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Introduction 

To verify the robustness of the lead-lag correlations between ITF volume transport and 
the Niño 3.4 and DMI indices, the independent results of each year are shown in Figures 
S1–S4 during IOD-independent ENSO and ENSO-independent IOD events. 

 

 



 
Figure S1. Lead-lag correlations between ITF volume transport and Niño 3.4 index 
during IOD-independent El Niño events. (a) Lead-lag correlations between the ITF 
inflow upper layer (0–300 m) volume transport and Niño 3.4 index during 2002–2003. 
The dark blue bars indicate passing the 95% significance test. (b–d) Same as (a) but for 
the ITF inflow lower layer (300–760 m), outflow upper layer (0–300 m) and outflow 
lower layer (300–760 m) volume transport, respectively. (e–h) and (i–l) Same as (a–d) 
but during 2004–2005 and 2009–2010, respectively. 



 
Figure S2. Lead-lag correlations between ITF volume transport and Niño 3.4 index 
during IOD-independent La Niña events. (a) Lead-lag correlations between the ITF 
inflow upper layer (0–300 m) volume transport and Niño 3.4 index during 1995–1996. 
The dark blue bars indicate passing the 95% significance test. (b–d) Same as (a) but for 
the ITF inflow lower layer (300–760 m), outflow upper layer (0–300 m) and outflow 
lower layer (300–760 m) volume transport, respectively. (e–h), (i–l) and (m–p) Same as 
(a–d) but during 1999–2000, 2008–2009 and 2020–2021, respectively. 
 



 

Figure S3. Lead-lag correlations between ITF volume transport and DMI index during 
ENSO-independent Positive IOD events. (a) Lead-lag correlations between the ITF 
inflow upper layer (0–300 m) volume transport and DMI index during 2002–2003. The 
dark blue bars indicate passing the 95% significance test. (b–d) Same as (a) but for the ITF 
inflow lower layer (300–760 m), outflow upper layer (0–300 m) and outflow lower layer 
(300–760 m) volume transport, respectively. (e–h) Same as (a–d) but during 2017–2018. 
  



 

Figure S4. Lead-lag correlations between ITF volume transport and DMI index during 
ENSO-independent Negative IOD events. (a) Lead-lag correlations between the ITF 
inflow upper layer (0–300 m) volume transport and DMI index during 1996–1997. The 
dark blue bars indicate passing the 95% significance test. (b–d) Same as (a) but for the ITF 
inflow lower layer (300–760 m), outflow upper layer (0–300 m) and outflow lower layer 
(300–760 m) volume transport, respectively. (e–h) Same as (a–d) but during 2005–2006. 


