Projecting Response of Ecological Vulnerability to Future Climate Change and Human Policies in the Yellow River Basin, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Dataset and Preprocessing
2.2.1. Vegetation, Climate, and LULC Data
2.2.2. Projections Dataset
2.3. Models and Processes
2.3.1. Multi-Scenarios in the Future
2.3.2. Spatiotemporal Modeling and Prediction of Land Use
- (1)
- Markov-PLUS-based land use modeling
- (2)
- Selection of LUCC driving factors
2.3.3. Multi-Scenario Modeling and Assessment of Ecological Vulnerability
3. Results
3.1. Parameter Selection and Accuracy Verification
3.2. LUCC during 2010–2020 and under Three Development Scenarios
3.3. Multi-Scenario Assessment and Changes in Future EV
3.4. Analysis of Changes in and Influence of Future EV
4. Discussion
4.1. Ecological Vulnerability Assessment Rationality and Reliability
4.2. Insights for Future Development and Management of the YRB
4.3. Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Feng, H.; Lei, X.; Yu, G.; Changchun, Z. Spatio-temporal evolution and trend prediction of urban ecosystem service value based on CLUE-S and GM (1,1) compound model. Environ. Monit. Assess. 2023, 195, 1282. [Google Scholar] [CrossRef] [PubMed]
- IPCC. Climate Change 2022—Impacts, Adaptation and Vulnerability: Working Group II Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2023. [Google Scholar]
- Nie, X.; Lu, B.; Chen, Z.; Yang, Y.; Chen, S.; Chen, Z.; Wang, H. Increase or decrease? Integrating the CLUMondo and InVEST models to assess the impact of the implementation of the Major Function Oriented Zone planning on carbon storage. Ecol. Indic. 2020, 118, 106708. [Google Scholar] [CrossRef]
- Shirmohammadi, B.; Malekian, A.; Salajegheh, A.; Taheri, B.; Azarnivand, H.; Malek, Z.; Verburg, P.H. Impacts of future climate and land use change on water yield in a semiarid basin in Iran. Land Degrad. Dev. 2020, 31, 1252–1264. [Google Scholar] [CrossRef]
- Graves, R.A.; Pearson, S.M.; Turner, M.G. Species richness alone does not predict cultural ecosystem service value. Proc. Natl. Acad. Sci. USA 2017, 114, 3774–3779. [Google Scholar] [CrossRef] [PubMed]
- Dong, N.; You, L.; Cai, W.J.; Li, G.; Lin, H. Land use projections in China under global socioeconomic and emission scenarios: Utilizing a scenario-based land-use change assessment framework. Glob. Environ. Chang. 2018, 50, 164–177. [Google Scholar] [CrossRef]
- Jiang, L.; Huang, X.X.; Wang, F.T.; Liu, Y.C.; An, P.L. Method for evaluating ecological vulnerability under climate change based on remote sensing: A case study. Ecol. Indic. 2018, 85, 479–486. [Google Scholar] [CrossRef]
- Zhao, M.M.; He, Z.B.; Du, J.; Chen, L.F.; Lin, P.F.; Fang, S. Assessing the effects of ecological engineering on carbon storage by linking the CA-Markov and InVEST models. Ecol. Indic. 2019, 98, 29–38. [Google Scholar] [CrossRef]
- He, L.; Shen, J.; Zhang, Y. Ecological vulnerability assessment for ecological conservation and environmental management. J. Environ. Manag. 2018, 206, 1115–1125. [Google Scholar] [CrossRef]
- Chen, Y.; Xiong, K.N.; Ren, X.D.; Cheng, C. An overview of ecological vulnerability: A bibliometric analysis based on the Web of Science database. Environ. Sci. Pollut. Res. 2022, 29, 12984–12996. [Google Scholar] [CrossRef]
- Ager, A.A.; Day, M.A.; Vogler, K. Production possibility frontiers and socioecological tradeoffs for restoration of fire adapted forests. J. Environ. Manag. 2016, 176, 157–168. [Google Scholar] [CrossRef]
- Caballero, C.B.; Biggs, T.W.; Vergopolan, N.; West, T.A.P.; Ruhoff, A. Transformation of Brazil’s biomes: The dynamics and fate of agriculture and pasture expansion into native vegetation. Sci. Total Environ. 2023, 896, 166323. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.J.; Liang, Y.J.; Hashimoto, S. Integrated assessment of land-use/coverage changes and their impacts on ecosystem services in Gansu Province, northwest China: Implications for sustainable development goals. Sustain. Sci. 2020, 15, 297–314. [Google Scholar] [CrossRef]
- Folke, C. Resilience: The emergence of a perspective for social–ecological systems analyses. Glob. Environ. Chang. 2006, 16, 253–267. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, K.; Wang, S.; Wu, T.; Li, X.; Wang, J.; Wang, D.; Zhu, H.; Tan, C.; Ji, Y. Spatiotemporal evolution of ecological vulnerability in the Yellow River Basin under ecological restoration initiatives. Ecol. Indic. 2022, 135, 108586. [Google Scholar] [CrossRef]
- Li, Q.; Shi, X.; Wu, Q. Effects of protection and restoration on reducing ecological vulnerability. Sci. Total Environ. 2021, 761, 143180. [Google Scholar] [CrossRef]
- Peng, B.; Huang, Q.; Elahi, E.; Wei, G. Ecological Environment Vulnerability and Driving Force of Yangtze River Urban Agglomeration. Sustainability 2019, 11, 6623. [Google Scholar] [CrossRef]
- Liu, X.; Li, H.; Wang, S.; Liu, K.; Li, L.; Li, D.; Jia, A. Ecological Security Assessment of “Grain-for-Green” Program Typical Areas in Northern China Based on Multi-Source Remote Sensing Data. Remote Sens. 2023, 15, 5732. [Google Scholar] [CrossRef]
- Segnon, A.C.; Totin, E.; Zougmoré, R.B.; Lokossou, J.C.; Thompson-Hall, M.; Ofori, B.O.; Achigan-Dako, E.G.; Gordon, C. Differential household vulnerability to climatic and non-climatic stressors in semi-arid areas of Mali, West Africa. Clim. Dev. 2021, 13, 697–712. [Google Scholar] [CrossRef]
- Shah, M.A.R.; Wang, X. Assessing social-ecological vulnerability and risk to coastal flooding: A case study for Prince Edward Island, Canada. Int. J. Disast. Risk Reduct. 2024, 106, 104450. [Google Scholar] [CrossRef]
- Dai, X.; Feng, H.; Xiao, L.; Zhou, J.; Wang, Z.; Zhang, J.; Fu, T.; Shan, Y.; Yang, X.; Ye, Y.; et al. Ecological vulnerability assessment of a China’s representative mining city based on hyperspectral remote sensing. Ecol. Indic. 2022, 145, 109663. [Google Scholar] [CrossRef]
- Gao, Q.; Guo, Y.; Xu, H.; Ganjurjav, H.; Li, Y.; Wan, Y.; Qin, X.; Ma, X.; Liu, S. Climate change and its impacts on vegetation distribution and net primary productivity of the alpine ecosystem in the Qinghai-Tibetan Plateau. Sci. Total Environ. 2016, 554–555, 34–41. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Wang, S.; Cao, Y.; Shi, J.; Qu, Y.; Li, L.; Zhao, T.; Niu, Z.; Yang, R.; Gong, P. Assessing the ecological vulnerability of protected areas by using Big Earth Data. Int. J. Digit. Earth 2021, 14, 1624–1637. [Google Scholar] [CrossRef]
- Li, D.; Huan, C.Y.; Yang, J.; Gu, H.L. Temporal and Spatial Distribution Changes, Driving Force Analysis and Simulation Prediction of Ecological Vulnerability in Liaoning Province, China. Land 2022, 11, 1025. [Google Scholar] [CrossRef]
- Deng, G.; Jiang, H.; Zhu, S.; Wen, Y.; He, C.; Wang, X.; Sheng, L.; Guo, Y.; Cao, Y. Projecting the response of ecological risk to land use/land cover change in ecologically fragile regions. Sci. Total Environ. 2024, 914, 169908. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.X.; Hou, K.; Tang, H.J.; Liu, J.W.; Wu, S.Q.; Li, X.X.; Sun, P.C. A new perspective on the whole process of ecological vulnerability analysis based on the EFP framework. J. Clean. Prod. 2023, 426, 139160. [Google Scholar] [CrossRef]
- Xie, Z.L.; Li, X.Z.; Jiang, D.G.; Lin, S.W.; Yang, B.; Chen, S.L. Threshold of island anthropogenic disturbance based on ecological vulnerability Assessment-A case study of Zhujiajian Island. Ocean Coast. Manag. 2019, 167, 127–136. [Google Scholar] [CrossRef]
- Kebede, A.S.; Nicholls, R.J.; Allan, A.; Arto, I.; Cazcarro, I.; Fernandes, J.A.; Hill, C.T.; Hutton, C.W.; Kay, S.; Lázár, A.N.; et al. Applying the global RCP–SSP–SPA scenario framework at sub-national scale: A multi-scale and participatory scenario approach. Sci. Total Environ. 2018, 635, 659–672. [Google Scholar] [CrossRef]
- Zhang, K.L.; Fang, B.; Zhang, Z.C.; Liu, T.; Liu, K. Exploring future ecosystem service changes and key contributing factors from a “past-future-action” perspective: A case study of the Yellow River Basin. Sci. Total Environ. 2024, 926, 171630. [Google Scholar] [CrossRef]
- Eyring, V.; Bony, S.; Meehl, G.A.; Senior, C.A.; Stevens, B.; Stouffer, R.J.; Taylor, K.E. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 2016, 9, 1937–1958. [Google Scholar] [CrossRef]
- Coelho, S.; Rafael, S.; Fernandes, A.P.; Lopes, M.; Carvalho, D. How the new climate scenarios will affect air quality trends: An exploratory research. Urban Clim. 2023, 49, 101479. [Google Scholar] [CrossRef]
- Li, S.Y.; Miao, L.J.; Jiang, Z.H.; Wang, G.J.; Gnyawali, K.R.; Zhang, J.; Zhang, H.; Fang, K.; He, Y.; Li, C. Projected drought conditions in Northwest China with CMIP6 models under combined SSPs and RCPs for 2015–2099. Adv. Clim. Chang. Res. 2020, 11, 210–217. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, Z.J.; Shi, P.J.; Singh, V.P.; Gu, X.H. Evaluation of ecological instream flow considering hydrological alterations in the Yellow River basin, China. Glob. Planet. Chang. 2018, 160, 61–74. [Google Scholar] [CrossRef]
- Liu, Y.W.; Yuan, L. Study on the influencing factors and profitability of horizontal ecological compensation mechanism in Yellow River Basin of China. Environ. Sci. Pollut. Res. 2023, 30, 87353–87367. [Google Scholar] [CrossRef] [PubMed]
- Omer, A.; Ma, Z.; Yuan, X.; Zheng, Z.; Saleem, F. A hydrological perspective on drought risk-assessment in the Yellow River Basin under future anthropogenic activities. J. Environ. Manag. 2021, 289, 112429. [Google Scholar] [CrossRef]
- Yang, Y.; Li, H.; Qian, C. Analysis of the implementation effects of ecological restoration projects based on carbon storage and eco-environmental quality: A case study of the Yellow River Delta, China. J. Environ. Manag. 2023, 340, 117929. [Google Scholar] [CrossRef]
- Liang, W.; Bai, D.; Jin, Z.; You, Y.C.; Li, J.X.; Yang, Y.T. A Study on the Streamflow Change and its Relationship with Climate Change and Ecological Restoration Measures in a Sediment Concentrated Region in the Loess Plateau, China. Water Resour. Manag. 2015, 29, 4045–4060. [Google Scholar] [CrossRef]
- Zhu, M.; Zhang, X.; Elahi, E.; Fan, B.; Khalid, Z. Assessing ecological product values in the Yellow River Basin: Factors, trends, and strategies for sustainable development. Ecol. Indic. 2024, 160, 111708. [Google Scholar] [CrossRef]
- Wu, Q.; Jiang, X.; Shi, X.; Zhang, Y.; Liu, Y.; Cai, W. Spatiotemporal evolution characteristics of soil erosion and its driving mechanisms—A case Study: Loess Plateau, China. Catena 2024, 242, 108075. [Google Scholar] [CrossRef]
- Li, J. A simulation approach to optimizing the vegetation covers under the water constraint in the Yellow River Basin. For. Policy Econ. 2021, 123, 102377. [Google Scholar] [CrossRef]
- Yang, J.; Guo, N. Ananlyses on MODIS-NDVI index saturation in Northwest China. Plateau Meteorol. 2008, 27, 896–903. [Google Scholar] [CrossRef]
- Ge, J.; Meng, B.; Liang, T.; Feng, Q.; Gao, J.; Yang, S.; Huang, X.; Xie, H. Modeling alpine grassland cover based on MODIS data and support vector machine regression in the headwater region of the Huanghe River, China. Remote Sens. Environ. 2018, 218, 162–173. [Google Scholar] [CrossRef]
- Zhou, Y.; Batelaan, O.; Guan, H.; Liu, T.; Duan, L.; Wang, Y.; Li, X. Assessing long-term trends in vegetation cover change in the Xilin River Basin: Potential for monitoring grassland degradation and restoration. J. Environ. Manag. 2024, 349, 119579. [Google Scholar] [CrossRef] [PubMed]
- Thomas, J.; Joseph, S.; Thrivikramji, K.P. Assessment of soil erosion in a tropical mountain river basin of the southern Western Ghats, India using RUSLE and GIS. Geosci. Front. 2018, 9, 893–906. [Google Scholar] [CrossRef]
- Zhao, M.; Zhou, Y.; Li, X.; Zhou, C.; Cheng, W.; Li, M.; Huang, K. Building a Series of Consistent Night-Time Light Data (1992–2018) in Southeast Asia by Integrating DMSP-OLS and NPP-VIIRS. IEEE Trans. Geosci. Remote Sens. 2020, 58, 1843–1856. [Google Scholar] [CrossRef]
- Jing, X.; Shao, X.; Cao, C.; Fu, X.; Yan, L. Comparison between the Suomi-NPP Day-Night Band and DMSP-OLS for Correlating Socio-Economic Variables at the Provincial Level in China. Remote Sens. 2016, 8, 17. [Google Scholar] [CrossRef]
- Sun, Y.; Zheng, S.; Wu, Y.; Schlink, U.; Singh, R.P. Spatiotemporal Variations of City-Level Carbon Emissions in China during 2000–2017 Using Nighttime Light Data. Remote Sens. 2020, 12, 2916. [Google Scholar] [CrossRef]
- Song, Y.H.; Chung, E.-S.; Shahid, S. Uncertainties in evapotranspiration projections associated with estimation methods and CMIP6 GCMs for South Korea. Sci. Total Environ. 2022, 825, 153953. [Google Scholar] [CrossRef]
- Liu, K.; Li, X.K.; Wang, S.D.; Zhang, X.Y. Unrevealing past and future vegetation restoration on the Loess Plateau and its impact on terrestrial water storage. J. Hydrol. 2023, 617, 129021. [Google Scholar] [CrossRef]
- Sanderson, B.M.; Wehner, M.; Knutti, R. Skill and independence weighting for multi-model assessments. Geosci. Model. Dev. 2017, 10, 2379–2395. [Google Scholar] [CrossRef]
- Wang, J.; Chen, Y.; Liao, W.L.; He, G.H.; Tett, S.F.B.; Yan, Z.W.; Zhai, P.M.; Feng, J.M.; Ma, W.J.; Huang, C.R.; et al. Anthropogenic emissions and urbanization increase risk of compound hot extremes in cities. Nat. Clim. Change 2021, 11, 1084–1089. [Google Scholar] [CrossRef]
- Peng, S.; Ding, Y.; Wen, Z.; Chen, Y.; Cao, Y.; Ren, J. Spatiotemporal change and trend analysis of potential evapotranspiration over the Loess Plateau of China during 2011–2100. Agr. For. Meteorol. 2017, 233, 183–194. [Google Scholar] [CrossRef]
- Tan, M.L.; Ficklin, D.L.; Dixon, B.; Ibrahim, A.L.; Yusop, Z.; Chaplot, V. Impacts of DEM resolution, source, and resampling technique on SWAT-simulated streamflow. Appl. Geogr. 2015, 63, 357–368. [Google Scholar] [CrossRef]
- Liang, D.; Zuo, Y.; Huang, L.; Zhao, J.; Teng, L.; Yang, F. Evaluation of the Consistency of MODIS Land Cover Product (MCD12Q1) Based on Chinese 30 m GlobeLand30 Datasets: A Case Study in Anhui Province, China. ISPRS Int. J. Geoinf. 2015, 4, 2519–2541. [Google Scholar] [CrossRef]
- Wang, S.; Liu, J.; Ma, T. Dynamics and changes in spatial patterns of land use in Yellow River Basin, China. Land Use Policy 2010, 27, 313–323. [Google Scholar] [CrossRef]
- Zhang, D.N.; Zuo, X.X.; Zang, C.F. Assessment of future potential carbon sequestration and water consumption in the construction area of the Three-North Shelterbelt Programme in China. Agr. For. Meteorol. 2021, 303, 108377. [Google Scholar] [CrossRef]
- Dai, L.M.; Li, S.L.; Zhou, W.M.; Qi, L.; Zhou, L.; Wei, Y.W.; Li, J.Q.; Shao, G.F.; Yu, D.P. Opportunities and challenges for the protection and ecological functions promotion of natural forests in China. For. Ecol. Manag. 2018, 410, 187–192. [Google Scholar] [CrossRef]
- Zhang, Y.S.; Lu, X.; Liu, B.Y.; Wu, D.T.; Fu, G.; Zhao, Y.T.; Sun, P.L. Spatial relationships between ecosystem services and socioecological drivers across a large-scale region: A case study in the Yellow River Basin. Sci. Total Environ. 2021, 766, 142480. [Google Scholar] [CrossRef]
- Wang, J.Y.; Liu, Y.S.; Liu, Z.G. Spatio-Temporal Patterns of Cropland Conversion in Response to the “Grain for Green Project” in China’s Loess Hilly Region of Yanchuan County. Remote Sens. 2013, 5, 5642–5661. [Google Scholar] [CrossRef]
- Ministry of Ecology and Environment, China. China Ecological Function Zoning (Revised Edition 2015). Beijing 2015. Available online: https://www.mee.gov.cn/xxgk2018/xxgk/xzgfxwj/202301/W020151126550511267548.pdf (accessed on 10 January 2024).
- Ju, X.H.; Li, W.F.; He, L.; Li, J.R.; Han, L.J.; Mao, J.Q. Ecological redline policy may significantly alter urban expansion and affect surface runoff in the Beijing-Tianjin-Hebei megaregion of China. Environ. Res. Lett. 2020, 15, 1040b1. [Google Scholar] [CrossRef]
- The CPC Central Committee. Framework of Plan for Ecological Protection and High-Quality Development of the Yellow River Basin. Beijing 2021. Available online: https://www.gov.cn/zhengce/2021-10/08/content_5641438.htm (accessed on 10 January 2024).
- Li, Z.T.; Yuan, M.J.; Hu, M.M.; Wang, Y.F.; Xia, B.C. Evaluation of ecological security and influencing factors analysis based on robustness analysis and the BP-DEMALTE model: A case study of the Pearl River Delta urban agglomeration. Ecol. Indic. 2019, 101, 595–602. [Google Scholar] [CrossRef]
- Ji, X.; Sun, Y.; Guo, W.; Zhao, C.; Li, K. Land use and habitat quality change in the Yellow River Basin: A perspective with different CMIP6-based scenarios and multiple scales. J. Environ. Manag. 2023, 345, 118729. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Zhao, X.; Chen, P.; Zhu, B.; Cai, W.; Wu, W.; Guo, Q.; Iribagiza, M.R. Assessing the effects of combined future climate and land use/cover changes on streamflow in the Upper Fen River Basin, China. J. Hydrol. Reg. Stud. 2024, 53, 101853. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Li, X.; Mao, Y.T.; Li, L.; Wang, X.R.; Lin, Q. Dynamic simulation of land use change and assessment of carbon storage based on climate change scenarios at the city level: A case study of Bortala, China. Ecol. Indic. 2022, 134, 108499. [Google Scholar] [CrossRef]
- Sun, D.; Liang, Y. Multi-scenario Simulation of Land Use Dynamic in the Loess Plateau using an Improved Markov-CA Model. ISPRS Int. J. Geoinf. 2021, 23, 825–836. [Google Scholar] [CrossRef]
- Dinda, S.; Das Chatterjee, N.; Ghosh, S. An integrated simulation approach to the assessment of urban growth pattern and loss in urban green space in Kolkata, India: A GIS-based analysis. Ecol. Indic. 2021, 121, 107178. [Google Scholar] [CrossRef]
- Saha, P.; Mitra, R.; Chakraborty, K.; Roy, M. Application of multi layer perceptron neural network Markov Chain model for LULC change detection in the Sub-Himalayan North Bengal. Remote Sens. Appl. Soc. Environ. 2022, 26, 100730. [Google Scholar] [CrossRef]
- Liang, X.; Guan, Q.F.; Clarke, K.C.; Liu, S.S.; Wang, B.Y.; Yao, Y. Understanding the drivers of sustainable land expansion using a patch-generating land use simulation (PLUS) model: A case study in Wuhan, China. Comput. Environ. Urban 2021, 85, 101569. [Google Scholar] [CrossRef]
- Chen, N.; Xin, C.; Zhang, B.; Xin, S.; Tang, D.; Chen, H.; Ma, X. Contribution of multi-objective land use optimization to carbon neutrality: A case study of Northwest China. Ecol. Indic. 2023, 157, 111219. [Google Scholar] [CrossRef]
- Zhai, H.; Lv, C.Q.; Liu, W.Z.; Yang, C.; Fan, D.S.; Wang, Z.K.; Guan, Q.F. Understanding Spatio-Temporal Patterns of Land Use/Land Cover Change under Urbanization in Wuhan, China, 2000–2019. Remote Sens. 2021, 13, 3331. [Google Scholar] [CrossRef]
- Lin, Z.; Peng, S.; Ma, D.; Shi, S.; Zhu, Z.; Zhu, J.; Gong, L.; Huang, B. Patterns of change, driving forces and future simulation of LULC in the Fuxian Lake Basin based on the IM-RF-Markov-PLUS framework. Sustain. Futures 2024, 8, 100289. [Google Scholar] [CrossRef]
- Mo, J.; Sun, P.; Shen, D.; Li, N.; Zhang, J.; Wang, K. Simulation Analysis of Land-Use Spatial Conflict in a Geopark Based on the GMOP–Markov–PLUS Model: A Case Study of Yimengshan Geopark, China. Land 2023, 12, 1291. [Google Scholar] [CrossRef]
- Li, M.; Zhang, Z.; Liu, X.; Hui, Y. Multi-scenario analysis of land space based on PLUS and MSPA. Environ. Monit. Assess. 2023, 195, 817. [Google Scholar] [CrossRef]
- Gao, J.; Gong, J.; Li, Y.; Yang, J.X.; Liang, X. Ecological network assessment in dynamic landscapes: Multi-scenario simulation and conservation priority analysis. Land Use Policy 2024, 139, 107059. [Google Scholar] [CrossRef]
- Yao, L.; Lu, J.; Jiang, H.; Liu, T.; Qin, J.; Zhou, C. Satellite-derived aridity index reveals China’s drying in recent two decades. iScience 2023, 26, 106185. [Google Scholar] [CrossRef] [PubMed]
- Islam, K.; Rahman, M.F.; Jashimuddin, M. Modeling land use change using Cellular Automata and Artificial Neural Network: The case of Chunati Wildlife Sanctuary, Bangladesh. Ecol. Indic. 2018, 88, 439–453. [Google Scholar] [CrossRef]
- Lamichhane, S.; Shakya, N.M. Integrated Assessment of Climate Change and Land Use Change Impacts on Hydrology in the Kathmandu Valley Watershed, Central Nepal. Water 2019, 11, 2059. [Google Scholar] [CrossRef]
- Wang, S.S.; Tan, X.; Fan, F.L. Landscape Ecological Risk Assessment and Impact Factor Analysis of the Qinghai-Tibetan Plateau. Remote Sens. 2022, 14, 4726. [Google Scholar] [CrossRef]
- Xue, L.Q.; Wang, J.; Zhang, L.C.; Wei, G.H.; Zhu, B.L. Spatiotemporal analysis of ecological vulnerability and management in the Tarim River Basin, China. Sci. Total Environ. 2019, 649, 876–888. [Google Scholar] [CrossRef]
- Sang, S.; Wu, T.; Wang, S.; Yang, Y.; Liu, Y.; Li, M.; Zhao, Y. Ecological Safety Assessment and Analysis of Regional Spatiotemporal Differences Based on Earth Observation Satellite Data in Support of SDGs: The Case of the Huaihe River Basin. Remote Sens. 2021, 13, 3942. [Google Scholar] [CrossRef]
- Wohlfart, C.; Kuenzer, C.; Chen, C.; Liu, G. Social–ecological challenges in the Yellow River basin (China): A review. Environ. Earth Sci. 2016, 75, 1066. [Google Scholar] [CrossRef]
- Ministry of Ecology and Environment, China. The Outline of the Plan for the Protection of China Ecological Fragile Region. Beijing 2008. Available online: https://www.mee.gov.cn/gkml/hbb/bwj/200910/W020081009352582312090.pdf (accessed on 18 March 2024).
- Ministry of Ecology and Environment, China. Ecological Environment Protection Planning of Yellow River Basin. Beijing 2022. Available online: https://www.mee.gov.cn/ywgz/zcghtjdd/ghxx/202206/W020220628597264429830.pdf (accessed on 18 March 2024).
- Wang, X.R.; Duan, L.R.; Zhang, T.J.; Cheng, W.; Jia, Q.; Li, J.S.; Li, M.Y. Ecological vulnerability of China’s Yellow River Basin: Evaluation and socioeconomic driving factors. Environ. Sci. Pollut. Res. 2023, 30, 115915–115928. [Google Scholar] [CrossRef] [PubMed]
- Deng, H.Y.; Yin, Y.H.; Zong, X.Z.; Yin, M.J. Future drought risks in the Yellow River Basin and suggestions for targeted response. Int. J. Disast. Risk Res. 2023, 93, 103764. [Google Scholar] [CrossRef]
- Ma, J.N.; Zhang, C.; Guo, H.; Chen, W.L.; Yun, W.J.; Gao, L.L.; Wang, H. Analyzing Ecological Vulnerability and Vegetation Phenology Response Using NDVI Time Series Data and the BFAST Algorithm. Remote Sens. 2020, 12, 3371. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Liu, K.; Li, X.K.; Wang, S.D.; Wang, J.N.A. Vulnerability assessment and its driving forces in terms of NDVI and GPP over the Loess Plateau, China. Phys. Chem. Earth 2022, 125, 103106. [Google Scholar] [CrossRef]
- Kong, L.; Wu, T.; Xiao, Y.; Xu, W.; Zhang, X.; Daily, G.C.; Ouyang, Z. Natural capital investments in China undermined by reclamation for cropland. Nat. Ecol. Evol. 2023, 7, 1771–1777. [Google Scholar] [CrossRef]
- Angelsen, A.; Kaimowitz, D. Rethinking the causes of deforestation: Lessons from economic models. World Bank Res. Obser. 1999, 14, 73–98. [Google Scholar] [CrossRef]
- Zhang, Y.W.; Xie, H.L. Interactive Relationship among Urban Expansion, Economic Development, and Population Growth since the Reform and Opening up in China: An Analysis Based on a Vector Error Correction Model. Land 2019, 8, 153. [Google Scholar] [CrossRef]
- Fang, Z.; Ding, T.; Chen, J.; Xue, S.; Zhou, Q.; Wang, Y.; Wang, Y.; Huang, Z.; Yang, S. Impacts of land use/land cover changes on ecosystem services in ecologically fragile regions. Sci. Total Environ. 2022, 831, 154967. [Google Scholar] [CrossRef]
- Li, J.; Chen, X.; Kurban, A.; Van de Voorde, T.; De Maeyer, P.; Zhang, C. Coupled SSPs-RCPs scenarios to project the future dynamic variations of water-soil-carbon-biodiversity services in Central Asia. Ecol. Indic. 2021, 129, 107936. [Google Scholar] [CrossRef]
- Cook, B.I.; Mankin, J.S.; Marvel, K.; Williams, A.P.; Smerdon, J.E.; Anchukaitis, K.J. Twenty-First Century Drought Projections in the CMIP6 Forcing Scenarios. Earths Future 2020, 8, e2019EF001461. [Google Scholar] [CrossRef]
Data | Data Type | Data Product | Year | Resolution | Sources |
---|---|---|---|---|---|
MODIS | LULC | MCD12Q1 | 2010, 2020 | 500 m | https://ladsweb.modaps.eosdis.nasa.gov/ (accessed on 5 January 2024) |
NDVI | MOD13A3 | 2020 | 1000 m | ||
ET/PET | MOD16A2 | 2010–2020 | 500 m | ||
Meteorological station | PRE | China Surface Meteorological Observation Dataset (Monthly) | 2010–2020 | Spatially interpolated to 1000 m | https://data.cma.cn/ (accessed on 5 January 2024) |
TEM | |||||
WIN | |||||
SoilGrids | SOC | Soil Organic Carbon | — | 250 m | https://soilgrids.org/ (accessed on 9 January 2024) |
Soil Texture | Clay content, Sand, Silt | — | |||
SNPP | Night Light | NPP-VIIRS | 2020 | 1000 m | https://www.resdc.cn/ (accessed on 12 January 2024) |
SRTM | DEM | SRTM V4.1 | — | 90 m | https://www.gscloud.cn/ (accessed on 12 January 2024) |
SEDAC | POP | Global 1-km Downscaled Population | 2000–2100 | 1000 m | https://doi.org/10.7927/q7z9-9r69 (accessed on 18 January 2024) |
CMIP6 | Pre, Tem, Winds, GPP | CESM2 | 2001–2014, 2015–2100 | 1.25° × 0.94° | https://esgf-node.llnl.gov/search/cmip6/ (accessed on 18 January 2024) |
CNRM-CM6-1 | 1.41° × 1.41° | ||||
CNRM-ESM2-1 | 1.41° × 1.41° | ||||
TaiESM1 | 1.25° × 0.9° | ||||
BCC-CSM2-MR | 1.12° × 1.12° |
Scenarios | Weight Values (Wn) |
---|---|
Ecological conservation scenario (SSP1-2.6) | Diag (Woodland, Shrub, Grassland, Wetland, Cropland, Built-up, Water, Others) = (1.2, 1.1, 1.2, 1, 0.95, 0.85, 1, 1) |
Historical trend scenario (SSP2-4.5) | ― |
Urban development scenario (SSP5-8.5) | Diag (Woodland, Shrub, Grassland, Wetland, Cropland, Built-up, Water, Others) = (0.9, 1, 0.9, 1, 1.1, 1.2, 1, 1) |
Overall Objective | First-Level Indicator (Weight) | Second-Level Indicator (Weight) (±) | Formula | Description |
---|---|---|---|---|
Ecological vulnerability | Exposure B1. (0.297) | Precipitation (0.524) (−) | X1. PREik is the annual PRE of the k-th pixel in the i-th grid; PREi.max is the maximum PRE in the i-th grid; S0 is the area of the pixel, which is 1 km2; Si is the area of the i-th grid. | |
Terrain slope (0.197) (+) | X2. TSik is the slope of the k-th pixel in the i-th grid; σi and μi are the slopes’ variance and mean values in the i-th grid, respectively. | |||
Population coefficient (0.279) (+) | X3. Popi and Ui are the population density and built-up land area in the i-th grid, respectively. | |||
Sensitivity B2. (0.540) | Ecosystem elasticity (0.214) (−) | X4. Vip and Sip are the elasticity coefficient and area of land use type p of the i-th grid. | ||
Ecosystem vitality (0.214) (−) | X5. GPPik is the GPP value of the k-th pixel in the i-th grid; GPPi.max is the largest GPP value in the i-th grid. | |||
Ecosystem services (0.286) (−) (+) | X6. Soil conservation (Ac): Ri and Ki are the rainfall erosivity and soil erodibility factors, respectively; LSi is the slope steepness and slope length factor; Ci and Pi are the vegetation coverage and governance measure factors, respectively. | |||
X7. Wind–sand erosion (Ei). Cwei is the wind erosion and climate erosion factor; wi and PETi are the average wind speed and PET in the n-th month. | ||||
Aridity stress (0.286) (+) | X8. PREik and PETik are the annual PRE and PET of the k-th pixel in the i-th grid, respectively. | |||
Adaptability B3. (0.163) | Protected area coefficient (−) | X9. Si.EPI is an ecological function protection zone area in the i-th grid. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Wang, S.; Liu, K.; Huang, X.; Shi, J.; Li, X. Projecting Response of Ecological Vulnerability to Future Climate Change and Human Policies in the Yellow River Basin, China. Remote Sens. 2024, 16, 3410. https://doi.org/10.3390/rs16183410
Zhang X, Wang S, Liu K, Huang X, Shi J, Li X. Projecting Response of Ecological Vulnerability to Future Climate Change and Human Policies in the Yellow River Basin, China. Remote Sensing. 2024; 16(18):3410. https://doi.org/10.3390/rs16183410
Chicago/Turabian StyleZhang, Xiaoyuan, Shudong Wang, Kai Liu, Xiankai Huang, Jinlian Shi, and Xueke Li. 2024. "Projecting Response of Ecological Vulnerability to Future Climate Change and Human Policies in the Yellow River Basin, China" Remote Sensing 16, no. 18: 3410. https://doi.org/10.3390/rs16183410
APA StyleZhang, X., Wang, S., Liu, K., Huang, X., Shi, J., & Li, X. (2024). Projecting Response of Ecological Vulnerability to Future Climate Change and Human Policies in the Yellow River Basin, China. Remote Sensing, 16(18), 3410. https://doi.org/10.3390/rs16183410