DTW distance.

4.2.2. Mapping Orchard Distribution

Using the aforementioned weight matrix, ETW-DTW distances were computed for
each pixel/plot. The orchard distribution map (Figure 10a) was then generated employing
the minimum distance classification principle (Section 3.3.3). To validate the fine orchard
classification model proposed in this paper, we utilized a plot-scale validation set to cal-
culate the accuracy of each fruit tree class. UA, PA, OA, Kappa coefficients, and F1-Score
were computed to evaluate the model’s performance. Simultaneously, the classification
results with a single time series (NDVI, MNDWI, NIR, SWIR, and VV/VH) were com-
pared. The classification results and accuracy evaluations are presented in Figure 10 and
Table 2, respectively. As depicted in Figure 10a, the proposed ETW-DTW fine orchard
classification model yielded the best classification results. Table 2 reveals that the over-
all accuracy (OA) of the ETW-DTW algorithm for each category was 0.721, the Kappa
coefficient was 0.654 and the F1-Score was 0.673. Within each fruit tree category, jujube
attained the highest user accuracy and producer accuracy of 0.932 and 0.854. The TWDTW
classification result of one-dimensional input (NDVI) is shown in Figure 10b. Table 2
indicates that its overall accuracy (OA), Kappa, and F1-Score were 0.643, 0.580, and 0.511,
respectively. When NIR was the input (Figure 10f), the OA was 0.609, which was sec-
ond only to NDVI. However, when SWIR and MNDWI were used as inputs, the overall
accuracy was lower, around 0.50, and the Kappa coefficients were less than 0.5. For the
VV/VH input, the OA, Kappa coefficients, and F1-Score were the lowest. Therefore, we
believe that one-dimensional input does not have an advantage in multi-classification.
This type of method can efficiently identify curves that are most different from other
categories, but it is challenging to achieve ideal results in multi-class classification with
high similarity.

The multi-dimensional input (five optical and SAR indices) provided more favorable
classification features, and the weighting amplified the contribution rate of the important
indices. The ETW-DTW classification method used multiple features for classification,
and the results (Table 2) also showed balanced accuracy results (UA and PA) for various
types. The overall classification accuracy was higher than that of the one-dimensional input
DTW algorithm. Therefore, ETW-DTW demonstrated the capability to address the multi-
classification problem of highly similar phenological features by leveraging the advantages
of each index.

Table 2. Comparison of extraction accuracy of various crops.

Method ETW-DTW NDVI MNDWI NIR SWIR VV/VH

Class PA UA PA UA PA UA PA UA PA UA PA UA

Jujube 0.932 0.854 0.852 0.937 0.921 0.916 0.763 0.767 0.843 0.495 0.832 0.796
Persimmon 0.509 0.549 0.088 0.212 0.075 0.425 0.137 0.176 0.363 0.436 0.064 0.221

Apple 0.820 0.626 0.743 0.454 0.553 0.377 0.628 0.621 0.712 0.472 0.495 0.112
Peach 0.467 0.710 0.428 0.505 0.514 0.202 0.511 0.475 0.376 0.757 0.316 0.539

OA 0.721 0.643 0.557 0.609 0.544 0.453
KAPPA 0.654 0.580 0.486 0.505 0.403 0.364
F1-score 0.673 0.511 0.446 0.509 0.523 0.374



Remote Sens. 2024, 16, 3390 17 of 26

Remote Sens. 2024, 16, x FOR PEER REVIEW 17 of 26 
 

 

The multi-dimensional input (five optical and SAR indices) provided more favorable 
classification features, and the weighting amplified the contribution rate of the important 
indices. The ETW-DTW classification method used multiple features for classification, and 
the results (Table 2) also showed balanced accuracy results (UA and PA) for various types. 
The overall classification accuracy was higher than that of the one-dimensional input 
DTW algorithm. Therefore, ETW-DTW demonstrated the capability to address the multi-
classification problem of highly similar phenological features by leveraging the ad-
vantages of each index. 

 
Figure 10. Spatial distribution map of various crops at plot scale: (a) distribution map of ETW-DTW 
method; (b) distribution map of results with NDVI timing curve as input; (c) distribution map of 
results with SWIR timing curve as input; (d) distribution map of results with VV/VH timing curve 

Figure 10. Spatial distribution map of various crops at plot scale: (a) distribution map of ETW-DTW
method; (b) distribution map of results with NDVI timing curve as input; (c) distribution map of
results with SWIR timing curve as input; (d) distribution map of results with VV/VH timing curve as
input; (e) distribution map of results with MNDWI timing curve as input; (f) distribution map of
results with NIR timing curve as input.
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4.2.3. Comparison of the Results of the Pixel Scale and Parcel Scale with Two Strategies

In this section, we investigated how the pixel scale and parcel scale affect accuracy.
Figure 11 displays the distribution results of horticultural crops by the ETW-DTW model
in Miaoshang Township, Qijiao Town, and Linjin Town at the pixel, P1, and P2 scales
(described in Section 3.4). Table 3 shows the accuracy evaluation on the pixel scale (ETW-
DTW-pixel) and parcel scales P1 (ETW-DTW-P1) and P2 (ETW-DTW-P2).
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Table 3. Accuracy results of pixel scale classification.

Methods ETW-DTW-Pixel ETW-DTW-P1 ETW-DTW-P2

Class UA PA UA PA UA PA

Jujube 0.897 0.841 0.924 0.879 0.932 0.854
Persimmon 0.354 0.399 0.444 0.457 0.509 0.549

Apple 0.752 0.489 0.799 0.518 0.820 0.626
Peach 0.399 0.667 0.443 0.746 0.467 0.710

OA 0.648 0.692 0.721
KAPPA 0.567 0.621 0.654
F1-score 0.584 0.634 0.673

Within the scope of the study area, four areas, such as near buildings, greenhouse
areas, farmland areas and roads, were selected for local magnification for further analysis.
As shown in Figure 12, the first row Figure 12(a1–d1) displays the Google image of these
four areas, the second row Figure 12(a2–d2) displays the P1-based classification results, the
third row Figure 12(a3–d3) displays the classification results based on the pixel scale, and
the 4th row Figure 12(a4–d4) displays the classification results based on P2. Comparing
the second row with the third and fourth rows, it can be observed that the boundary of the
classification results based on the plot scale is clear, while the pixel scale exhibits noticeable
salt and pepper noise. In Figure 12(a1–a4) were the scene near the building, and both
results exhibited a certain spatial consistency. However, in the pixel-scale results, there
were different types of ‘sporadic’ pixels in the same plot, which was inconsistent with the
actual planting situation. With a spatial resolution of 10 m, the salt and pepper noise caused
by ‘sporadic’ pixels will significantly impact the area statistics results of various classes. In
Figure 12(b1–b4), the scenario under the mode of greenhouse planting is depicted. Both
pixel-scale and plot-scale results could identify open-planted peaches and apples inter-
planted in greenhouses, confirming that the ETW-DTW algorithm was feasible at the pixel
scale. In Figure 12(c1–c4), in the complex and fragmented farmland plot scene, the results
at the plot scale were seriously misclassified as ‘peach trees’ for other categories, while
the pixel scale could avoid large-scale misclassification. In Figure 12(d1–d4), in the scene
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near the road, there were mixed pixels of road and roadside vegetation. In this type of
scenario, the influence of confusing pixels at the boundary was suppressed by averaging
all pixels at the plot scale during the calculation process, while severe disturbances were
evident in the pixel-scale results. Comprehensive Table 3 shows that the overall accuracy
of the ETW-DTW model at the pixel scale is lower than of plot scales. The result of using P1
as the plot classification strategy is not as good as that using P2 as the plot classification
strategy. The overall accuracy (OA) is 0.029 smaller, Kappa is 0.033 smaller, and the
F1-Score is 0.039 smaller. Since P1 is the result of post-processing at the pixel scale, the
errors in pixel-scale classification directly affect the performance of P1. For example, as
shown in Figure 12(b2,b4), regional differences between P1 and P2 are observed at the
boundaries between greenhouses and open orchards. Similarly, in Figure 12(d2,d4), the
same phenomenon is evident at the edges of roads where mixed pixels are present. In pixel
conditions, pixel-level time series data were more susceptible to noise interference, and
even the same features showed time series curves with large differences. Therefore, in
areas with mixed pixels, it is advisable to avoid using pixel-scale or pixel post-processing
methods like P1. Instead, a plot-based averaging method such as P2 should be used. When
considering averaged plots, the influence is eliminated. The time series curve at the plot
scale could reflect the real geophysical characteristics, thereby improving the accuracy of
classification.
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(a1–d1) displays the Google image of these four areas, the second row (a2–d2) displays the P1-based
classification results, the third row (a3–d3) displays the pixel scale-based classification results, and
the 4th row (a4–d4) displays the P2-based classification results.

5. Discussion
5.1. Advantages of the ETW-DTW Method

In this paper, we introduced an ETW-DTW classification method rooted in the TWDTW
theory that leverages entropy weighting to integrate multiple attributes. This approach
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was applied to long time series data from S1/2 imagery to identify orchard distributions
characterized by extremely similar phenological features. The accuracy evaluation con-
firmed the feasibility of the ETW-DTW method for classifying highly similar categories at
the pixel scale and plot scale. After analysis, this method has the following advantages.

5.1.1. Integration of SAR Data

Since 2017, the launch of Sentinel-2B has increased the original 10-day revisit period of
Sentinel-2 data to 5 days. The enhanced time resolution has led researchers worldwide to
favor Sentinel-2 as their primary data source for experiments [40,78,79]. However, optical
images are vulnerable to cloud and snow interference, posing challenges in acquiring high-
quality datasets for extensive study areas. The participation of SAR data (Sentinel-1) can
make up for the spatial limitations of optical images, which can obtain time-series images
of day and night and are not easily affected by clouds and rain. SAR imagery has been
extensively applied in thematic mapping of land use, demonstrating its high sensitivity in
identifying bare soils and crops. Moreover, SAR features exhibit a strong correlation with
vegetation structure and phenological characteristics [63]. Recent years have witnessed
an increasing focus on research exploring the classification applications stemming from
the synergistic use of S1 and S2 data. In this paper, an examination of the importance of
ranking results obtained from random forest analysis (Figure 7) and the entropy matrix
(Figure 9) underscores the substantial contribution of SAR data to the classification process.
Furthermore, Figure 8e revealed notable distinctions in the VV/VH timing curves between
corn rotation crops and horticultural crops, affirming the discriminative power of SAR data
in capturing diverse waveforms associated with different land cover types.

To further validate the contribution of SAR data in orchard classification, we compared
the results obtained by combining S1 and S2 with those using only S2 images. In the S2-
only experiment, only four optical data indices were involved in the calculation, and
their entropy-weighted weights are shown in Figure 13. It was observed that for jujube
classification, the NIR had the highest entropy-weighted weight, and for persimmon, peach,
and apple, the MNDWI index had the highest weight. This trend was consistent with the
one when SAR data was included (Figure 9). Table 4 shows the difference in accuracy with
or without SAR data. In the classification of the jujube orchard, the difference in accuracy
between the two was not significant. For persimmons, the UA increased from 0.213 to 0.509
and the PA increased from 0.263 to 0.549. For apples, the UA increased from 0.793 to 0.820
and the PA increased from 0.551 to 0.626. For peaches, the UA increased from 0.419 to 0.467
and the PA increased from 0.674 to 0.710. In overall accuracy, the inclusion of SAR data
resulted in a higher OA/KAPPA and F1-score compared to using only optical indices. In
conclusion, the addition of SAR data was advantageous for improving the accuracy of fruit
tree classification.

Table 4. Comparison of Accuracy Between S1/2 and S2 Results.

Methods ETW-DTW-S2 ETW-DTW-S1/2

Class UA PA UA PA

Jujube 0.933 0.845 0.932 0.854
Persimmon 0.213 0.263 0.509 0.549

Apple 0.793 0.551 0.820 0.626
Peach 0.419 0.674 0.467 0.710

OA 0.665 0.721
KAPPA 0.586 0.654
F1-score 0.572 0.673
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5.1.2. Individual Contributions of ETW-DTW Model

1. Advantages of TWDTW algorithm in orchard classification The choice of classifier
determines the accuracy of the classification result [80]. In this study, the TWDTW
algorithm was deliberately chosen due to its demonstrated efficacy in handling crop
classification tasks utilizing time series imagery: (1) when employing vegetation phe-
nological characteristics as the basis for classification, variations in weather conditions
and agricultural practices can introduce disparities in the time series curve character-
istics for the same crop. The TWDTW algorithm adeptly mitigates such differences
by distorting and aligning the two curves [41]; and (2) the classifier’s performance is
directly influenced by the number of samples available for training [33]. The TWDTW
algorithm stands out as one of the few algorithms that do not demand a high num-
ber of samples [81]. As long as the standard curve adheres to the temporal pattern
characteristics of the target category, ideal accuracy can be achieved [44]. Belgiu and
Csillik [40] compared the accuracy of the DTW algorithm and the random forest
algorithm under small samples to confirm this view.

2. The strengths of the entropy weight matrix In this experiment, we attempted to employ
the entropy weight method to assign weights to multiple indices, aiming to enable
the input of the TWDTW algorithm for multi-dimensional curves and enhance the
accuracy of the results. As shown in Table 2, compared to the traditional single-band
TWDTW method, the ETW-DTW method, which integrates multi-band information,
demonstrates significant advantages. According to the principle of entropy weighting,
the level of information entropy depends on the probability distribution of the data,
making it highly robust to outliers. In contrast, the variance weighting method also
assigns weights based on data dispersion but is highly sensitive to outliers and performs
poorly when the indices have different scales or the data characteristics are not distinct.
Using the same approach, we replaced the entropy weights with variance weights
to obtain the classification accuracy for orchard classification. The overall accuracy
(OA) was 0.627, the Kappa coefficient was 0.494, and the F1-score was 0.593, all of
which are lower than the classification accuracy based on entropy weights. Overall,
entropy weighting better reflects the relative information content of each index, reduces
the impact of outliers and extreme values, and is more suitable for handling complex
ecological analysis problems involving multiple indices, scales, and distributions.
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5.1.3. The Generalizability of ETW-DTW

Although the ETW-DTW method has achieved reasonable accuracy within the current
study area, the generalizability of the classification method remains a topic worth exploring.
Here, we discuss the advantages of the ETW-DTW method in classification from two
perspectives: geographic transferability and class transferability.

In this study, logistic TWDTW was used to calculate the optimal path length between
two curves. Compared to linear TWDTW, logistic TWDTW offers higher classification
sensitivity [42] because it heavily penalizes large temporal warping. When analyzing the
same type of crops in different geographic locations, due to differences in climate and
agricultural practices, the phenological characteristics of the same crops may show similar
trends but be asynchronous. TWDTW can effectively align the peaks and troughs of two
time series curves through optimal path search, thereby minimizing intra-class errors
in phenological curves of the same crop caused by temporal asynchrony. Additionally,
the availability of high-quality remote sensing images varies across different geographic
regions. In large-scale studies, the inconsistency in the number of time-series images
between the sample areas and the regions to be classified is one of the major reasons for
suboptimal classification results. Fortunately, TWDTW, initially used for speech recognition,
is one of the few methods capable of determining the similarity of time series of different
lengths. In time-series remote sensing analysis, TWDTW can mitigate classification errors
caused by differences in image availability and has the potential to extract target classes
over large areas.

For orchard classification involving different types of fruit trees, the lack of sufficient
samples prevents us from validating the accuracy of the trained ETW-DTW model for other
types of fruit tree classifications. However, in theory, the core of the ETW-DTW model lies
in utilizing entropy theory, where the dispersion of the TWDTW distance set is used as a
measure of separability between classes. In this process, the determination of weights is a
completely data-driven method, without the subjective participation of the experimenter
(the obtained entropy weight results depend on the phenological characteristics of each
target class). In theory, the method framework is transferable to other categories.

5.2. Limitations of the ETW-DTW Method

During the experiment, we found some algorithm limitations and areas for improve-
ment. We utilized the ETW-DTW distance to assess class confusions, identifying instances
where time series patterns differed from the reference patterns. It has been demonstrated
that DTW dissimilarity can be a valuable resource for understanding the spatio-temporal
autocorrelation of time series images [39]. However, the DTW algorithm exhibited weak re-
sistance to intra-class variability. Throughout this process, we made the assumption that the
difference between categories (inter-class difference) was greater than the difference within
the category itself (intra-class difference). However, variations in the planting structure and
pattern of fruit trees introduced heterogeneity within the same class, thereby impacting
classification accuracy. Intra-class heterogeneity is a contributing factor to the lower classi-
fication accuracy of the DTW algorithm compared to machine learning algorithms under
conditions of sufficient samples. This limitation may hinder the model from achieving
optimal results on a large scale. Although it can mitigate the effects of phenological delays
and advances in fruit trees, the heterogeneity caused by different varieties and planting
structures within the same type of fruit tree is a non-negligible issue. Therefore, in further ef-
forts to implement orchard classification at national or global scales, suppressing intra-class
errors within the same category is a gap that the current version of the ETW-DTW model
needs to address. Further research is necessary to explore the significance of the ETW-DTW
in measuring spatiotemporal autocorrelation and mitigating intra-class differences. We
believe that incorporating an intra-class variability suppression module into the ETW-DTW
model would greatly enhance its potential for large-scale classification projects.
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6. Conclusions

Utilizing Sentinel-1/2 time series image data, this study introduces a novel classifica-
tion approach based on the Time-Weighted Dynamic Time Warping (TWDTW) theory and
entropy weight theory (ETW-DTW) at the plot scale for orchard class delineation. Building
upon the traditional TWDTW algorithm, which outputs single-band results, the ETW-DTW
method innovatively integrates multi-attribute time-series data through entropy-weighted
theory, achieving an overall improvement in classification accuracy. This approach was
applied in three counties in Shanxi Province, China, and yielded satisfactory results for
orchard classification, where phenological and structural similarities are high. The ETW-
DTW method has a very low dependency on sample size, making it an ideal choice for
large-scale agricultural surveys where sufficient sample collection is challenging due to
harsh environmental conditions. The successful implementation of this workflow has the
potential to enhance the efficiency of cash crop production, ensuring a sustainable agri-
cultural and forestry environment. Additionally, the ETW-DTW method holds potential
value for sample augmentation tasks and is of great significance for monitoring cropping
systems, assessing crop growth conditions, estimating yields, and characterizing land
ecosystem dynamics.
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