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Abstract: Deep learning methods like convolution neural networks (CNNs) and transformers are
successfully applied in hyperspectral image (HSI) classification due to their ability to extract local
contextual features and explore global dependencies, respectively. However, CNNs struggle in mod-
eling long-term dependencies, and transformers may miss subtle spatial-spectral features. To address
these challenges, this paper proposes an innovative hybrid HSI classification method aggregating
hierarchical spatial-spectral features from a CNN and long pixel dependencies from a transformer.
The proposed aggregation multi-hierarchical feature network (AMHFN) is designed to capture vari-
ous hierarchical features and long dependencies from HSI, improving classification accuracy and
efficiency. The proposed AMHFN consists of three key modules: (a) a Local-Pixel Embedding module
(LPEM) for capturing prominent spatial-spectral features; (b) a Multi-Scale Convolutional Extraction
(MSCE) module to capture multi-scale local spatial-spectral features and aggregate hierarchical local
features; (c) a Multi-Scale Global Extraction (MSGE) module to explore multi-scale global depen-
dencies and integrate multi-scale hierarchical global dependencies. Rigorous experiments on three
public hyperspectral image (HSI) datasets demonstrated the superior performance of the proposed
AMHFN method.

Keywords: deep learning; hyperspectral image classification; transformers; convolution neural
network; feature fusion

1. Introduction

With the improvement of sensors, much more hyperspectral images are becoming
available. HSI could offer abundant information to identify materials, as it records hundreds
of bands on the electromagnetic spectrum of each pixel. Particularly, materials differ in their
emission, reflection, and absorption of electromagnetic waves, making the identification
and detection of different materials at a fine-grained level. The rich spectral information
makes them indispensable in various fields, such as ecosystem measurement [1], mineral
analysis [2,3], biomedical imaging [4], and precision agriculture [5].

In fact, HSI classification task aims to divide each pixel into the class labels. HSI
classification methods could be divided into two categories: traditional HSI classification
methods and deep learning-based HSI classification methods. In traditional HSI classifica-
tion methods, researchers attempt to solve the HSI classification task by applying machine
learning methods, such as K-Nearest Neighbors (KNNs) ([6,7]), Random Forests (RFs) ([8]),
and Support Vector Machines (SVMs) ([9,10]). For instance, Li et al. [11] proposed a spectral
band selection method to determine the optimal bands for subsequent feature learning by
combining Markov Random Field (MRF) and spectral selection. However, it is important
to highlight that these traditional HSI classification methods, which have been used for
a long time in the field, are often faced with challenges in the process of manual feature
extraction. This means that there is quite a bit of room for human error and subjectivity in
the process. Additionally, they may also experience a failure in fully exploiting the rich and
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complex spatial-spectral characteristics of different materials. This shortcoming can lead to
inaccurate and unreliable results.

Deep learning-based HSI classification methods have been developed, showing strong
feature extraction capability. Chen et al. [12] introduced an autoencoder method for
pixel identification, while Hu et al. [13] designed a CNN-based method to capture local
spatial features. Ran et al. [14] combined spectral band analysis with CNN. RNN has
also been utilized due to its sequential data modeling capability, but RNN-based methods
may not explore spatial information as well as CNNs, leading to poor classification. Mei
et al. [15] established a five-layer CNN-based method, integrating spatial and spectral
information; however, it explores them separately, resulting in insufficient use of spatial-
spectral fusion features.

Three-dimensional CNN architectures beneficially extract fusion information from 4D
tensors, enabling building models that exploit spatial-spectral fusion. Yang et al. [16] used
two CNN branches capturing this and then combined them for fed to a fully connected
layer extracting jointly spatial-spectral fusion features. Other methods like FCN Three-
Stream and novel 3D-CNN were introduced to address HSI classification, comprising
multiple 3D convolutional, pooling, and regularization layers, effectively capturing spatial-
spectral fusion. However, the CNN-based types may struggle with capturing global
HSI information.

Recently, transformer networks have been applied to computer vision tasks and have
performed well [17,18], which is due to their ability to capture long-range dependence. For
instance, Dosovitskiy et al. [19] first used transformers for image classification, introducing
the vision image transformer (ViT) network. In the ViT model, input images are divided
into nine patches and treated as a sequence of tokens with positional embeddings. These
tokens are then fed into a series of transformer blocks to extract parameterized vectors.
The transformer’s key components are the self-attention mechanism and Multilayer Per-
ception (MLP), which can gather spatial transformations and long-range dependencies.
Unfortunately, the ViT model fails to utilize the 2D structure of images, which can decrease
performance. To improve performance, local features from CNNs are used as input tokens
to capture local spatial information. For example, Graham et al. [20] used convolution
layers to extract local features, which are then fed into transformer blocks. However, these
improved transformers do not fully integrate local features and global representations.

Inspired by the transformer model’s sequential modeling capability, Dosovitskiy
et al. [19] first introduced it into computer vision tasks as the Vision Transformer (ViT) for
image classification. In ViT, input images are divided into blocks, positional information is
added, and relationships between blocks are established. Inspired by this, He et al. [21]
introduced ViT into hyperspectral image (HSI) classification as the SSF model, utilizing
a CNN for local spatial feature capture and a transformer module for sequential spectral
relationship capture. Mei et al. [22] proposed GAHT, combining a CNN and transformer to
explore local relationships within spectral channels and construct a hierarchical transformer.
However, these methods still have issues.

1. Most transformer-based methods explore global spatial dependencies, ignoring those
in the spectral dimension. Existing transformer-based HSI classification methods
struggle to capture long spectral dependencies, hindering performance improvements.

2. Now, most transformer-based methods may not be able to further refine the local
feature during the training stage. This is mainly because transformers directly process
the local spatial features through a multi-head self-attention mechanism, resulting in
limiting the further exploitation of local features.

We present a new method known as Aggregation Multi-Hierarchical Feature Network
(AMHFN) to tackle complex challenges in hyperspectral image classification. The AMHFN
centers on two key modules: a Local-Pixel Embedding module (LPEM) and a Multi-Scale
Convolutional Extraction (MSCE) module. The LPEM captures refined local features
using a grouped convolution layer and a Batch Norm layer, while the MSCE utilizes
multi-scale convolutional layers, an Efficient Channel Attention (ECA) layer [23], and an
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Efficient Spatial Attention (ESA) layer to extract and re-weight local spatial-spectral features.
The input HSI cube is projected into features that simultaneously possess global spectral
information and refined local spatial information. These features then feed into a Multi-
Scale Global Extraction (MSGE) module to capture and integrate global dependencies across
both spatial and spectral dimensions. With this unique design, the proposed AMHFN
excels at capturing global dependencies and exploring refined local features, significantly
enhancing hyperspectral image classification performance. In this paper, our contributions
could be summarized as follows:

1. We propose a novel hybrid hyperspectral image classification method, called Aggre-
gation Multi-Hierarchical Feature Network (AMHFN), that captures and aggregates
local hierarchical features and explores global dependencies of spectral information
and prominent local spatial features.

2. We propose Local-Pixel Embedding module (LPEM) to exploit the refined local contex-
tual spatial-spectral features. Specifically, the proposed LPEM consists of one grouped
convolution layer to capture the hierarchical spatial-spectral features.

3. We further propose two modules to capture and aggregate the multi-scale hierarchical
features. A Multi-Scale Convolutional Extraction (MSCE) module captures local
spectral-spatial fusion information, while a Multi-Scale Global Extraction (MSGE)
module captures and integrates global dependencies.

4. Finally, evaluated on three public HSI benchmarks, the proposed AMHFN outper-
forms other HSI classification methods.

The paper begins with a section delving into related work on HSI classification meth-
ods, followed by a section elaborating on the proposed AMHFN model. An experimental
validation against three HSI datasets is presented in the next section. Concluding remarks
and potential future work are offered in the final section.

The remainder of this paper is structured as follows: Section 2 delves into related
work on HSI classification methods, Section 3 elaborates on the proposed AMHFN model,
Section 4 presents thorough experimental validation against three HSI datasets, and Section 5
offers concluding remarks.

2. Related Works
2.1. HSI Classification Methods Based on CNNs

The superior local context modeling capability of convolutional neural networks
(CNNs) has been a driving force behind the exploration of CNN-based methods for hy-
perspectral image (HSI) analysis. Slavkov et al. [24] introduced a CNN method for HSI
classification, extracting spatial-spectral features from small neighborhoods. Xu et al. [25]
developed a dual-channel CNN framework, capturing spectral-spatial features using 1D
and 2D convolution. The two channels acquire spectral and spatial information, respec-
tively, and then merge them through fully connected layers. Mei et al. [15] built a new
CNN-based method named C-CNN for HSI classification, which could integrate the spatial
background and spectral features using a five-layer CNN structure. Li et al. [26] treated
the HSI input as a cube without any preprocessing or post-processing and utilized 3D
convolution to simultaneously capture the local fusion features along in the spectral and
spatial dimensions. However, the computational complexity of 3D convolution limits its
application. To enhance this, Roy et al. [9] combined 2D and 3D convolutions in HybridSN,
where 3D convolution focuses on spatial-spectral features and 2D convolution emphasizes
more abstract spatial features.

Unlike CNNs, Recurrent Neural Networks (RNNs) are designed for sequential data
and are utilized in the HSI domain to construct sequence models for processing adjacent
spectra. Hang et al. [27] proposed a cascaded RNN model to eliminate redundant informa-
tion between adjacent spectral bands. Mei et al. [28] proposed an HSI classification model
combining CNNs and RNNs, where RNNs can learn spectral correlations within contin-
uous spectra, while CNNs focus on salient features between adjacent pixels and spatial
correlations. Additionally, several other backbone networks have been introduced to HSI,
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including fully convolutional networks (FCNs) ([29,30]), generative adversarial networks
(GANs) ([31,32]), CapsNet ([33]), and graph convolutional networks (GCNs) ([34]).

Current deep learning-based methods have some limitations in their architecture,
although they have recorded success in HSI classification tasks. For example, RNNs-based
methods may fail in exploring the global dependencies and extracting local contextual infor-
mation, and CNN-based methods may fail in exploiting the global dependencies. Therefore,
these HSI classification methods face a challenge in further improving the accuracy.

2.2. HSI Classification Methods Based on Transformers

Vaswani et al. [35] proposed the transformer architecture, using Multi-Head Self-
Attention (MHSA) to model sequence relationships for NLP tasks. Inspired by this, Doso-
vitskiy et al. [19] introduced the transformer to computer vision, proposing the Vision
Transformer (ViT) network. ViT divides the input image into blocks, transforms them
into tokens, feeds them into MHSA to capture global dependencies, and then classifies
the tokens through a fully connected layer. The ViT network excels in natural image clas-
sification tasks. Transformer-based methods are seeing growing use for hyperspectral
image (HSI) classification [22,36], as evidenced by the development of models like Spectral-
Former [37] and the Spectral–Spatial Feature Tokenization Transformer (SSFTT) [38]). These
models incorporate novel components like the Groupwise Spectral Embedding (GSE) and
Cross-layer Adaptive Fusion (CAF) modules, as well as a Gaussian distribution-weighted
tokenization module, which work together to enhance the model’s ability to learn local-
ized spectral representations, facilitate efficient skip connections, and align deep semantic
features with the sample’s distribution. The use of these techniques allows for transformer-
based models to outperform classical transformers, demonstrating their potential in the
field of HSI classification.

2.3. HSI Classification Methods Based on Combining CNN and Transformer

To fully harness the distinct strengths of CNNs for spatial feature extraction and trans-
formers for handling sequential features of any length, researchers have proposed various
methods to combine these networks, aiming to enhance feature extraction capabilities for
HSI classification tasks [39]. For instance, Tu et al. [40] proposed a hierarchical transformer
architecture, termed local semantic feature aggregation-based transformer (LSFAT), for
HSI classification, which consists of neighborhood aggregation-based attention (NAA)
and neighborhood aggregation-based embedding (NAE) modules. Yang et al. [16] inte-
grated CNN into a transformer to enhance performance and presented a novel transformer
network, named hyperspectral image transformer (HiT) network, for HSI classification.

Although several networks have demonstrated promising classification performance,
they often simply concatenate CNNs and transformers without fully leveraging their
respective advantages. To address this, Ouyang et al. [41] incorporated convolution into
the attention mechanism to capture global dependencies among tokens. They proposed
HybridFormer, a transformer model that integrates spatial-spectral attention to emphasize
the capture of both spectral and spatial dependencies. Similarly, Yang et al. [36] integrated
convolution within the transformer framework and devised an adaptive 3D convolution
projection module for shallow feature extraction.

Fixed receptive fields in the convolution projecting layer could limit the ability of
transformer-based hyperspectral image (HSI) classification methods to explore and refine
local spatial information. Most methods focus on global dependencies in the spatial
dimension rather than the spatial-spectral dimension, potentially limiting their ability
to capture hierarchical representations. This paper introduces a transformer-based HSI
method, AMHFN, that aims to exploit multi-scale, hierarchical local and global features
from HSI data, enhancing its capabilities.
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3. Proposed Methodology

In this section, we give a brief introduction of the proposed AMHFN (as shown
in Algorithm 1). As shown in Figure 1, it is a novel hybrid HSI classification method
integrating the CNN and transformer. It consists of a “Stem” layer to extract the shallow
features and three stages to capture the local and global multi-scale features. Specially, each
stage comprises three key modules: a Local-Pixel Embedding module (LPEM) to retain the
local spatial features, a Multi-Scale Convolutional Extraction (MSCE) module to capture the
multi-scale hierarchical local spatial-spectral features, and a Multi-Scale Global Extraction
(MSGE) module to explore the multi-scale hierarchical global dependencies. Because of
these three key modules, the proposed AMHFN could model the spectral information and
capture more refined multi-scale hierarchical local features.
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Figure 1. Overall framework of the proposed AMHFN. Specifically, the AMHFN comprises a stem
layer to extract shallow features and three stages to capture the local and global spatial-spectral repre-
sentations. The stem layer consists of two convolution operations to obtain the shallow local features.
Each stage includes LPEM, MSCE, and MSGE to achieve the subtle spatial-spectral information. It is
noted that MS is an abbreviation for multi-scale, MSCE is an abbreviation for multi-scale convolution
extraction, and MSGE is an abbreviation for multi-scale global extraction.

Suppose X ∈ RP×P×C is the input HSI, where P denotes the patch size and C is the
number of channels. And Xstem ∈ RP×P×C1 is the output of the “Stem” layer. Thus, Xstem
can be obtained by

Xstem = Stem(X). (1)

where the Xstem denotes the stem layer, which comprises two 2D convolutional layers to
extract local features. The stem layer is used to extract features from HSI inputs, reduce the
spectral-spatial dimensionality, and perform feature mapping.
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And X1 ∈ RP×P×C1 , X2 ∈ RP×P×C1 , and X3 ∈ RP×P×C1 are the outputs of the first,
second, and third stages, where C1 denotes the channel number of each stage. All outputs
from three layers are concatenated, and the features re-weighted using a linear operation. It
is noted that the raw inputs are connected using a global residual connection layer. Finally,
the outputs of each stage can be obtained by

XLPEM = LPEM(X), (2)

XMSCE = MSCE(XLPEM), (3)

XMSGE = MSGE(XMSCE), (4)

XL = FL < XLPEM, XMSCE, XMSGE >, (5)

Xi = XL + X. (6)

where LPEM(·) denotes the LPEM module, MSCE(·) denotes the MSCE module, and
MSGE(·) denotes the MSGE module. FL is the linear operation and < · > denotes the
“concate" layer. After the “Stage 3” layer, the output features are fed into the “Pooling” layer
to predict the raw pixel inputs.

In the following passage, we introduce the details of the proposed modules.

Algorithm 1 AMHFN Implementation Process.

Require: HIS image data X ∈ RH×W×C, label Y ∈ RH×W , spatial size s = 11, training
sample rate µ%.

Ensure: Classification map and four performance evaluation metrics.
1: Set batch size B to 64, optimizer Adam (learning rate: 1 × 10−3), number of epochs E to

100.
2: Extract the input Xin ∈ RP×P×C from X and divide it into a training dataset and test

dataset.
3: for i = 1 to E do
4: Perform the “Stem” layer for shallow feature extraction.
5: for stage = 1 to 3 do
6: The input x ∈ RP×P×C1 ; perform LPEM, MSCE, MSGE; and obtain XLPEM,

XMSCE, XMSGE, respectively
7: x = Linear(Concate(XLPEM, XMSCE, XMSGE)).transpose(P, P, C1) + x.
8: Perform the “Pooling” layer and “Linear” layer to predict the result.
9: Use the softmax function to identify the labels.

10: Obtain the output by testing the trained model on the test dataset.

Local-Pixel Embedding module: The proposed LPEM is a grouped convolutional
operation used to capture deep spatial-spectral features from HSI. Specifically, a grouped
convolution layer applies n kernels to the input, whose size is X ∈ Rh×w×C/n. Following a
grouped convolution, batch normalization and ReLU activation are applied.

XLPEM = BN(ReLU(GroupedConv(X))), (7)

where XLPEM is the output of LPEM.
After extracting the deep spatial-spectral features, we utilize a linear operation to

project the extracted features to the desired dimension.
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Xout = Flinear(XLPEM), (8)

where Flinear is the linear operation. In this study, we adapt nn.Linear, which is a module
provided by PyTorch that applies a linear transformation to the incoming data.

3.1. Multi-Scale Convolutional Layer

Figure 1 shows the Multi-Scale (MS) convolutional layers, divided into a convolution
layer, a multi-scale convolution layer, and an aggregate layer. The convolution layer adjusts
input channels, the multi-scale convolution layer has four layers with varying receptive
fields, and the aggregate layer fuses features to generate the final output. This design
captures local spatial-spectral information and aggregates multi-scale, hierarchical features.
The MS module can be formulated as per Figure 1.

X0 = Conv(X), (9)

Output = Conv1×1(MS − Conv(X0)), (10)

where X ∈ RC×H×W denotes the inputs, and MS − Conv denotes the multi-scale convolu-
tion layer.

X_Oi denotes the output of the i-th multi-scale convolution branch. It utilizes 1 × 1,
3 × 3, 5 × 5 convolution layers and an average pooling layer. The output is obtained using
these layers and passing through an average pooling layer, as shown in the provided equation.

X_O1 = F1(X0), (11)

X_O2 = F1(Fpool(X0)), (12)

X_O3 = F3,3((F1(X0))), (13)

X_O4 = F5,5((F1(X0))), (14)

We fuse and re-weight the multi-scale features by applying a 1 × 1 convolutional layer
to produce the final output X_O.

X_O = Concat([X0, X_O1, X_O2, X_O3, X_O4]), (15)

X_O = F1(X_O), (16)

The MS not only captures multi-scale local contextual information, but also explores
global dependence across the spectral dimension. It achieves adaptability in both spatial
and spectral dimensions.

3.2. Multi-Scale Convolutional Extraction Module

The proposed MSCE module, as shown in Figure 1, uses multi-scale convolutional
layers for extracting local spatial-spectral features, ECA for capturing the refined spectral
information, and ESA for enhancing and refining the spatial information.

3.2.1. ECA-Based Layer

The ECA (as shown in Figure 2) uses global average pooling on input features, fol-
lowed by 1D convolution with kernel size k and a Sigmoid activation to obtain channel
weights. k represents the involvement of k adjacent channels in inter-channel information
interaction. The output from Sigmoid is recalculated by re-weighting channels.
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Figure 2. The structure of the ECA, where H, W, and C represent the height, width, and number
of channels of the feature map, respectively. σ represents the operation of the Sigmoid activation
function.

Attention = σ(g(X)),

Xout = Attention · X.
(17)

where g(X) = 1
KK ∑K,K

j=1,j=1 Xij is channel-wise global average pooling (GAP). σ is a Sigmoid
function.

3.2.2. ESA-Based Layer

Recently, some researchers [42] proposed Partial Convolution (PConv) and Efficient
Spatial Attention (ESA) in the field of natural images, which can reduce computational
redundancy and speed up operations.

Figure 3 illustrates the operational process of PConv. The original feature map
I ∈ Rh×w×C is given, where h, w, and C represent the height, width, and number
of channels of the original feature map, respectively. PConv utilizes conventional
convolution operations on a select region of the original image, identified as a region
feature map i1 ∈ Rh×w×c , with “c” symbolizing the channels involved (c < C), to
perform feature extraction. This ensures that both the spatial dimensions and the
channel count of the output feature map o1 are congruent with the input region i1.
Then, the ultima feature map, obtained by concatenating o1 with the non-convolved
part (i2 ∈ Rh×w×(C−c)), maintains the same spatial dimensions and channel numbers
as the original image I . PConv delivers an efficient method for feature extraction by
diminishing computational redundancy and memory requirements. Finally, PConv is
formulated as follows:

PConv = Concat(o1, i2), (18)

where Concat stands for concatenation in the channel dimension.

Figure 3. The operation process of Partial Convolution (PConv). “×” represents the operation
of convolution.

As shown in Figure 4, the ESA is built upon one PConv layer and two PWconv layers.
The PConv layer is used to capture local spatial information, and the PWconv layer is
utilized to capture local features along with spatial-spectral dimension. Specifically, ESA
balances low latency and feature diversity by connecting the two PWconv layers with
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normalization and activation, instead of adding them after each convolution. Then, the
combination of features extracted by PConv and not extracted by PConv occurs in each
PWconv layer of ESA by increasing the feature map’s dimensionality along the channel
axis, then reducing it back to the initial channel dimension. Therefore, the output of ESA
can be summarized as follows:

Xout = PWconv(ReLU(BN(PWconv(PConv(X))))), (19)

where PWconv and PConv are the PWconv and PConv operations.

Figure 4. Structur of ESA mechanism.

Finally, ECA (Efficient Channel Attention) is used in hyperspectral image classification
to capture refined spectral information by emphasizing important spectral channels, which
helps in distinguishing subtle differences between spectral signatures. ESA (Enhanced
Spatial Attention) focuses on enhancing and refining spatial information by giving attention
to relevant spatial features, improving the ability to identify spatial patterns and structures
within the image. Together, ECA and ESA effectively balance and enhance spectral and
spatial information, leading to more accurate and detailed classification results. The
proposed MSCE module is formulated as

Xout = ECA(X) + ESA(X). (20)

3.3. Multi-Scale Global Extraction Module

The MSCE could extract multi-scale local features but fails in exploring the global
dependencies. To capture the global dependencies from HSIs, we design an MSGE module
to enhance the representation learning. Specifically, the MSGE module integrates multi-
head attention and MLP to effectively capture and refine complex graph relationships,
enhancing the model’s ability to learn rich and nuanced representations for improved
performance of HSI classification tasks. The proposed MSGE module uses multi-scale
convolutional layers and a transformer, a self-attention mechanism (see Figure 5), to
enhance performance. The transformer encoder incorporates multiple multi-head self-
attention layers and a position-wise fully connected feed-forward network. The input and
output of this module are a sequence of feature maps.

Self-attention (SA) is a mechanism enabling models to focus on relationships between
different positions in a sequence. SA computes relationships between a query and a set of key–
value pairs, generalizing the dot-product attention common in NLP tasks. SA can improve
model performance by helping it focus on important relationships in input sequences.

Attention(Q, K, V) = softmax
(

QKT
√

dK

)
V, (21)

where Q, K, and V are matrices, and dK is the dimension of K.
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Figure 5. Structure of self-attention (SA) and MHSA mechanisms.

Multi-head attention (MHSA) is a method that divides the input sequence into multiple
sub-sequences and applies self-attention to each sub-sequence. It is a generalization of SA.
Specifically, MHSA is a method that uses multiple SA mechanisms to explore different
relationships in the input sequence. Each SA mechanism is denoted by SAi, where i denotes
the i-th head. The output of MHSA can be formulated as follows:

MHSA(Q, K, V) = Concat(SA1, SA2, . . . , SAh)W, (22)

where h is the head number, W is the parameter matrix, W ∈ Rd×d, and SA1, SA2, . . . , SAh
∈ Rn×d/h.

The MHSA input goes through a linear layer with non-linear activation, which reduces
dimensionality and enhances the model’s ability to learn nonlinear relationships.

The MHSA output is passed through a linear layer with a non-linear activation func-
tion, and then divided into h chunks. Each chunk is fed into a separate SA mechanism. The
h outputs are concatenated and multiplied by a weight matrix W. Then, the output passes
through a final linear layer with a non-linear activation function to reduce dimensionality
and enhance the model’s ability to learn nonlinear relationships. The multiple consecutive
transformer blocks can be formulated as above.

Ỹl = MHSA(LayerNorm(Yl)) + Yl

Yl+1 = MLP(LayerNorm(Ỹl)) + Ỹl
(23)

where Ỹl and Yl denote the output features of the MHSA module and MLP for block l.

4. Experiments

We selected three HSI datasets, including WHU-Hi-LongKou, Pavia University, and
Houston 2013, to evaluate our proposed method. The experiments included parameter
analysis, ablation experiments, and classification of results.

4.1. Datasets
4.1.1. WHU-Hi-LongKou Dataset

The WHL dataset was acquired from an 8-mm focal length Headwall Nano-Hyperspec
imaging sensor mounted on a DJI Matrice 600 Pro UAV flying at 500 m altitude. The
resulting imagery was 550 × 400 pixels with 270 bands from 400–1000 nm, at 0.463 m
spatial resolution. The dataset contains 204,542 labeled samples across 9 land cover classes.
In our experiments, we used 2% for training and 98% for testing, as shown in Table 1.



Remote Sens. 2024, 16, 3412 11 of 21

Table 1. Number of training and testing samples for the WHU-Hi-LongKou dataset.

Class No. Class Name Training Testing

1 Corn 690 33,821
2 Cotton 167 8207
3 Sesame 61 2970
4 Broad-leaf soybean 1264 61,948
5 Narrow-leaf soybean 83 4068
6 Rice 237 11,617
7 Water 1341 65,715
8 Roads and houses 142 6982
9 Mixed weed 105 5124

Total 4090 200,452

4.1.2. Pavia University Dataset

The Pavia University (PU) dataset was acquired in 2001 using the ROSIS sensor.
It covers 115 spectral bands from 380 nm to 860 nm. After discarding noisy bands,
103 bands remained for research. The dataset is an image with 610 × 340 pixels reso-
lution. It contains 42,776 labeled samples across 9 land cover types. Only 5% of samples
were used for training, while the remaining 95% are for testing. This split ensures rigorous
model evaluation and comprehensive performance understanding, as shown in Table 2.

Table 2. Number of training and testing samples for the Pavia University dataset.

Class No. Class Name Training Testing

1 Asphalt 332 6299
2 Meadows 932 17,717
3 Gravel 105 1994
4 Trees 153 2911
5 Painted metal sheets 67 1278
6 Bare Soil 251 4778
7 Bitumen 67 1263
8 Self-Blocking Bricks 184 3498
9 Shadows 47 900

Total 2138 40,638

4.1.3. Houston 2013 Dataset

The publicly available Houston 2013 (H2) dataset was collected using an Airborne
Laser Mapping (ALM) system with a 2.5 µm wavelength laser. It was gathered during
summer 2013 in Houston, Texas, USA, and initially used for the 2013 IEEE GRSS Data
Fusion Competition. The dataset is an image with 949 × 1905. It was acquired from an
airplane flying at 500 m between 12:30 and 16:30 on 18 June 2013 and covers 15 distinct
land covers with 15,029 labeled samples. In our experiments, 10% of the samples were used
for training and 90% for testing, as shown in Table 3.

4.2. Experimental Setup
4.2.1. Evaluation Indicators

In evaluating the proposed method’s classification performance, we used three com-
mon indicators: Kappa coefficient (κ), overall accuracy, and average accuracy. The Kappa
coefficient measures the agreement between two sets of data, with higher values indicating
better agreement. The overall accuracy calculates the percentage of correct predictions,
while the average accuracy determines the accuracy for each class. These metrics provide
a comprehensive assessment of the method’s performance, with higher values signifying
better performance.
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κ =
Po − Pe

1 − Pe
, (24)

where Po and Pe are the observed and expected accuracies, respectively.

Table 3. Number of training and testing samples for the Houston 2013 dataset.

Class No. Class Name Training Testing

1 Healthy Grass 125 1126
2 Stressed Grass 125 1129
3 Synthetic Grass 70 627
4 Trees 124 1120
5 Soil 124 1118
6 Water 33 292
7 Residential 127 1141
8 Commercial 124 1120
9 Road 125 1127
10 Highway 123 1104
11 Railway 123 1112
12 Parking Lot 1 123 123
13 Parking Lot 2 47 422
14 Tennise Court 43 385
15 Running Track 66 594

Total 1502 13,527

OA =
∑C

i=1 Ni × Ai

∑C
i=1 Ni

, (25)

where Ni is the number of samples of each class, and Ai is the accuracy of each class.

AA =
∑C

i=1 Ni × Ai

N
(26)

where N is the total number of samples.

Ai =
TPi

TPi + FPi
(27)

where TPi and FPi are the true positive and false positive of each class, respectively.

4.2.2. Implementation Details

Experiments were conducted on the HSI dataset, containing 10 classes with
100 samples each. The dataset had 16 spectral bands, and images were 64 × 64 pixels.
The experiments were run on an Intel(R) Xeon(R) Gold 6230R CPU and NVIDIA RTX
A5000 GPU using the PyTorch deep learning framework. The Adam optimizer was used
with an initial learning rate of 1 × 10−3, a minibatch size of 64, and 100 epochs. These
parameters remained consistent across all experiments.

4.2.3. Comparison with State-of-the-Art Backbone Methods

A range of cutting-edge classification networks based on CNN and transformer archi-
tectures were employed to validate our proposed method: 2D-CNN ([43]), 3D-CNN ([44]),
HybridSn ([9]), ViT ([19]), PiT ([45]), HiT ([36]), GAHT ([22]). The 2D-CNN and 3D-CNN
methods incorporate 2-D or 3-D convolutional layers, BN layers, activation functions,
and linear layers. HybridSn combines 3-D and 2-D convolutional blocks, linear layers,
and pooling layers. The ViT method uses a linear-projection component and transformer
encoders. PiT includes four transformer encoder blocks, three pooling layers, and a linear-
projection component. The HiT method combines a spectral-adaptive 3-D convolution
projection (SACP) module and the Convolutional Permutator (Conv-Permutator) module.
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The GAHT method uses a new Grouped Pixel Embedding Module to limit the Multi-head
Self-Attention (MHSA) mechanism within a local spectral context, overcoming the issue
of excessive dispersion in MHSA. Finally, the AMHFN method incorporates two Feature
Hierarchical Blocks and a Retention Block to extract important and secondary feature
information from the spectral space and learn long-range correlations between pixels
and bands.

4.3. Ablation Studies
4.3.1. Ablation Study of the Input Patch Size

The proposed method is based on a spatial-spectral approach, where the patch size
directly reflects the extent to which the central pixel can utilize spatial-spectral information
from neighboring pixels. Hence, patch size plays a crucial role in determining AMHFN
performance. The optimal patch size for different datasets is demonstrated using the AA.
For WHL and PU, it is 7 × 7, and for H2 it is 11 × 11 (Table 4). This is perhaps because
WHL and PU have denser pixel distributions, and smaller patches can fully utilize spatial
spectral information in HSI. In contrast, H2 has a very sparse pixel distribution, requiring
larger patches to acquire more sufficient information.

Table 4. Impact of different patch sizes for the AA on three datasets.

Patch Size 7 × 7 9 × 9 11 × 11 13 × 13 15 × 15

WHL 96.28 95.46 94.45 93.90 91.86
PU 97.58 96.93 96.25 95.52 94.61
H2 97.77 98.40 98.56 97.87 97.44

4.3.2. Ablation Study of the Kernel Size in the ECA Block

The proposed method utilizes an ECA block, a variant of the SE block. The ECA block
contains two parts: a global normalization layer and a 1D convolution layer. Thus, the
kernel size in the ECA block affects the proposed method’s performance. We experimented
to evaluate different kernel sizes’ impact on AA, setting the kernel size to 1, 3, 9, and 15. It
is noted that “1” indicates no inter-channel interaction and direct channel shuffle. Figure 6
illustrates different kernel size effects on AA across datasets. We first observe that a kernel
size of 3 yielded the best AA on all HSI datasets. We also find varying decreases in AA
with larger kernel sizes. This may result from introducing additional noise by expanding
the channel interaction range, decreasing AA. Based on the kernel size analysis, we set the
kernel size to 3 in the experiments.

Figure 6. Impact of different kernel sizes for the AA on three datasets.
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4.3.3. Ablation Study of the Proposed Multi-Feature Hierarchical Module

The proposed model AMHFN is built on the MSCE module, which is used to capture
the prominent multi-scale local features and aggregate the subtle local contextual features.
In this ablation study, we employed three modules, which divided the channels into
three parts using Pconv to correspondingly separate feature information into prominent,
moderate, and subtle parts. We compared the performance of the models to those with
two components on three datasets using three performance metrics. Table 5 indicates that
the results based on three modules are all inferior to the proposed AMHFN, where the
performance of only ECA produces worse results than the baseline method. This may be
attributed to the excessive fine-grained feature representation, impeding the model from
fully capturing effective features, akin to the phenomenon of loss function overfitting.

Table 5. Ablation study of the proposed multi-scale module on Houston 2013.

No. ECA ESA κ OA AA

1 × × 97.94 98.09 98.01
2 ✓ × 97.50 97.69 98.06
3 × ✓ 97.98 98.13 98.29
4 ✓ ✓ 98.32 98.45 98.71

4.3.4. Ablation Study of the Numbers of the Training Samples

The robustness and stability of the proposed AMHFN were evaluated through a
comprehensive set of experiments on various training samples. Different HSI datasets
require different training sample percentages, ranging from 1–4% on the WHU-Hi-LongKou
dataset, 5–20% on the Houston2013 dataset, and 1–7% on the Pavia University dataset.

The experimental results, meticulously depicted in Figure 7, offer illuminating in-
sights. Most notably, a clear pattern of improvement emerges across all methodologies
with increasing training samples. Consequently, deep learning methods, with intricate
architectures, require substantive training data for optimal functionality. Of particular
interest is the promising performance of the newly introduced AMHFN, which stands out
by delivering superior results compared to well-established techniques, even maintaining
the same training proportion. This significant observation highlights not only AMHFN’s
efficacy but also its resilience amid data-driven analysis demands.

Figure 7. AA of different models with different percentages of training samples on three datasets.

4.4. Classification Results

We comprehensively evaluated the proposed method and comparison methods on
three HSI datasets. The experimental results in Tables 6–8 show performance metrics for
each method, with optimal results in bold.
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Table 6. Classification results of the WHU-Hi-LongKou dataset with 2% training samples.

Class No.
CNNs Transformers

2D-CNN 3D-CNN HybridSn ViT PiT HiT SSFTT GAHT AMHFN
(Ours)

1 91.38 94.29 92.85 89.72 89.36 89.83 95.71 95.9 95.85
2 93.12 93.54 93.44 63.64 87.43 90.17 94.20 94.82 95.31
3 92.63 86.03 82.46 75.12 48.18 88.01 90.34 94.44 96.16
4 93.06 94.57 93.54 90.14 89.62 90.61 96.06 95.64 96.25
5 94.91 90.68 89.65 78.96 76.77 91.62 91.27 95.75 94.47
6 96.81 97.39 97.05 96.36 95.45 96.12 98.29 97.87 98.09
7 97.92 98.64 98.26 97.55 97.55 97.57 99.01 99.03 99.03
8 94.86 93.93 95.46 94.11 91.79 93.34 97.41 96.89 97.15
9 92.6 92.53 93.58 89.72 90.59 92.33 92.54 91.98 92.76

κ (%) 93.10 94.40 93.50 88.93 89.20 91.20 95.82 95.86 96.17
OA (%) 94.67 95.70 94.99 91.45 91.65 93.18 96.80 96.82 97.07
AA (%) 94.14 93.51 92.92 86.15 85.19 92.18 94.98 95.81 96.12

Table 7. Classification results of the Pavia University dataset with 1% training samples.

Class No.
CNNs Transformers

2D-CNN 3D-CNN HybridSn ViT PiT HiT SSFTT GAHT AMHFN
(Ours)

1 92.40 83.43 85.32 85.53 85.91 82.27 87.81 94.36 93.95
2 91.58 88.69 86.23 79.99 82.95 85.65 92.33 92.82 93.07
3 55.15 39.51 60.64 51.40 13.47 43.79 76.23 81.81 84.70
4 96.27 93.54 95.32 86.22 63.40 87.54 93.93 95.02 96.04
5 99.70 91.22 98.27 98.57 98.57 98.80 100.00 99.55 99.70
6 94.50 69.29 80.32 73.55 31.37 67.78 79.78 92.89 91.75
7 69.17 59.15 60.67 51.48 20.65 60.14 72.89 77.68 78.13
8 84.44 55.67 67.22 77.56 49.19 76.84 89.16 80.05 90.29
9 99.89 94.45 100.00 99.25 78.76 98.72 94.13 98.72 100.00

κ (%) 86.62 73.81 78.07 73.12 57.75 74.35 85.39 88.83 90.20
OA (%) 89.73 79.97 83.04 79.05 68.09 80.26 88.88 91.46 92.51
AA (%) 87.01 74.99 81.55 78.17 58.25 77.95 87.36 90.32 91.96

The proposed AMHFN outperformed other methods on three datasets, primarily
due to specialized modules capturing deep spatial-spectral features and enhancing spatial-
spectral information. Interestingly, CNNs-based methods generally outperform transformer-
based methods. Also, 3D-CNN outperforms 2D-CNN on the WHL dataset, possibly at-
tributed to 3D convolution’s advantage in extracting spectral information from 200 channels.
However, 3D-CNN underperforms on the Houston2013 dataset, likely due to insufficient
training samples. Surprisingly, transformer-based methods do not perform better than
CNN-based ones. For example, ViT only achieves 88.93%, 91.45%, and 86.15% in terms
of κ, OA, and AA. This might be because of their architecture specialized for natural im-
ages rather than spatial-spectral exploration. The PiT method’s use of a pooling layer in
the final part might lead to loss of critical feature information and inferior classification
performance. However, HiT and GAHT are customized transformer models for HSI classi-
fication tasks, achieving satisfactory results compared to ViT and PiT. For instance, GAHT
achieves outstanding OA and AA exceeding 98% on the Houston2013 dataset, demonstrat-
ing MHSA’s effectiveness when confined to a local spatial-spectral context. Finally, our
proposed AMHFN exhibited superior classification performance over other methods, with
AA exceeding GAHT by 0.67% on the PU dataset.
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Table 8. Classification results of the Houston 2013 dataset with 10% training samples.

Class No.
CNNs Transformers

2D-CNN 3D-CNN HybridSn ViT PiT HiT GAHT SSFTT AMHFN
(Ours)

1 98.58 95.74 98.4 96.98 96.89 98.13 97.51 98.40 98.76
2 99.38 98.76 98.32 98.85 96.63 97.96 99.91 98.66 99.38
3 100 99.36 100 98.72 98.09 99.84 99.84 99.68 100
4 99.11 98.3 99.64 98.84 96.61 98.93 98.66 98.48 97.14
5 99.11 97.41 99.02 96.6 90.88 97.32 99.28 98.64 98.75
6 89.73 76.37 85.27 88.7 83.9 89.73 91.78 97.67 99.32
7 97.55 92.11 95 96.84 89.66 96.49 96.49 97.90 98.60
8 93.21 84.46 90.98 92.86 82.77 94.82 95.45 97.53 96.12
9 93.08 87.93 90.24 89.97 81.01 94.14 96.72 97.83 98.05
10 99.09 92.66 94.29 93.12 68.48 95.38 99.91 99.08 99.18
11 96.4 86.42 90.11 90.56 80.13 95.68 97.66 98.39 97.21
12 99.19 90.72 92.7 95.5 81.71 97.3 98.11 99.27 98.29
13 93.84 78.67 99.05 65.4 44.79 85.55 98.82 96.63 99.76
14 100 98.96 99.22 97.66 87.53 99.74 100 99.86 100
15 100 98.82 99.49 99.49 86.53 100 100 99.19 100

κ (%) 97.28 91.86 94.99 93.95 84.58 96.23 97.94 97.92 98.32
OA (%) 97.49 92.47 95.36 94.40 85.73 96.51 98.09 98.07 98.45
AA (%) 97.22 91.78 95.45 93.34 84.37 96.07 98.01 98.01 98.71

The Figures 8–10 show classification maps generated by various methods on different
datasets. Methods using convolutional neural networks, specifically 2D-CNN, produce no-
tably smooth maps with reduced salt and pepper noise, indicating enhanced classification
accuracy for single, large ground features. Techniques using the transformer model are
adept at capturing global dependencies in hyperspectral images (HSIs), yielding compa-
rable results to 2D-CNN for HSI classification. The innovative AMHFN method excels at
maximally harnessing hierarchical features and enhancing refined spatial-spectral informa-
tion. It also demonstrates impressive capability to explore global dependencies from HSIs,
achieving accurate and detailed classification maps.

Figure 11 shows t-SNE data distribution from the Houston 2013 Dataset, analyzed by
six methods. Our novel method has impressively low inter-class confusion, precisely distin-
guishing between classes. There is minimal overlap between classes 1 and 2, highlighting
the method’s precision. In contrast, the GAHT method shows confusion, especially between
classes 1 and 4. Other methods exhibit high confusion levels. However, our innovative
method excels with superior clustering performance. It maintains vast inter-class distances
while minimizing intra-class distances, enhancing data clustering and analytics. The visual
analysis endorses our proposed methodology.

4.5. Discussion

From extensive experiments, we can find that the strengths of AMHFN are feature
differentiation and hierarchical processing. By using LPEM and MSCE, AMHFN effectively
differentiates between significant and subtle features, which is essential in dealing with the
complex and redundant nature of HSI data. Meanwhile, the hierarchical structure allows
for a more organized and detailed analysis of features, enhancing the model’s ability to
classify images accurately.

In summary, the AMHFN approach appears to be a sophisticated and well-validated
method for hyperspectral image classification. By integrating techniques like LPEM and
MSCE within a hierarchical framework, it addresses key challenges in feature differentiation
and redundancy. The results from extensive testing support its efficacy and highlight its
potential for practical applications in HSI analysis.
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(a) Ground truth (b) 2D-CNN (94.67%) (c) 3D-CNN (95.70%) (d) HybridSn (94.99%) (e) ViT (91.45%)

(f) PiT (91.65%) (g) HiT (93.18%) (h) SSFTT (96.80%) (i) GAHT (96.82%) (j) AMHFN (Ours,97.07%)

Figure 8. Classification maps obtained using different methods on the WHU-Hi-LongKou dataset
(with 2% training samples).

(a) Ground truth (b) 2D-CNN (97.49%)

(c) 3D-CNN (92.47%) (d) HybridSn (83.04%)

(e) ViT (79.05%) (f) PiT (68.09%)

(g) HiT (80.26%) (h) SSFTT (88.88%)

(i) GAHT (91.46%) (j) AMHFN (Ours,92.51%)

Figure 9. Classification maps obtained using different methods on the Houston 2013 dataset (with
10% training samples).
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(a) Ground truth (b) 2D-CNN (89.73%) (c) 3D-CNN (79.97%) (d) HybridSn (83.04%) (e) ViT (79.05%)

(f) PiT (68.09%) (g) HiT (80.26%) (h) SSFTT (88.88%) (i) GAHT (91.46%) (j) AMHFN (Ours,92.51%)

Figure 10. Classification maps obtained by different methods on the Pavia University dataset (with
1% training samples).

Figure 11. Visualization of t-SNE data analysis on the Houston 2013 dataset.

5. Conclusions

In this paper, we present a new approach, which we call AMHFN, for the HSI classi-
fication task. The proposed AMHFN involves a gradual reduction in the channels of the
feature maps, which is made possible by using a technique known as LPEM. The LPEM
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makes the proposed AMHFN easier for the subsequent multi-scale to distinguish between
significant features and more nuanced ones. The MSCE is especially adept at working
with the abundant redundant information that is inherent in HSI, a process that involves
differentiating feature information into two distinct categories: prominent and subtle as-
pects. Moreover, the strategic use of a hierarchical structure within the framework of our
model significantly aids MSGE, which is based on the AMHFN algorithm. This is achieved
by separating the two kinds of features and subsequently directing them to two distinct
MSGEs. This process ensures that the more nuanced feature information does not get
overlooked. The results of our extensive experiments and their subsequent analyses serve
as a testament to the exceptional performance of our proposed model. This is true not only
across multiple public HSI datasets but also in the broader context of HSI classification.

Future study will focus on improving the transformer architecture, such as transfer
learning, and mutual learning with various networks (CNNs and transformers). Then,
a standardized and universal method will be established for HSI classification based
on transformers.
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