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Abstract: As an extremely efficient preprocessing tool, superpixels have become more and more
popular in various computer vision tasks. Nevertheless, there are still several drawbacks in the
application of hyperspectral image (HSl) processing. Firstly, it is difficult to directly apply superpixels
because of the high dimension of HSl information. Secondly, existing superpixel algorithms cannot
accurately classify the HSl objects due to multi-scale feature categorization. For the processing of
high-dimensional problems, we use the principle of PCA to extract three principal components from
numerous bands to form three-channel images. In this paper, a novel superpixel algorithm called
Seed Extend by Entropy Density (SEED) is proposed to alleviate the seed point redundancy caused
by the diversified content of HSl. It also focuses on breaking the dilemma of manually setting the
number of superpixels to overcome the difficulty of classification imprecision caused by multi-scale
targets. Next, a space–spectrum constraint model, termed Hyperspectral Image Classification via
superpixels and manifold learning (SMALE), is designed, which integrates the proposed SEED to
generate a dimensionality reduction framework. By making full use of spatial context information
in the process of unsupervised dimension reduction, it could effectively improve the performance
of HSl classification. Experimental results show that the proposed SEED could effectively promote
the classification accuracy of HSI. Meanwhile, the integrated SMALE model outperforms existing
algorithms on public datasets in terms of several quantitative metrics.

Keywords: superpixel segmentation; hyperspectral image classification; manifold learning

1. Introduction

Remote sensing (RS) is a non-contact technique for acquiring the surface information
of earth. It employs different sensors to capture electromagnetic radiation data across
various wavelengths, followed by extraction and analysis [1–3]. Currently, RS technology
primarily encompasses visible and infrared light, as well as microwave and hyperspectral
categories. Visible light-based RS records the energy wave field of object reflections by
leveraging their reflective properties. Infrared light utilizes the emission characteristics of
electromagnetic waves to depict temperature information through color tones of different
objects in the earth surface. Microwaves incorporate both reflection and scattering charac-
teristics of electromagnetic waves to reflect the intensity of reflected echoes from objects.
Hyperspectral imaging (HSI) refers to higher spectral resolution compared to multispectral
imaging. Typically, multispectral imaging maintains spectral resolutions within an order of
magnitude of around 10−1λ, while hyperspectral RS achieves 10−2λ.

HSI-related visual tasks are one of the most important applications of RS technology [4].
HSIs can capture images from satellites and determine what structures and terrain are on
the ground based on spectral information reflected from the ground. The fundamental
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theory behind this groundbreaking technology is that different objects reflect different
wavelengths of light [5–8].

In general, a HSI is visually simplified as a synthetic false-color image wherein a gray
scale component corresponds to one band and the visual representation is a composite
of three arbitrary bands. Actually, the data amount of a HSI is determined by the length,
width, and number of bands, which is stored as a three-dimensional volume. Therefore, it
could not only reflect the spatial position information but also records the spectral band
information reflected by ground objects.

In practice, the combination of the two kinds of image information enables the subtle
differences between different ground objects in spectral dimensions to be shown more
comprehensively. As a result, the accuracy of ground object recognition and classification
can be significantly boosted.

On the other hand, the HSI usually encompasses a multitude of spectral bands with a
high-dimensional feature space, which potentially results in data redundancy. Furthermore,
the strong correlation between adjacent spectral bands may lead to dimensional disaster
and pose significant challenges for subsequent ground object recognition and classifica-
tion [9–12]. Therefore, it is necessary for dimensionality reduction to address this issue
by effectively utilizing the abundant data volume while minimizing the computational
burden. Meanwhile, it is crucial to retain essential ground object information during the
process of reducing feature space dimensionality. This is the effective method that can
guarantee accuracy and efficiency in ground object recognition and classification.

Dimension reduction techniques of HSIs mainly include band selection and band
extraction, which can be divided into linear mapping [13–15] and nonlinear mapping
according to different standards. The dimensionality reduction method based on linear
transformation is called linear mapping dimensionality reduction and mainly includes prin-
cipal component analysis (PCA) [13], linear discriminant analysis (LDA) [14], independent
component analysis (ICA) [15], etc. These methods are simple in principle and easy to im-
plement. However, hyperspectral data are nonlinear in nature, and the nonlinear structure
of hyperspectral data cannot be utilized perfectly by linear-mapping-dimension reduction
methods. Therefore, many scholars have proposed different dimensionality reduction
methods for nonlinear mapping, including kernel-based methods and eigenvalue-based
methods. Kernel PCA (KPCA) [16], kernel ICA (KICA) [17], and kernel linear discriminant
analysis (KLDA) [18] are all nonlinear dimension reduction methods based on kernel func-
tion. Isometric Mapping (ISOMAP) [19], locally linear embedding (LLE) [20], Laplacian
eigenmaps (LEs) [21], and local tangent space alignment (LTSA) [22] belong to nonlinear
dimensionality reduction methods based on eigenvalues (manifold learning). The nonlinear
dimension reduction method based on manifold learning compensates for the defect of the
linear-mapping-dimension reduction methods being unable find the nonlinear structure of
HSI data. Advanced results have been achieved in computer vision tasks such as feature
extraction [23,24], object classification [25–28], object recognition [29], and detection [30].
It is worth mentioning that the local manifold method has been proven to have excellent
performance in [31].

The above dimension reduction problem is to simplify and refine the image dimension.
Focusing HSIs can break through the traditional pixel-level processing method. According
to the spatial dimension of HSI, pixel set (superpixel) is used as the minimum processing
unit for image processing. This improvement reduces the amount of data to be dealt with
and the computational complexity. Thus, the algorithm performance is improved. Super-
pixel segmentation divides images into non-overlapping homogeneous regions according
to certain homogeneity criteria. These regions are sets of spatially adjacent and spectroscop-
ically similar pixels whose shape and size can be adapted to the local structure of the image.
Focusing on the field of RS, most HSI studies based on superpixels take full advantage
of the homogeneity of superpixels to obtain more concise and rapid classification results.
SuperPCA [32] was proposed by Jiang et al. in 2018, and SuperKPCA [33], of the same
type, was presented by Zhang et al. in 2019. All of the above are classified by SVM [34].
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However, these approaches are restricted only in the space range, which still essentially
belongs to the pixel-level classification method.

The existing superpixel generation algorithm is difficult to apply ideally in HSIs.
Firstly, the processing object of the superpixel algorithm is a two-dimensional image, while
that of a HSI is a three-dimensional image. Secondly, the existing superpixel algorithm
is not sensitive to the content in the initialization stage. When processing images with
a large amount of data, the area of interest is difficult to focus on, which often leads to
redundancy. Furthermore, the classification results depend heavily on the segmentation
scale of superpixels.

Based on these considerations, a superpixel algorithm for HSI is proposed called Seed
Extend by Entropy Density (SEED). In this work, we first focus on designing a superpixel
seed redistribution framework that accurately aggregates regions of interest. The initializing
strategy can directly and effectively replace the initialization strategy of grid sampling.
Secondly, the five-dimensional color space information in the superpixel is combined with
the spectral information of the hyperspectral data. By improving and optimizing the
HSI classification framework globally, a novel spatial–spectral feature constraint model
is constructed. It solves the problem of data redundancy caused by high-dimensional
characteristics and the dimension problem caused by strong correlation. For the processing
of high-dimensional problems, we use the PCA to extract three principal components from
numerous bands to form three-channel images.

In the context of previous work [35–37], our improvements and contributions can be
listed as follows:

(1) A superpixel algorithm, SEED, is proposed for HSI. This algorithm mainly solves
the problem that it is difficult to make a reasonable initial seed setting according to the
image content due to the large amount of data in HSI. It also focuses on breaking the
dilemma of manually setting the number of superpixels to overcome the difficulty of
classification imprecision caused by multi-scale targets in subsequent classification tasks.
Objectively compared with the current excellent six algorithms [38–43], the experimental
results show that the algorithm is effective and feasible. In addition, SEED can also solve
the problem of uneven information granularity caused by multi-scale surface objects in
hyperspectral images. (2) SEED is integrated into the dimensionality reduction framework.
In the construction of the neighborhood, the constraint range can be more accurate, and
the local manifold structure of the data in the low-dimensional space and the structural
reconstruction error in the high-dimensional space can be reduced. This provides a solution
for data redundancy caused by the high-dimensional feature and strong correlations
in hyperspectral images. (3) The proposed space–spectrum model-SMALE considers
the diversity of different homogenous regions in HSIs. The spatial context information
is included in unsupervised dimension reduction, which improves the performance of
HSI classification. Experiments on three public datasets show that the SMALE model
significantly outperforms the traditional linear map-based HSI classification dimensionality
reduction algorithm and some advanced feature extraction methods.

The remainder of this paper is organized as follows. Section 2 reviews a Simple
Non-Iterative Clustering (SNIC) superpixel segmentation algorithm and Robust Local
Manifold Representation (RLMR) [44] dimension reduction framework. In Section 3, the
hyperspectral dimension reduction framework based on superpixel and manifold learning
is introduced in detail. Additionally, we provide an analysis of the proposed SMALE
algorithm. Section 4 presents the experimental results and analysis. Finally, the concluding
remarks are stated in Section 5.

2. Related Works
2.1. Simple Non-Iterative Clustering

Simple Linear Iterative Clustering (SLIC) [45] was proposed in 2010, which can over-
come the shortcomings of traditional superpixel segmentation algorithms. The algorithm
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has excellent robustness and significant improvement in regard to segmentation accuracy.
After that, advanced superpixels emerge one after another.

Some of these algorithms tend to pursue high boundary fit, such as Linear Spectral
Clustering (LSC) [46] and Entropy-Rate Superpixels (ERS) [38]. Some focus on high ef-
ficiency, such as Iterative Boundaries Implicit Identification (IBIS) [42]. By selecting the
superpixel on the boundary to move, the superpixel is continuously refined, so as to update
the superpixel. Rooted Spanning Superpixels (RSS) [47] have the advantage in computing
time, using the concept of minimum spanning trees to guide pixels through path-cost func-
tions. The superpixel growth rate of this algorithm is very fast. Compromising the above
two situations, quite a few researchers prefer to seek a balanced performance of speed and
precision. They believe that SLIC has a good framework foundation, so a class of SLIC-like
superpixel algorithms led by SLIC appears. The most representative one is the Simple
Non-Iterative Clustering (SNIC) [39] algorithm developed by the creator of SLIC, which
utilized a priority queue to design a non-iterative clustering framework, replacing SLIC’s
K-means clustering. By changing the clustering algorithm that needs multiple iterations
into a non-iterative clustering algorithm, the SNIC algorithm inherits the advantages of the
SLIC algorithm and reduces the time complexity and computing memory consumption.

The problem of segmentation boundary fitting caused by the multi-scale granularity of
HSIs and the computational cost result of the large data volume of HSIs are considered. We
are committed to studying a superpixel algorithm for high-dimensional RS images, which
takes into account boundary fitting and computational cost to some extent. It is worth
mentioning that this paper will be based on SNIC in order to lay a good foundation for
subsequent work. SNIC is divided into three parts and described below. The segmentation
demonstration effect is shown in Figure 1a.
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Figure 1. Two typical superpixel algorithms. (a) The segmentation process of SNIC [39] and its
variants algorithm; (b) The segmentation process of SEEDS [48].

(1) Initialization stage (seed initialization based on grid sampling). In the initial phase,
SNIC follows the grid initialization strategy of SLIC. Equidistant sampling in hori-
zontal and vertical directions is carried out with a fixed step size on two-dimensional
images. We take the sampling point as the initial clustering center and use it as the
starting point to complete the generation and updating of superpixels.

(2) Correlation Measurement (color space five-dimensional joint metric). It is assumed that the
two-dimensional coordinate of pixel Ii of image I in position space is P(Ii) = [x(Ii), y(Ii)] and
the three-channel color feature in CIELAB color space is C(Ii) = [l(Ii), a(Ii), b(Ii)], respectively.
Based on the color space joint feature, F(Ii) = [C(Ii), P(Ii)] = [l(Ii), a(Ii), b(Ii), x(Ii), y(Ii)] is
used for five-dimensional characterization. Accordingly, the correlation measurement
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between the cluster center Im and the neighborhood In is derived from the weighted
Euclidean distance of the color difference and the location difference:

D(Im, In) = Dc(Im, In) + ω · Dp(Im, In) (1)

where ω = m
S , m is a variable that we introduced to control the compactness of

superpixels and the value range is [1, 20]. For all the results in this article, we chose
m = 10. This experience value is derived from SNIC [39]. S is the side length of the
superpixel cluster. S =

√
N/K. N is the total number of image pixels, and K is the

number of superpixels preset by the user.

Dc(Im, In) = ∥C(Im)− C(In)∥2 =

√(
(l(Im)− l(In))

2 + (a(Im)− a(In))
2 + (b(Im)− b(In))

2
)

(2)

Dp(Im, In) = ∥P(Im)− P(In)∥2 =

√(
(x(Im)− x(In))

2 + (y(Im)− y(In))
2
)

(3)

Due to the data distribution of color space and location space being different, the
value of ω reflects the importance of color and spatial location features to the similarity
measurement. The different values of ω represent the variations in the characteristic
tendency of superpixel boundary fit and visual comfort.

(3) Label allocation (allocation strategy based on online mean update). The iterative
k-means algorithm is replaced by an online averaging updating system. The method
of region growth is used to substitute the local candidate region traversal mode, which
limits the search scope. Thus, more efficient global clustering can be achieved. In
essence, this region growing is a greedy algorithm implemented using a priority
queue. It converges all superpixel clusters globally into local aggregation of each
cluster during the sequential generation of superpixels.

2.2. Robust Local Manifold Representation

Robust Local Manifold Representation (RLMR) [44] is an excellent hyperspectral
dimension reduction method which inherits the advantages of LLE [20] and LTSA [22]
in reasonably linear representation in local manifold space and can robustly solve the
non-uniformity caused by data distribution. It improves the performance of classification
and recognition. The RLMR comprises mainly four steps. The first two steps correspond to
hierarchical neighbor selection (HNS), the third is the computation of affinity weights, and
the last is the calculation of embedding.

Step 1. Joint Normalization (JN) is an effective preprocessing method for analyzing
HSI. It aims to eliminate the effects of scale differences and ensure that the data are relatively
uniform. This step generally begins with global data normalization (GDN) followed by
local data normalization (LDN), which is a process that ranges from coarse to fine.

Step 2. Refined Neighbor Selection (RNS) mitigates the multicollinearity between
spectral data to avoid affecting the subsequent model structure.

Step 3. Computation of Affinity Weights with spatial contextual information. This
method adopts a robust optimization method, which has good robustness to outliers
and noise.

Step 4. Low-dimensional Feature Representation is obtained by a local manifold
structure in low-dimensional space.

3. Methods

In this section, we detail the hyperspectral image classification via superpixels and
manifold learning, which is denoted as SMALE. Although many methods with good
performance are pixel-by-pixel processing, for HSIs, pixel-by-pixel processing will bring
a high probability of failure or difficult to deploy in the practical project. This is due to
the large amount of HSI data, as well as information redundancy and clutter, resulting
in inaccurate clustering results. SMALE maps spatial information into a dimensionality
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reduction framework in two key steps. This method can quickly focus on the region of
interest quickly and reduce the calculation cost. First, SMALE uses SEED to obtain the
HSI superpixel segmentation label with excellent performance, as described in Section 3.1.
Secondly, Section 3.2 will elaborate on replacing the processing primitives of classification
tasks with homogeneous superpixel blocks, mapping the original data through manifold
learning into a lower-dimensional space to achieve nonlinear dimensionality reduction.

3.1. Seed Extend by Entropy Density (SEED)

In superpixel algorithms, the selection of seed points is crucial. There are methods
based on uniform grids and gradient-based approaches. The grid-based method places
seed points uniformly or according to a regular pattern on the image, which is used to label
different regions or objects. The advantages of a grid-based seed point method include sim-
plicity of implementation and ease of parallel processing, as shown in Figure 2b. Figure 2c
uses gradient information from the image (such as Sobel or Prewitt operators) to identify
pixels with high gradient magnitudes as seed points. This approach effectively captures
edges and prominent transition areas in the image, making it suitable for applications that
emphasize shapes and boundaries.
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(c) gradient-based seed point method.

However, for images with uneven complexity, the grid-based seed point method does
not consider intrinsic image features such as texture, color, and gradient information. This
omission can lead to subsequent visual tasks lacking sufficient accuracy or adaptability. It
is worth noting that gradient information effectively captures edges and transition areas
in the image, but it may perform poorly in image regions with subtle gradient changes or
high noise levels.

The paper improves image segmentation quality using the SEED, approached from an
information-theoretic perspective. SEED can select the seed points adaptively according to
the local characteristics of the image to better reflect the real structure of the image. The
schematic diagram of the proposed method is shown in Figure 3 below. Figure 3b shows
the distribution diagram of image content based on entropy density. According to the
diagram, the seed distribution is guided, and it can be seen that simple and complex areas
of the image can be easily distinguished by entropy density. Figure 3c shows the seed
distribution method based on a uniform grid. The seed distribution is evenly scattered on
the image without distinguishing the content.

Specifically, SEED first converts the image to grayscale, then calculates the global
information entropy of the image Hg(X) and the entropy of each sub-region Hl(X), as
shown below:

Hg(X) = −
n

∑
i=1

p(xi) log p(xi) (4)

Hl(X) = −
k

∑
j=1

p
(
xj
)

log p
(
xj
)

(5)
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where p(xi) represents the proportion of pixels in the image with a grayscale value of xi.
n is the total number of pixels in the image. p

(
xj
)

represents the proportion of pixels in
the pixel block with a grayscale value of xj. k is the number of pixels in the current local
pixel block.

The complexity of the current superpixel block is assessed by considering the entropy
distribution of its surrounding pixels. Seed pixels are chosen based on their relatively
higher local entropy. The redistribution process involves adjusting the positions of the
original seed pixels to better correspond with variations in entropy across the image. This
approach allows for further optimization of segmentation results while maintaining the
original segmentation accuracy, which is particularly effective when dealing with images
containing complex textures or transition regions. An advantage of this method lies in
its adaptive adjustment of seed pixel positions, thereby enhancing both the accuracy and
stability of image segmentation. A schematic diagram illustrating this process is depicted
in Figure 4.
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Algorithm 1: SEED superpixel segmentation framework 

Input: the RGB image I , the expected number K  

Output: coordinates of seeds 

1/*Initialization*/ 

2 divided the whole image into grids. 

3 calculate the global entropy ( )gH X  of the image I  by Equation (3). 

4 for each cluster region n  do 

5    calculate the entropy ( )lH X  of each sub-region by Equation (4). 

6 end for 

7    calculate he average entropy ( )aH X  of all n  

8    for each cluster region n  do 

9       if ( ) ( )l j gH X H X or ( )aH X  then 

10        retain only one seed point. (if the current area has more than one seed point); 

otherwise remove all. 

Figure 4. Dynamic segmentation procedure of SEED. (a) Input image; (b) grid-sampled seeds; (c) gray
level image; (d) entropy density distribution diagram Entropy density values range from small to
large, indicating colors from blue to yellow; (e–g) seed distribution is dynamically adjusted according
to different values of the entropy density. Among them, yellow boxes are examples of seed extend
paths in regions with larger entropy density, and blue boxes are examples of seed extend paths in
regions with smaller entropy density.
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The strategy involves seed redistribution in the image. Specifically, after seeds are
initially selected from pixels with a high local entropy, refined seed selection occurs based
on the global entropy Hg(X) and the average entropy Ha(X) of sub-regions.

Ha(X) =
1
n

n

∑
i=1

Hg(Xi) (6)

1. Hl
(
Xj

)
< Hg(X) or Ha(X), if the current area has more than one seed point, retain

only one seed point. If there is a seed point in the current area, remove all;
2. Ha(X) ≤ Hl

(
Xj

)
≤ Hg(X), maintain the status quo;

3. Hl
(
Xj

)
> Hg(X) or Ha(X), If there are no seed points in the current region, add a

seed point.

The pseudocode summary of SEED is presented in Algorithm 1.

Algorithm 1: SEED superpixel segmentation framework

Input: the RGB image I, the expected number K
Output: coordinates of seeds
1/*Initialization*/
2 divided the whole image into grids.
3 calculate the global entropy Hg(X) of the image I by Equation (3).
4 for each cluster region n do
5 calculate the entropy Hl(X) of each sub-region by Equation (4).
6 end for
7 calculate he average entropy Ha(X) of all n
8 for each cluster region n do
9 if Hl

(
Xj

)
< Hg(X)orHa(X) then

10 retain only one seed point. (if the current area has more than one seed point);
otherwise remove all.

11 else if Ha(X) ≤ Hl

(
Xj

)
≤ Hg(X) then

12 maintain the status quo.

13 else Hl

(
Xj

)
> Hg(X)orHa(X)

14 add a seed point. (if there are no seed points in the current region).
15 end if
16 end for
17 return coordinates of seeds

3.2. Space–Spectrum Model

HSI records continuous spectral information for each pixel, typically spanning tens to
hundreds of spectral bands. It is stored as a multi-dimensional array, often conceptualized
as a 3-D cube represented by M × N × D, where M and N denote the image’s height and
width and D represents the number of spectral bands. Superpixel segmentation usually
requires a RGB image with input m × n × 3. When processing hyperspectral data, a SEED
algorithm is not directly applicable, because D ≫ 3 in HIS.

First, we need to project the hyperspectral data into the plane space for SEED segmen-
tation. After the completion of the superpixel segmentation, the result will be mapped back
to the space of the original hyperspectral data. In this process, PCA is used for processing.
PCA is able to find a new set of linearly independent variables in the original data with the
largest square difference. Specifically, if the data X ∈ RM×N×D has P(P = M × N) samples
and D bands, a matrix X of size P × D can be formed:

X =


x11 x12 · · · x1D
x21 x22 · · · x2D

...
...

. . .
...

xP1 xP1 · · · xPD

 = (x1, x2, · · · , xD) (7)



Remote Sens. 2024, 16, 3442 9 of 21

The linearly independent variable z1, z2, · · · , zd(d ≤ D) with the maximum variance,
and they satisfy: 

z1 = l11x1 + l12x2 + · · ·+ l1DxD
z2 = l21x1 + l22x2 + · · ·+ l2DxD

· · ·
zd = ld1x1 + ld2x2 + · · ·+ ldDxD

(8)

The principles for determining coefficients lij are as follows:

1. z1 is unrelated to z2 (i ̸= j; i, j = 1, 2, . . . , d);
2. z1 is the linear combination with the maximum variance among x1, x2, · · · , xD;
3. z2 is the linear combination with the maximum variance among all linear combinations

of x1, x2, · · · , xD that are uncorrelated with z1;
4. Continuing in this manner, zd is the linear combination with the maximum vari-

ance among all linear combinations of x1, x2, · · · , xD that are uncorrelated with
z1, z2, · · · , zd−1;

5. The new variables z1, z2, · · · , zd are, respectively, referred to as the first, second, . . .,
dth principal components of the original variables x1, x2, · · · , xD.

Following the above operations, we use superpixel blocks instead of traditional pixels.
The superpixel block is treated as the new basic processing unit, and the hyperspectral data
are denoted as Xsp ∈ RK×D, while K is the number of superpixels. These blocks represent
contiguous regions in the image, where each superpixel block can be viewed as a small
block that merges similar spectral and spatial information. These features better capture
the spatial and spectral information integrity in HSIs.

Inspired by LLE [20], we capture the underlying local manifold structure of hyper-
spectral blocks processed through superpixels and preserve it in a low-dimensional space.
Without loss of generality, the spatial–spectral dimensionality reduction model proposed
in this paper mainly includes the steps shown in Figure 5. As explained in Section 2.2,
the dimensionality reduction framework based on manifold is generally divided into the
following three steps: (1) selection of neighbor points, as shown in Figure 5a; (2) weight
calculation, as shown in Figure 5d; (3) embedded calculation, as shown in Figure 5e. On
this basis, SMALE adds the SEED superpixel segmentation part, as shown in Figure 5c. The
spatial information provided by SEED and the spectral information of the HSI make the
dimensionality reduction based on the manifold more robust.
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Figure 5. The procedure of the spatial–spectral dimensionality reduction model. (a) Neighbor
selection; (b) data normalization; (c) superpixel segmentation; (d) compute weights; (e) calculation
of embedding.
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Let W ∈ RK×K denote a sparse affinity matrix, where each entry (i, j) represents
the affinity weight between the ith and jth superpixel blocks. The spectral data after
dimensionality reduction is denoted as Y = [y1, y2, . . . , yK] ∈ RK×d, where d ≫ D. The
calculation of embedding coordinates is generally formulated as follows:

Ŷ= argmin
Y

{
K

∑
i=1

∑
j∈ϕi

∥yi − yj∥2
2Wij

}
, s.t. YBYT = I (9)

where ϕi is a set of neighbors of the ith superpixel block. B is a constant matrix defined
according to different manifold learning methods.

This paper adopts the optimization framework of local linear embedding. It considers
the reconstruction symmetry of each data point and its neighborhood points to design
its method.

Accordingly, we apply it between the superpixel blocks, then calculate the reconstruc-
tion coefficient between the superpixel blocks and embed the calculation. The reconstruc-
tion coefficient is obtained by minimization, denoted as Â ∈ RK×K.

Â= argmin
A

 K

∑
i=1

∥xi − ∑
j∈ϕi

Aijxij∥
2

2

, s.t. ∑
j∈ϕi

Aij = 1 (10)

The formula for calculating its low-dimensional coordinates is as follows:

Ŷ= argmin
Y

{
K
∑

i=1
∥yi − ∑

j∈ϕi

Aijyj∥
2

2

}
s.t.

1
K

K
∑

i=1
yiyi

T = I,
K
∑

i=1
yi = 0.

(11)

where it should be noted that Aij represents the reconstruction weight between xi and xj; if
jth data are not in the ith data’s neighborhood, then Aij = 0.

Combining Equations (8) and (10), we obtain the following:

Wij = Aij + Aji − AijAji (12)

The optimized LLE model can not only obtain the local manifold structure but also
capture the spatial characteristics of the data after superpixel processing. In the stage of
neighborhood selection, the constraint range can be more accurate and the reconstruction
error of local manifold structures in low dimensional space and structure reconstruction in
high-dimensional space can be reduced.

4. Experiment and Discussion

This section aims to demonstrate the effectiveness of the SEED algorithm specifically
designed for HSIs and its rational application within the Locally Linear Embedding (LLE)
framework. While there are no readily available hyperspectral datasets tailored specifically
for validating superpixel segmentation algorithms, the validity of the SEED algorithm
can be verified through appropriate preprocessing and evaluation methods. Firstly, the
superpixel dataset and hyperspectral dataset used in this paper are introduced. Secondly,
SEED is comprehensively evaluated from both qualitative and quantitative perspectives
compared against classical and state-of-the-art superpixel algorithms. Finally, an ablation
experiment is designed to prove the excellent performance of the SMALE dimensionality
reduction framework in classification tasks.

4.1. Experiment Setup

One superpixel segmentation dataset and two hyperspectral datasets are used in
this experiment, which are described in detail in Sections 4.1.1 and 4.1.2, respectively.
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All methods are executed on an Intel Core i7 4.2 GHz with 16 GB RAM without any
parallelization or GPU processing.

4.1.1. Superpixel Segmentation Dataset

A Berkeley Segmentation Dataset (BSDS) [49] is a classic image segmentation dataset
created by the Computer Vision Lab at the University of California, Berkeley. The BSDS
contains hundreds of real-world images of natural scenes that cover a variety of complex
visual situations and scenes. Each image is manually marked by an expert or highly trained
marker to mark the boundaries and divisions of the individual objects. Therefore, it is
considered to be a high-quality and reliable segmentation result.

4.1.2. Hyperspectral Datasets

The Indian Pines dataset [50] is a classic HSI classification dataset that is often used to
test and evaluate the performance of HSI-processing and analysis algorithms. The Indian
Pines dataset consists of a 145 × 145 pixels HSI covering 16 categories. Each pixel has
220 bands of information on the spectrum, which makes the dataset ideal for research and
development of image processing algorithms involving spectral information.

The Salinas A dataset [32] is a widely used standard dataset for hyperspectral image
analysis, sourced from an aerial RS mission over Salinas County, California. It includes
HSIs with multiple bands, covering a range from visible to near-infrared wavelengths,
and features high-spatial and-spectral resolutions. The image resolution is 83 × 86 pixels,
with each pixel containing over 200 spectral bands. The primary uses of the Salinas
A dataset include land cover classification, target detection, and anomaly detection. It
provides researchers with a rich hyperspectral data source for algorithm development and
performance evaluation. Due to its detailed spectral characteristics and comprehensive
land cover information, the Salinas A dataset holds significant importance in regard to HSI
processing and RS technology research.

4.2. Results of BSDS Data

In this section, the performance of SEED is qualitative and quantitative to verify
its advancement. To demonstrate objectivity, we randomly selected 200 images in the
data as a test set. We will list some of the representative segmentation effects and local
details. In addition, several common evaluation indexes [51] are provided to quantify the
accuracy of the image boundary and the segmentation results, such as Boundary Recall
(BR), Achievable Segmentation Accuracy (ASA), Under-segmentation Error (UE), and
Compactness (CO).

4.2.1. Visual Assessment

The qualitative analysis of the superpixel algorithm is demonstrated by a visual
segmentation effect. Figure 6 shows seven superpixel algorithms, including SEED. SNIC is
recognized as a classical superpixel generation algorithm. The ERS algorithm is the choice
for most HSIs that use superpixels. Through visual analysis, we can intuitively see whether
the segmentation result fits the target edge and whether there is over-segmentation. From
the overall segmentation effect, the result of WSGL and ERS are messy and have poor
anti-texture abilities compared with other algorithms, but these two algorithms perform
well in capturing details. It can be seen that the pursuit of precision is to sacrifice the
regularity of the shape of the superpixel block. It is worth mentioning that SEED seeks
exactly this balance. As the partial zoom shows, the superpixels generated by SEED are
uniform, compact, and, most importantly, excellent at fitting boundaries. The appearance
of MBS is very neat, and the segmentation accuracy is also high, but its accuracy is not
high in areas of similar colors, and it is also easily affected by similar colors. SEED also
successfully overcomes this problem. Overall, SEED’s competitiveness is clear.
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Figure 6. Visual comparison of segmentation results with 100 expected superpixels. (a) ERS [38];
(b) SNIC [39]; (c) MBS [40]; (d) WSGL [41]; (e) IBIS [42]; (f) SCALE [43]; (g) SEED. Alternating
columns show each segmented image followed by the zoom-in performance.

4.2.2. Metric Evaluation

In this section, SEED and other state-of-the-art algorithms will be comprehensively
evaluated based on the four indexes commonly used to verify superpixel algorithms.

• Boundary Recall (BR): BR is an important index to measure the ability of the algorithm
to detect the real target boundary. Specifically, BR stands for the ability to correctly
locate and cover the boundaries of real targets. The value of BR ranges from 0 to 1. The
higher the value, the greater the proportion of the detected bounding box covering the
real target boundary, i.e., the better the algorithm performance. Its calculation formula
is as follows:

BR =
∑i∈ΦB ∏

(
minj∈ΩB∥P(Ii)− P

(
Ij
)
∥ < r

)
ΦB

(13)

where ΦB and ΩB represent the boundary pixels in the set. ∏( ) represents the logic
value of 0 or 1. P(Ii) = [x(Ii), y(Ii)] and r is set to two pixels.

• Under-segmentation Error (UE): UE evaluates the difference between the segmentation
boundary generated by the algorithm and the real segmentation boundary. It focuses
on areas or parts of the segmentation result that do not segment the target correctly.
Specifically, it can be defined by the following formula:

UE =

M
∑

m=1

(
∑Ωk |Ωk∩Φm ̸=ϕ|Ωk|

)
− N

N
(14)

where N is the number of pixels in the image. Ω = {Ωk}K
k=1 and Φ = {Φm}M

m=1
represent the calculated superpixels and the ground truth of the same image {Ii}N

i=1,
respectively.

• Achievable Segmentation Accuracy (ASA): ASA is an index used to evaluate the
performance of segmentation algorithms in image segmentation tasks. It is designed
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to measure the highest level of segmentation accuracy that an algorithm can achieve.
It is usually deduced or calculated by some theoretical analysis or idealized algorithm.

ASA =

K
∑

k=1
argmax|Ωk ∩ Φm|

M
∑

m=1
|Φm|

(15)

• Compactness (CO): CO is an index used to measure the compactness of segmentation
results in an image segmentation evaluation. It is mainly concerned with the shape
compactness of the segmented area or object.

CO =
K

∑
i=1

4πξSPi ∗ |SPi|
ψ2

SPi
∗ |I|

(16)

where ξSPi and ψSPi are expressed as the area and perimeter of the ith superpixel, respectively.

Figure 7 shows the test results of the above metrics on all algorithms. The red curve is
the performance of the algorithm SEED proposed in this paper. As illustrated in Figure 7,
SEED performs well in terms of the highest level of segmentation accuracy that can be
achieved. At the same time, the number of pixels wrongly divided in the segmentation
result is the fewest. Figure 7e is the compactness index corresponding to the qualitative
analysis in Figure 7. The MBS visual effect is both compact and regular, and its CO indicator
performs best. A larger CO value indicates that the shape of the divided area is not too
scattered or complex.
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4.3. Results of Indian Pines Dataset

In this section, we compare the proposed space–spectrum model-SMALE with tra-
ditional and state-of-the-art methods on the India Pines dataset [50]. It is worth noting
that, in order to prove that SEED plays a catalytic role, we will replace the superpixel
part of SMALE with MBS and ERS, designed as a cross test for benchmarking. Due to the
large number of categories in the India Pines dataset, the dataset is considered challeng-
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ing. As shown in Figure 8, SMALE demonstrated competitive precision in its ability to
identify various crops. Classification accuracy is almost perfect in the Woods and Hay-
windrowed regions. RLMR can be comparable, but its overall classification accuracy needs
to be improved.
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Figure 8. Classification maps for the Indian Pines dataset using all DR methods under comparison
with the optimal parameters. (a) Input image; (b) ground truth; (c) PCA [13]; (d) KPCA [16];
(e) LLE [20]; (f) LTSA [22]; (g) SuperPCA [32]; (h) RLMR [44]; (i) S2DL [52]; (j) D-VIC [53];
(k) ERS-LLE; (l) MBS-LLE; (m) SMALE.
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In this paper, the quantitative analysis is reflected by OA, AA, and Kappa [54]. The
specific quantitative indicators are shown in Table 1.

Table 1. Classification result of the proposed method and ten comparison algorithms on an Indian
Pines dataset.

Evaluation
Index

Algorithm

PCA KPCA LLE LTSA SuperPCA RLMR S2DL D-VIC ERS-LLE MBS-LLE SMALE

OA (%) 64.35 67.03 68.23 72.06 89.26 80.65 73.25 52.35 78.41 80.78 90.74
AA (%) 73.42 76.98 75.71 80.96 93.55 89.66 65.32 53.27 86.77 90.65 95.28
Kappa 0.3315 0.3996 0.4365 0.4735 0.5008 0.5211 0.5920 0.4020 0.5332 0.5572 0.5691

• Overall Accuracy (OA): OA is a measure of the proportion of the classifier’s predictions
that are correct across the entire dataset. It is the most simple and intuitive classification
performance evaluation indicator, and it is calculated as follows:

OA =
(TP + TN)

(TP + FN + FP + TN)
(17)

• Average Accuracy (AA): AA refers to the average accuracy of each class. In a multi-
class classification problem, different classes may have different sample sizes and
levels of importance. AA provides a more detailed assessment by calculating the
classification accuracy of each category and averaging it.

AA =
1
N ∑r

i=1 xii (18)

where N is the total number of pixels. xii is the value on the diagonal of its confusion matrix.
• Kappa is a measure of consistency between the classifier’s predictions and ground

truth. It takes into account the adjustment of the correctness of model predictions
and the factors of random predictions, so it is particularly useful for working with
categorically unbalanced datasets.

Kappa =
N∑r

i=1 xii−∑r
i=1(xi+ × x+i)

N2 − ∑r
i=1(xi+ × x+i)

(19)

where xi+ is the number of actual reference pixels in each category and x+i is the total
number of classified pixels in the class.

It is worth mentioning that this paper explores the influence of superpixels on the
dimensionality reduction framework. In addition to the above experiments, we conducted
more detailed experiments on the design of the superpixel module, conducted multi-scale
experiments with different displays involving the numbers in the superpixels set, and
conducted statistics for each category of the India Pines dataset. The data analysis is shown
in Table 2.

Based on the above experiments, we can conclude that the optimal number of su-
perpixels in Indian Pines is 200. The trend in the table data shows that the classification
accuracy increases first and then decreases with the increase in the number of superpixels.
This is because the size of the dataset is 145 × 145 × 200, and the two-dimensional size
itself is not large. Setting too many superpixels will lead to over-segmentation, and the
classification accuracy cannot be reached.

In order to more obviously prove that the appropriate superpixel algorithm can
improve the classification accuracy, we deliberately selected all the classification algo-
rithms based on the superpixels for further analysis (ERS-LLE, MBS-LLE, SuperPCA, S2DL,
SMALE). As shown in Figure 9, there is no doubt that the best performance is SMALE,
and the OA of RLMR also shows considerable advantages. Because both ERS-DR and
SuperPCA employ ERS for superpixel preprocessing, their OA trends are similar. In general,
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when the number of superpixels is 200, the classification accuracy of each algorithm reaches
its peak, which confirms the conclusion drawn from Table 2.

Table 2. Performance of the proposed SMALE model on the Indian Pines dataset, with the expected
number of superpixels ranging from 50 to 500.

Class Names
Expected Superpixel Number

50 100 150 200 250 300 350 400 450 500

Corn-notill 68.57 72.89 78.22 93.65 87.36 85.64 80.37 70.36 66.75 62.37
Corn-mintill 83.88 90.09 92.51 96.87 95.66 94.28 93.71 89.65 82.54 80.32

Corn 92.65 95.88 96.41 99.21 98.55 97.62 97.21 94.56 90.98 90.23
Grass-pasture 92.36 93.55 93.96 96.88 95.12 94.87 94.45 92.89 91.63 90.72

Grass-trees 82.63 89.68 90.63 96.87 95.21 94.66 92.45 85.52 80.87 78.65
Hay-windrowed 97.32 97.32 97.32 100 99.62 99.23 98.76 97.32 96.78 95.62
Soybean-notill 85.74 90.43 91.25 95.22 92.22 91.25 91.25 89.66 80.65 70.85

Soybean-mintill 90.25 91.65 94.55 97.10 96.10 95.43 95.22 90.36 89.67 88.34
Soybean-clean 80.66 85.98 86.87 94.98 92.55 90.02 89.21 81.30 79.65 78.33

Wheat 97.65 99.56 99.56 98.56 99.20 99.21 99.56 98.13 96.26 95.13
Woods 80.48 90.31 91.47 98.77 98.44 98.22 95.67 81.61 78.15 70.26

Bldg-Gra-Tr-Driv 96.36 98.06 98.00 100 99.25 98.65 98.43 97.28 94.58 90.88
Stone-Steel-Towers 99.02 100 100 98.97 98.97 99.33 99.52 100 98.55 97.65

Alfalfa 96.52 97.22 97.86 100 100 99.65 98.10 96.66 95.32 94.99
Grass-pasture-mowed 96.11 97.89 97.89 98.89 97.89 97.89 97.89 97.85 95.65 94.98

Oats 98.65 99.01 99.77 100 100 100 100 98.78 96.00 95.02

OA (%) 87.52 92.15 93.00 95.89 94.62 94.26 93.45 90.33 85.66 82.26
AA (%) 89.93 93.09 94.14 97.87 96.64 95.99 95.11 91.37 88.38 85.89
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4.4. Results of Salinas a Dataset

To demonstrate the versatility of SMALE, we continue our experiments on the hyper-
spectral dataset Salinas A, as shown in Figure 10. SMALE achieved near-perfect classifi-
cation accuracy on the Salinas A, outperforming its competitors in performance despite
the unsupervised setup of our algorithm. The classification framework firstly applies
superpixel technology to segment HSI and decompose them into regions with high spectral
similarities. This step effectively reduces the computational complexity and improves the
robustness of classification. Then, we use the manifold learning method to reduce the
dimensionality of the superpixels and extract the structural features of the low-dimensional
manifold to facilitate the subsequent classification task. Compared with Indian Pines, the
performance of the ten algorithms on Salinas A has improved, but PCA still cannot fully
explore the potential structure of the data, resulting in a limited classification performance.
KPCA extends PCA to capture the nonlinear structure of the data through the kernel
function, but, in the course of the experiment, we found that the performance of KPCA is
highly dependent on the choice of kernel function. If the kernel function selected cannot
effectively capture the nonlinear structure of the data, it may lead to a poor dimension-
ality reduction. In terms of computational complexity, when processing large-scale data,
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computational complexity and memory consumption may be very high, resulting in low
algorithm efficiency. SuperPCA combines superpixel segmentation and traditional PCA to
reduce dimensionality through superpixel blocks. This method improves the structured
processing and dimensionality reduction in data. The S2DL is second only to SMALE, with
an overall accuracy of 99.69%, which is also near perfect. RLMR further optimizes manifold
learning by regularization technology, which makes the dimensionality reduction process
more stable and efficient. The classification effect of RLMR on the Salinas A dataset is
usually better than that of traditional manifold learning methods, which can provide high
classification accuracy in complex environments.

In summary, the dimensionality reduction classification framework based on super-
pixels and manifold learning performs better with the Salinas A dataset than the simple
dimensionality reduction method. By capturing the nonlinear and complex structure of the
data, the classification effect is significantly improved.

Table 3 shows the quantitative classification results of SMALE and ten comparison
algorithms in the Salinas A dataset, which are also explained through OA, AA, and Kappa.

It can be analyzed from Table 3 that the performances of eleven classification frame-
works, including SMALE, in the Salinas A dataset have been greatly improved. Among
them, the classification accuracy of eight frameworks is above 90%, and the performance
of their Kappa index is also above 0.83, among which that of SMALE is as high as 0.9915.
This index mainly measures the degree of consistency between classification results and
random classification, and its value range is [−1, 1]. The higher the classification result is,
the more consistent the classification result is with the actual category. The result of the
classification is in good agreement with the actual category, which indicates that the model
can predict the target category well.
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Table 3. Classification result of the proposed method and ten comparison algorithms on the Salinas
A dataset.

Evaluation
Index

Algorithm

PCA KPCA LLE LTSA SuperPCA RLMR S2DL D-VIC ERS-LLE MBS-LLE SMALE

OA (%) 86.54 88.62 89.23 92.06 97.26 93.56 99.10 96.51 98.23 98.41 99.28
AA (%) 86.98 88.98 92.71 93.96 97.55 95.25 99.69 97.20 98.87 98.65 99.74
Kappa 0.8315 0.8696 0.83415 0.8765 0.9308 0.9211 0.9840 0.9652 0.9632 0.9572 0.9915

5. Conclusions

In this paper, a superpixel generation framework called Seed Extend by Entropy
Density (SEED) is proposed for practical application. In this work, we focus on designing
a superpixel seed redistribution framework that can directly and effectively replace the
initialization strategy of grid sampling. This algorithm can solve the problem that the
region of interest is difficult to focus on due to the diversity of hyperspectral image content.
By combining the five-dimensional color–space information in superpixels with the spec-
tral information of hyperspectral data, a novel space–spectrum feature constraint model,
SMALE, is constructed which can improve and optimize the classification of hyperspectral
images globally and solve the problem that image processing takes too much time and
is difficult to be practical. The experiment showed that SEED had excellent performance,
reaching the highest ASA (0.9535%) and the lowest UE (0.0369%) while maintaining the
leading level of BR and CO. At the same time, the SMALE model had a classification
accuracy of 97.8700% in the Indian Pines dataset and 99.7453% on the Salinas A dataset. It
has been proven that SEED has a positive effect on classification accuracy.

Future work will focus more on the application of superpixels in a variety of RS tasks,
such as change detection, ground object recognition, ROI extraction, and other visual tasks.
Future works should also make better use of superpixels as an efficient tool. We will look
at designing superpixel algorithms with personalizations for different tasks.
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