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Abstract: Remote sensing offers a low-cost method for estimating yields at large spatio-temporal
scales. Here, we examined the ability of Sentinel-2 satellite imagery to map field-level maize yields
across smallholder farms in two regions in Oromia district, Ethiopia. We evaluated how effectively
different indices, the MTCI, GCVI, and NDVI, and different models, linear regression and random
forest regression, can be used to map field-level yields. We also examined if models improved by
adding weather and soil data and how generalizable our models were if trained in one region and
applied to another region, where no data were used for model calibration. We found that random
forest regression models that used monthly MTCI composites led to the highest yield prediction
accuracies (R2 up to 0.63), particularly when using only localized data for training the model. These
models were not very generalizable, especially when applied to regions that had significant haze
remaining in the imagery. We also found that adding soil and weather data did little to improve model
fit. Our results highlight the ability of Sentinel-2 imagery to map field-level yields in smallholder
systems, though accuracies are limited in regions with high cloud cover and haze.

Keywords: Sentinel-2; yield mapping; smallholder farms; agriculture; maize

1. Introduction

Efforts to meet global food demand in the coming decades will be challenged by
population growth and climate change [1,2]. One way to meet this growing demand is to
increase agricultural production. Yet increasing agricultural production through agricul-
tural extensification is associated with various environmental costs, such as greenhouse
gas emissions and biodiversity loss [1]. Instead, closing yield gaps, or narrowing the gap
between current agricultural yields and potential agricultural yields on existing land, could
be a way to meet future food demand more sustainably [3]. This is especially important in
regions such as sub-Saharan Africa (SSA), where yield gaps are large [4], climatic impacts
are severe [5], and population growth is rapid [6]. In particular, Ethiopia, which is the
second most populous country in SSA, is one of the countries in SSA that is most food
insecure and vulnerable to climate change [7,8]. Closing yield gaps for maize will be
especially important in this region, given that maize provides nearly 20% of the nation’s
calories [9] and is one crop that is projected to be the most negatively impacted by climate
change [6].

In order to identify the causes of and potential solutions to close yield gaps, we must be
able to reliably estimate yields across large spatial and temporal scales [3]. Yet, to date, this
has been challenging through on-the-ground data collection efforts. This is because such

Remote Sens. 2024, 16, 3451. https://doi.org/10.3390/rs16183451 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs16183451
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0001-6482-2669
https://orcid.org/0000-0001-9522-3001
https://orcid.org/0000-0002-6821-473X
https://doi.org/10.3390/rs16183451
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs16183451?type=check_update&version=1


Remote Sens. 2024, 16, 3451 2 of 18

on-the-ground surveys are expensive, difficult to conduct at larger spatial scales, and tend
to rely on often inaccurate, self-reported data [10,11]. A potential low-cost way to produce
agricultural statistics at scale, and gain an understanding of yield gaps, is to use remote
sensing [12]. However, mapping field-level yields in smallholder systems such as Ethiopia
can be challenging given small field sizes (<1 ha) and high within-field variability and
between-field variability due to heterogeneity of management practices and environmental
conditions. The launch of high spatial and temporal resolution satellites, such as the
Sentinel constellations and PlanetScope, have helped overcome such challenges [13,14]. For
example, several recent studies have demonstrated the potential of optical Sentinel-2 data
to map field-level yields in heterogeneous smallholder systems [15–17]. Sentinel-2 imagery
also has frequent revisit times (5/day), which have been linked with higher accuracy when
mapping yields [13,18].

Various vegetation indices have been used to map crop yields, and efficacy may
depend on crop type and local conditions [19]. While the Normalized Difference Vegetation
Index (NDVI) has been used extensively to map yields [19–21], vegetation indices that use
the green rather than the red band to optimize for chlorophyll sensitivity may be more
reliable for crop yield estimation [22,23]. Specifically, previous studies have shown that
the Green Chlorophyll Vegetation Index (GCVI), which is more sensitive to moderate to
high levels of canopy chlorophyll, can outperform traditional vegetation indices such as
the NDVI [19,24,25]. In addition, the Medium Resolution Imaging Spectrophotometer
(MERIS) Terrestrial Chlorophyll Index (MTCI), which uses red-edge reflectance, is sensitive
to canopy chlorophyll and nitrogen content and has also been shown to outperform the
NDVI and GCVI in previous comparisons [22,24,26]. However, MTCI indices generated
from Sentinel-2 imagery have a coarser spatial resolution than the NDVI and GCVI, owing
to the reliance on the red edge (RE) band (band 5), which is provided at 20 m instead of
10 m spatial resolution. Thus, the potential of the MTCI to map crop yields at the field level
in small fields should be further investigated.

Previous studies have used ground-based yield measurements, such as crop cuts, to
train linear regression models that translate vegetation indices into yield estimates [13,25].
Linear regression models have been favored for their simplicity and ease of implementation,
especially when applied in cloud computing platforms such as Google Earth Engine
(GEE), and because of the observed linear relationships between vegetation indices and
yield [27,28]. However, it is possible that machine learning models, such as random forest,
may outperform such simple linear regression models as they can account for complex
interactions among explanatory variables [29]. They are also considered to be resistant to
overfitting [30].

There is also concern that models that require ground calibration are limited in their
scalability [31]. This is because the relationship between vegetation indices and yields
varies depending on region, crop variety, and management practices [27]. Thus, it is
suggested that these models should be recalibrated using new ground data before they
are applied to other geographic areas [26]. It is unclear to what extent such models can
be extrapolated to estimate spatial patterns in yield outside the region in which they are
calibrated. Approaches that utilize crop growth models have been advanced as a possible
solution [27]. However, these approaches are computationally intensive, and require
various agro-meteorological inputs [32]. Satellite-based crop yield models that rely on
ground data should thus be validated on data outside of their geographic area before
extrapolating over larger regions.

Besides vegetation indices, climate data have long been used to understand crop yields.
Climate variables, like air temperature and precipitation, have been shown to explain up to
one-third of the variation in country-level crop production [33]. Leroux et al. (2016) suggest
that vegetation indices alone cannot account for differences in the relationship between
aboveground biomass and harvestable yield, which may be caused by environmental
stressors [34]. Satellite-based soil moisture and evapotranspiration measurements have
also been found to be more closely correlated to yield than vegetation index measurements,
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and better at quantifying water stress [35]. To address these limitations, several studies
have examined machine learning yield estimation using a mix of vegetation indices and
remote sensing derived climate variables or soil variables [34,36–39]. Many of these studies
are concerned with yield estimates at higher levels of spatial aggregation (e.g., country,
state/province, or county level). However, less research has focused on how climate data
might augment the accuracy and generalizability of vegetation index-based yield estimation
at fine spatial scales, such as the field level. This is likely because many climate datasets
are only available at relatively coarse spatial resolutions, often larger than individual field
sizes in smallholder systems.

This study adds to the growing body of work that assesses the ability of using high
spatio-temporal resolution satellite data to map field-level yields in smallholder systems
at scale. Our study is one of the first to map field-level maize yields in Ethiopia using
Sentinel-2 imagery. Previous work in Ethiopia has typically used coarse-resolution sensors
(e.g., MODIS) to map maize yield (e.g., Debalke and Abebe, 2022) at scales coarser than
the field or have used indices that do not rely on the red-edge band (e.g., Guo et al., 2023),
which have been shown to be superior for yield estimation in other studies [40,41]. We
compare multiple methods to estimate maize yield in two regions within Oromia district,
Ethiopia, during the 2021 growing season. In this study, we specifically examine:

1. How well can we map field-level yields in smallholder maize systems in Ethiopia
using Sentinel-2 imagery?

2. Which vegetation index results in the highest yield prediction accuracies: the NDVI,
GCVI, or MTCI?

3. Which model leads to higher prediction accuracies: multiple linear regression or
random forest regression?

4. Does imputing missing values due to cloud cover improve model performance?
5. Can adding weather and soil data improve prediction accuracy compared to using

only vegetation indices?
6. Is it possible to create a generalizable model that accurately estimates yields across

multiple regions using limited ground data for training?

Our results provide important insights into the ability of Sentinel-2 imagery to map
field-level yields in heterogeneous smallholder systems. This is critically important as
smallholder systems are projected to face some of the largest increases in food demand
over the coming decades [6], and such yield information can help identify where yield gaps
are the largest and potential interventions that may help close these yield gaps.

2. Study Area

Our study area spans a 30,000 km2 region in Oromia district, Ethiopia (Figure 1), with
data collected in two distinct sub-regions. The first sub-region comprises an approximately
8800 km2 area straddling parts of the East Shewa and Guraghe Zones (Figure 1b). The
second sub-region comprises a 1700 km2 area in the western Jimma Zone (Figure 1c). The
greater region is dominated by smallholder agriculture, with cropland covering over 72%
of the land area. There are two agricultural growing seasons in Ethiopia when maize is
grown: the long rainy season (Meher) and the short rainy season (Belg) [42]. The focus of
this study is the long rainy season of Meher, when the majority of maize is grown, which
spans from April to September [43].

Agricultural management practices and soil conditions are highly heterogeneous
over the study region. Specifically, 81% of surveyed fields were less than 5 hectares, and
approximately one-quarter of all fields (26%) were less than two hectares. In addition, 93%
of farmers applied fertilizer, such as DAP and urea, but inputs varied from 0 to 300 kg
throughout the season. There was likewise a diversity of maize varieties planted, with the
most common varieties being BH661, Limu, Damote, and Shone. Soil texture was silt, clay,
or sand, with silt being the most common (40%). A majority of fields (67%) had fruiting
trees, but only 20% of fields were intercropped with other species, of which beans were
the most common. None of the fields surveyed used irrigation. Although sow date and
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harvest date varied slightly, most fields (90%) were sown in April or May, and all fields
were harvested in November.
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Figure 1. Map of the study area with (a) a countrywide map of Ethiopia with the field locations,
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(e) details of the red rectangle in panel (c) showing field boundaries in red over high-resolution aerial
imagery. Aerial imagery via Google Earth 7.3.6 (2023) CNES/Airbus [Accessed on 18 April 2023].

3. Methods

We processed Sentinel-2 imagery (Section 3.2) to estimate maize yields across fields
where we collected on-the-ground crop cut yield information (Question 1, Section 3.1).
To answer our main research questions, we calculated three different vegetation indices
(Question 2) from Sentinel-2 satellite images at two different levels of temporal aggregation
throughout the 2021 maize growing season for inclusion in maize yield models (Section 3.2).
For each vegetation index, we also compared two different yield estimation models, linear
regression and random forest regression (Question 3, Section 3.4). We also examined
whether imputing missing values due to cloud cover led to improved model performance
(Question 4, Section 3.2). To understand if adding weather and soil data improved model
fit, we extracted field-level statistics for five different environmental variables from gridded
climate and soil data products (Section 3.3). We recalibrated each model using an expanded
feature space that included both vegetation index and environmental data and compared
the performance of this enhanced model to the baseline model with no environmental data
(Question 5, Section 3.4). We examined how generalizable our yield estimation algorithms
are across the full study region by training a model using data from only one region and
then applying and validating it in the other region (Question 6, Section 3.5).

3.1. Crop Cut Data

Most methods for estimating crop yield use field-level yield data to calibrate remote
sensing models [13]. The gold standard for yield estimation in field is through collect-
ing crop cuts, which we used to estimate yield at the end of the growing season [44].
Agricultural surveys and crop cuts were administered by collaborators working with the
International Maize and Wheat Improvement Centre for 406 fields across our study area
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in 2021. Each maize field was split into four quadrants. At the center of each quadrant, a
5 m × 8 m area was harvested. The maize was dried and threshed before it was weighed in
field. We averaged all subplot yields to obtain field-level yields. It is important to note that
even though above-ground dry matter (e.g., biomass) would likely be better correlated with
satellite vegetation indices, we focused on predicting yield as this is the measure that farm-
ers and agricultural development organizations prioritize for estimating overall production
and yield gaps. Differences in harvest index due to different varieties and management
likely exist and will be captured as residual errors in our models. GPS coordinates were
collected for each crop cut sub-plot, as well as for the four corners of the field boundaries.
Field boundary polygons were constructed in Python using the Shapely package version
2.0.1 [45]. The boundaries were then manually corrected in Google Earth Pro by aligning
field boundaries with visible boundaries from the latest available high-resolution aerial
imagery in Google Earth Pro. Field boundaries were described as ‘low’, ‘medium’, or ‘high’
confidence based on how closely they corresponded to visible boundaries in the aerial
imagery. We retained only the 321 ‘high’ confidence fields for our analysis, comprising
158 fields in the Jimma sub-region and 163 fields in the East Shewa-Garaghe sub-region.

3.2. Sentinel-2 Imagery

We accessed Level 2A, atmospherically corrected surface reflectance Sentinel-2 imagery
through the Google Earth Engine (GEE) platform [46]. As the growing season coincided
with the rainy season, many of the Sentinel-2 images had a high number of cloudy pix-
els. Pixel-wise cloud masking was performed in GEE using the cloud probability score
generated by the Sentinel Hub Cloud Detector algorithm using the s2Cloudless Python
library [47]. The Sentinel Hub Cloud Detector is a readily available machine learning cloud
and cloud shadow masking algorithm for use in conjunction with Sentinel-2 surface re-
flectance imagery. Based on visual inspection of cloud removal, we set the cloud probability
threshold parameter at 40% and the cloud filter threshold parameter to 100%. As a result,
every image from the Sentinel-2 surface reflectance image collection from 15 March 2021 to
5 December 2021 was retained for our analysis, regardless of cloud cover percentage, and
pixels with a cloud probability score greater than 40% were masked.

Three vegetation indices commonly used in satellite-based yield estimation studies,
namely the NDVI, GCVI, and MTCI, were calculated for each Sentinel-2 image following
the application of the cloud mask. The relevant Sentinel-2 bands used to calculate each
vegetation index are recorded in Table 1, and the formula for each index is listed in Table 2.
We then created maximum vegetation index composites at two different levels of temporal
aggregation using the ‘qualityMosaic’ function in GEE. We created 15-day ‘biweekly’ and
30-day ‘monthly’ image composites across the entire growing season for each vegetation
index. We then applied the ‘reduceRegions’ method to obtain field-level mean VI for each
composite image. In cases where more than 80% of pixels were removed from a given
field due to cloud cover, we set the value to null and instead imputed the value using
Equation (1):

VIt = VIt−x + (VIt+y − VIt−x)/(x + y) (1)

where VIt is a null observation at time (t), VIt−x is the first non-null observation that
occurred prior to VIt in the time series at x days before time t, VIt+y is the first non-null
observation that occurred after VIt in the time series at y days after time t, and x + y
represents the sum of the number of days that occurred before and after time t.
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Table 1. Sentinel-2 bands used for the computation of vegetation indices.

Band Spectral Range (nm) Resolution (m)

Green 543–578 10

Red 650–680 10

Red Edge (RE) 690–730 20

Near Infrared (NIR) 760–850 10

Table 2. Three vegetation indices used in this study and their formulae [48–50].

Vegetation Index Formula Reference

Normalized Difference
Vegetation Index (NDVI) (NIR − Red)/(NIR + Red) Rouse et al., 1973 [48]

Green Chlorophyll Vegetation
Index (GCVI) (NIR/Green − 1) Gitelson et al., 2003 [49]

MERIS Terrestrial Chlorophyll
Index (MTCI) (NIR − RE)/(RE − Red) Dash & Curran, 2004 [50]

The above steps resulted in six different sets of predictor variables for each sub-region,
with each set comprising a time series of one of three vegetation indices (the NDVI, GCVI,
or MTCI) at a given temporal aggregation level (biweekly or monthly). The three biweekly
VI predictor sets for the Jimma sub-region and the full Oromia region were discarded as
there was too much cloud cover to extract data for a majority of fields. To quantify the
impact of imputing missing values on model performance, we also removed fields that
had missing values in the East Shewa–Garaghe sub-region and reran our analyses with no
imputation. We only conducted this comparison analysis for the Eastern region as it had
only a few observations (n = 15 field/months) that had missing values at the monthly level.

3.3. Environmental Data

We included five gridded environmental data products: (1) maximum Land Surface
Temperature (LSTmax)—calculated from the daily 1 km resolution Daytime LST thermal
product from the Terra Moderate Resolution Imaging Spectroradiometer (MODIS) sensor
(MOD11A1) [51], (2) mean Land Surface Temperature (LSTmean)—calculated as the mean of
the daily 1 km resolution Daytime LST and Nighttime LST product from the Terra MODIS
sensor, (3) total precipitation—extracted from the Climate Hazards Group InfraRed Precipi-
tation with Station data (CHIRPS) 0.05◦ × 0.05◦ resolution daily precipitation product [52],
(4) soil organic carbon—derived from the SoilGrids250m resolution machine learning based
product at 0–5 cm depth [53], and (5) total nitrogen—also derived from SoilGrids250m at
0–5 cm depth. All environmental data products were accessed and processed using Google
Earth Engine, and field-level statistics were calculated for the period between 15 March
2021 and 15 December 2021 using the ‘reduceRegions’ method in GEE.

3.4. Model Parameterization and Validation

We compared two classes of models to estimate yield, a linear regression model
and a random forest regression model. The linear regression model was estimated using
Equation (2):

Yield = β0 + β1VI1 + β2VI2 + . . . + βnVIn + ϵ (2)

where Yield is the observed yield (kg/ha) at the field scale calculated via crop cuts, β1VI1
represents the coefficient for the mean vegetation index (VI) value for each field for the first
composite window, and βnVIn represents the coefficient for the mean VI value for each field
for the nth composite window in the predictor set. The linear regressions were performed
in Python using the ‘sklearn.linear_model.LinearRegression’ routine from the Scikit-Learn
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version 1.2.2 machine learning library [54]. We trained individual linear regression models
for each of the VI datasets (Section 3.2) with and without the inclusion of environmental
data (Section 3.3).

For each linear regression model, we also ran a corresponding random forest regression
model using the same set of predictor variables. Random forest is an ensemble learning method
that creates multiple decision trees using randomly drawn subsamples of the data [55]. The
average is calculated across all decision trees to output a final model. We developed the random
forest regression models using the ‘sklearn.ensemble.RandomForestRegressor’ routine from
the Scikit-learn Python module. For each model, we tuned four hyperparameters: the
number of trees (num_estimators), the number of features (max_features), the maximum
depth of a given tree (max_depth), and the minimum number of samples to split an
internal node (min_sample_split). We defined a dictionary with several discrete values
for each hyperparameter and used a randomized search with 5-fold cross-validation and
500 iterations to determine optimal hyperparameters based on model R2 scores [56].

All models were validated using a 70:30 train–test split. The models were scored on
the basis of their coefficient of determination (R2) and root mean squared error (RMSE)
when compared to the observed crop cut yield estimates for each field.

3.5. Comparison of Models by Sub-Region

We assessed the spatial generalizability of our modeling approaches by validating the
model developed in one sub-region on observations from the other sub-region. General-
izability was assessed only for monthly VI-composite models due to the lack of biweekly
VI-composite models in the Jimma sub-region. For simplicity, we also focused only on using
the best-performing VI, which was the MTCI, for our generalizability analysis. Accuracy
was assessed using R2 and RMSE values.

4. Results

With respect to our main research question of how well we can predict field-level
yields in smallholder maize systems in Ethiopia using Sentinel-2 imagery (Question 1),
we were able to map field-level yields well with R2 ranging from 0.23 (Table 3) to 0.63
(Table 4) across all models. The accuracy of our models varied greatly by region. We
observed much higher accuracies in the East Shewa–Guraghe sub-region, where the best-
performing model had an R2 value of 0.63 and an RMSE equal to 1329 kg/ha. In the Jimma
sub-region, however, the best-performing model had an R2 of only 0.35 and an RMSE value
of 1746 kg/ha (Figure 2).

Table 3. R2 and RMSE values for each model vary by region, regression model, vegetation index, and
temporal resolution.

Region/
Sub-Region Regressor Vegetation

Index (VI)
Temporal

Resolution

Coefficient
of Determi-
nation (R2)

Root Mean
Squared

Error
(RMSE)

Regional Linear GCVI Monthly 0.11 2057

Regional Linear MTCI Monthly 0.23 1913

Regional Linear NDVI Monthly 0.17 1988

Regional Random
Forest GCVI Monthly 0.16 1997

Regional Random
Forest MTCI Monthly 0.28 1846
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Table 3. Cont.

Region/
Sub-Region Regressor Vegetation

Index (VI)
Temporal

Resolution

Coefficient
of Determi-
nation (R2)

Root Mean
Squared

Error
(RMSE)

Regional Random
Forest NDVI Monthly 0.09 2077

East
Shewa-Guraghe Linear GCVI Biweekly 0.35 1788

East
Shewa-Guraghe Linear MTCI Biweekly 0.49 1579

East
Shewa-Guraghe Linear NDVI Biweekly 0.34 1806

East
Shewa-Guraghe

Random
Forest GCVI Biweekly 0.43 1668

East
Shewa-Guraghe

Random
Forest MTCI Biweekly 0.5 1574

East
Shewa-Guraghe

Random
Forest NDVI Biweekly 0.35 1788

East
Shewa-Guraghe Linear GCVI Monthly 0.45 1647

East
Shewa-Guraghe Linear MTCI Monthly 0.47 1621

East
Shewa-Guraghe Linear NDVI Monthly 0.4 1716

East
Shewa-Guraghe

Random
Forest GCVI Monthly 0.4 1713

East
Shewa-Guraghe

Random
Forest MTCI Monthly 0.49 1576

East
Shewa-Guraghe

Random
Forest NDVI Monthly 0.22 1955

Jimma Linear GCVI Monthly 0.17 1969

Jimma Linear MTCI Monthly 0.32 1782

Jimma Linear NDVI Monthly 0.17 1974

Jimma Random
Forest GCVI Monthly 0.19 1946

Jimma Random
Forest MTCI Monthly 0.35 1746

Jimma Random
Forest NDVI Monthly 0.02 2149
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Table 4. R2 and RMSE values for yield models in the East Shewa–Guraghe sub-regions with no
imputation using monthly VI composites.

Region/
Sub-Region Regressor Vegetation

Index (VI)
Temporal

Resolution
Coefficient
of Determi-
nation (R2)

Root Mean
Squared

Error
(RMSE)

East Shewa-
Guraghe Linear GCVI Monthly 0.41 1663

East Shewa-
Guraghe Linear MTCI Monthly 0.57 1422

East Shewa-
Guraghe Linear NDVI Monthly 0.33 1776

East Shewa-
Guraghe

Random
Forest GCVI Monthly 0.36 1732

East Shewa-
Guraghe

Random
Forest MTCI Monthly 0.63 1326

East Shewa-
Guraghe

Random
Forest NDVI Monthly 0.26 1875
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sub-region. The dashed line represents the 1:1 identity line.
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Comparing the three different indices used (Question 2), the GCVI, NDVI, and
MTCI, we found that overall, the MTCI led to the highest prediction accuracies across
all models and locations, as evidenced by higher R2 values and lower RMSEs. After the
MTCI, the GCVI performed best in random forest models, and the GCVI and NDVI per-
formed similarly in linear regression models. The best-performing model at the regional
scale was the random forest regression model with monthly MTCI composite predictors
(R2 = 0.28, RMSE = 1846 kg/ha). The best-performing model in the East Shewa–Guraghe
sub-region was the random forest regression model with biweekly MTCI composite pre-
dictors (R2 = 0.50, RMSE = 1574 kg/ha). The best-performing model in the Jimma sub-
region was the random forest regression model with monthly MTCI composite predictors
(R2 = 0.35, RMSE = 1746 kg/ha). Across the random forest regression models, the MTCI
improved R2 values by 0.12 and reduced the RMSE by 163 kg/ha compared to the GCVI,
the next best-performing vegetation index.

We next examined whether linear regression models or random forest regression
models led to the highest yield prediction accuracies (Question 3). We found that across
all locations, random forest models outperformed linear regression models, though the
difference in R2 and RMSE was generally small (R2 = 0.03 and RMSE = 38 kg/ha). The
difference was larger in the East Shewa–Guraghe sub-region where random forest models
improved the R2 by 0.06 and decreased the RMSE by 87 kg/ha on average. The difference
was less pronounced in the Jimma sub-region where random forest models improved
the R2 by 0.04 and decreased the RMSE by 38 kg/ha on average. At the regional scale,
random forest regression narrowly outperformed linear regression, with the R2 improving
by 0.01 and the RMSE decreasing by 12 kg/ha. Across models with MTCI composite
predictor variables, which were the highest-performing models in each region, random
forest regression models offered a noticeable increase in performance over linear regression
models, improving the R2 by 0.04 and decreasing the RMSE by 49 kg/ha on average.

We assessed how data availability impacts model performance by comparing models
in the East Shewa–Guraghe sub-region where we implemented a weighted moving average
imputation technique to models where observations with null field-month values were
dropped from the dataset (Question 4, Table 4). For the best-performing vegetation index,
the MTCI, regression models that dropped null values improved markedly over those that
imputed null values. For the linear regression model, the R2 increased from 0.47 to 0.53
and the RMSE decreased from 1621 kg/ha to 1488 kg/ha. For the random forest regression
model, the R2 increased from 0.50 to 0.63 and the RMSE decreased from 1576 kg/ha to
1329 kg/ha.

We assessed the difference in performance between models that included environ-
mental variables and the baseline models that did not include environmental variables
(Question 5). We found that the models including environmental variables (Table 5) led
to negligible differences in performance when compared to our baseline models (Table 3).
Overall, the RMSE was 2 kg/ha lower on average in the enhanced linear regression models
compared to the baseline linear regression models. The RMSE was 16 kg/ha (1%) lower
on average in the enhanced random forest regression models compared to the baseline
random forest regression models.

We tested generalizability by validating the models produced in one region on test data
from the other region (Question 6). Overall, we found that our models were not very gener-
alizable, particularly when applying the models developed in the East Shewa–Guraghe
sub-region to the Jimma sub-region (Table 6). The Jimma sub-region models, however, were
more generalizable to the East Shewa–Guraghe sub-region. The best-performing model
was the linear regression model, reaching R2 values of 0.36 (RMSE = 1736 kg/ha). Our
results suggest that the random forest regression models were less generalizable than the
linear regression models.
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Table 5. R2 and RMSE values for regression models that include environmental variables as predictors.

Region/
Sub-Region Regressor Vegetation

Index (VI)
Temporal

Resolution

Coefficient
of Determi-
nation (R2)

Root Mean
Squared

Error
(RMSE)

Regional Linear GCVI Monthly 0.11 2061

Regional Linear MTCI Monthly 0.25 1894

Regional Linear NDVI Monthly 0.14 2021

Regional Random
Forest GCVI Monthly 0.19 1966

Regional Random
Forest MTCI Monthly 0.33 1786

Regional Random
Forest NDVI Monthly 0.11 2054

East Shewa-
Guraghe Linear GCVI Biweekly 0.43 1672

East Shewa-
Guraghe Linear MTCI Biweekly 0.48 1601

East Shewa-
Guraghe Linear NDVI Biweekly 0.33 1814

East Shewa-
Guraghe

Random
Forest GCVI Biweekly 0.44 1654

East Shewa-
Guraghe

Random
Forest MTCI Biweekly 0.52 1540

East Shewa-
Guraghe

Random
Forest NDVI Biweekly 0.37 1753

East Shewa-
Guraghe Linear GCVI Monthly 0.48 1606

East Shewa-
Guraghe Linear MTCI Monthly 0.46 1624

East Shewa-
Guraghe Linear NDVI Monthly 0.35 1786

East Shewa-
Guraghe

Random
Forest GCVI Monthly 0.43 1675

East Shewa-
Guraghe

Random
Forest MTCI Monthly 0.56 1475

East Shewa-
Guraghe

Random
Forest NDVI Monthly 0.29 1870

Jimma Linear GCVI Monthly 0.18 1961

Jimma Linear MTCI Monthly 0.29 1828

Jimma Linear NDVI Monthly 0.16 1988

Jimma Random
Forest GCVI Monthly 0.16 1986

Jimma Random
Forest MTCI Monthly 0.32 1789

Jimma Random
Forest NDVI Monthly 0.04 2122
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Table 6. R2 and RMSE for models that were trained in one region and then applied to another region
to assess generalizability.

Training
Sub-Region

Validation
Sub-Region Regressor Vegetation

Index (VI) R2 (Training) R2

(Validation)
RMSE

(Training)
RMSE

(Validation)

East Shewa-
Guraghe Jimma Linear MTCI 0.47 0.17 1627 1791

East Shewa-
Guraghe Jimma Random

Forest MTCI 0.49 0.17 1584 1791

Jimma East Shewa-
Guraghe Linear MTCI 0.32 0.36 1791 1736

Jimma East Shewa-
Guraghe

Random
Forest MTCI 0.35 0.30 1751 1823

We can use these models to create wall-to-wall yield maps across our study region
(Figure 3). We did this by applying the beta coefficients from the best-performing linear
regression model to monthly vegetation index mosaics across the study region. To ensure
that we only applied our yield prediction to crop pixels, we masked out non-cropped areas
using the GFSAD1000 dataset, accessed through Google Earth Engine.
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Figure 3. Pixelwise map of estimated maize yield in the (a) East Shewa–Guraghe sub-region. The
map (b) uses the best-performing linear regression model with monthly MTCI predictors (R2 = 0.47,
RMSE = 1621 kg/ha. Fields from our study are highlighted in blue.

5. Discussion

This study adds to the growing body of work that assesses the use of high spatio-
temporal resolution Sentinel-2 satellite data to map field-level yields in smallholder sys-
tems [17,26,57]. Using over 300 crop cut field measures of yield, we developed field-level
maize yield estimates for the main growing season in two regions of Ethiopia in 2021. We
examined which vegetation indices (the NDVI, GCVI, and MTCI) and which regression
model (linear regression and random forest) led to the highest yield prediction accura-
cies. We also examined the relationship between cloud cover and model performance and
assessed imputation in dealing with missing data. Furthermore, we examined whether
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accuracies could be improved by adding environmental variables. Finally, we analyzed
the generalizability of our yield estimation models over larger spatial scales, outside of the
region in which the model was originally trained.

Overall, we were able to map yields with moderate accuracy (with R2 values up
to 0.63) (Figures 2 and 3). Our model performance was comparable to previous studies
that have mapped yields in smallholder systems, which generally find R2 values between
0.4 and 0.6 [13,25,58]. This accuracy is also comparable to the one other previous study
that we know of that mapped field-level maize yields in Ethiopia [41]. Differences in
model performance between the two sub-regions in our study area were notable. Models
performed much better overall in the East Shewa–Guraghe sub-region than in the Jimma
sub-region across all VIs and model types. This difference in accuracy could not be fully
explained by the differences in the temporal availability of imagery, as we found that
a linear regression model trained using monthly MTCI values performed better in the
East Shewa–Guraghe sub-region (R2 = 0.33, RMSE = 1815.2) compared to in the Jimma
sub-region (R2 = 0.24, RMSE = 1879.2, Table 3).

Considering which vegetation index led to the highest accuracy, we found that models
using the MTCI had the highest accuracies. There are several reasons why the MTCI likely
outperformed the other vegetation indices considered in our study. First, the MTCI and
GCVI are optimized for chlorophyll detection, while the NDVI has been shown to be related
to leaf area index (LAI) [50]. Previous studies have suggested that indices with increased
sensitivity to chlorophyll concentrations are better able to account for the effects of nutrient
stress on yields [25], which could be particularly important in our study region where
fertilizer application rates were low and fields were likely nitrogen limited. Second, the
NDVI may have performed poorly because it is more likely than the MTCI or GCVI to
become saturated at high levels of biomass [59–63]. To support this hypothesis, we found
low correlation values between the NDVI and yield compared to that of other VIs during
late-season periods of peak biomass (Figures S1–S3). Third, the three vegetation indices
considered in our study are differentially impacted by haze and atmospheric scattering.
Specifically, the MTCI is less sensitive to haze and atmospheric effects than the GCVI and
NDVI because it is computed using two nearby spectral bands that are affected similarly by
atmospheric scattering [60,64]. This could be particularly important for our study region
where we observed patches of haze in various images (Figure S4) despite cloud masking
and image compositing. These results suggest that the MTCI performs well compared
to other VIs during the rainy growing season when cloud cover and haze are extensive.
Finally, we found that the MTCI still performed best despite its availability at a coarser
spatial resolution compared to the other VIs considered in this study (20 m vs. 10 m). This
is likely because the fields considered in our study were relatively large; the mean plot
size across all fields was 3.5 ha, and only 11 fields (3% of all fields) were smaller than
one hectare. Future work should examine if the MTCI still outperforms other indices in
locations with very small field sizes (<0.5 ha).

We found marginal differences in model performance between linear regression and
random forest regression models. Although random forest regressions led to the best-
performing models across all locations (Table 3), we found them to not be as generalizable
as linear regression models (Table 6). This is likely because the relationship between VIs
and yield is largely linear and because random forest regressions are poor at extrapolating
values outside of the range of their predictor space [65].

We found that our yield prediction accuracies were limited by cloud cover and haze.
Despite our extensive cloud masking and mosaicking, there was still significantly more
haze seen in imagery in the Jimma sub-region compared to the East Shewa–Guraghe sub-
region (Figure S4). Excessive cloud cover can lead to missing data in addition to spectral
contamination. To help overcome issues of missing data, we tested an imputation method
that used a weighted moving average to fill in null values and smooth time series VI data.
However, we observed decreases in model performance when imputing values, compared
to simply dropping these contaminated fields from our analysis (the R2 increased from 0.5
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to 0.63, Tables 3 and 4). Guo et al. (2023) [41], also working in smallholder maize systems
in Ethiopia, utilized a Savitzky–Golay filter to perform pixel-level smoothing of time series
Sentinel-2 VI imagery in order to address cloud contamination. However, they observed
poor results in areas with persistent cloud cover. Future work should examine whether
including additional imagery that is less sensitive to cloud cover and haze, such as radar
Sentinel-1 imagery, may improve yield prediction accuracies in regions plagued by high
cloud cover during the rainy growing season.

The addition of environmental variables, including temperature, precipitation, and
soil variables, did little to improve model performance. Previous studies have indicated
that environmental variables may be able to account for spatial variability in environmental
stress and their effects on yield better than vegetation indices alone [38]. The use of LST in
particular has been of interest because it is sensitive to differences in soil water moisture
and evapotranspiration and has thus been hypothesized to account for both water and
heat-related stress [66]. We believe there are several reasons as to why the addition of
environmental variables did not improve model accuracy in our study. First, we examined
yield variation across a relatively small spatial extent of ~10,000 km2 and only in one
year, meaning that there was not a large amount of variation in environmental variables
across our dataset. Previous studies have shown the benefit of incorporating weather
variables into satellite yield prediction models at larger spatio-temporal scales where there
is large variation in weather [28,36,37]. Second, we estimated yield at the field scale in a
smallholder system, where the mean field size was only 3.5 hectares. Thus, it is likely that
the relatively coarse spatial resolution of environmental variables in our study (250 m2 to
5 km2) led to issues of both mixed pixels and reduced variation across fields. Previous
studies have shown the benefit of incorporating weather data into satellite yield estimation
models, which mapped yield at resolutions coarser than the field scale in smallholder
systems [28,38].

Considering the generalizability of our models, we found that the models trained
in one region and applied to another region where no data were used for training per-
formed poorly, particularly when applying models to the Jimma sub-region that were
trained in the East Shewa–Guraghe sub-region. The poor generalizability can be at-
tributed to differences in climatic factors, compounded by a noisy and small training
dataset. The two sub-regions are located in different agroecological zones with differences
in overall yields and yield variation [67]. The Jimma sub-region, which is located in a
cool/humid zone, had higher observed yields on average with less variability (N = 148,
mean = 6235 kg/ha, sd = 1967 kg/ha) compared to the East Shewa–Guraghe sub-region
(N = 163, mean = 5461 kg/ha, sd = 2168 kg/ha), which is located in a cool/subhumid zone.
Climatic differences affect model generalizability as the relationship between VIs and yield
varies across space, and VIs are not always able to capture yield variability due to environ-
mental stress [28,68]. Future work should examine how other approaches that may be more
generalizable, such as those that use crop model simulations to train algorithms instead of
localized ground data [27], perform when mapping yields across disparate regions. This is
achieved by simulating likely crop growth (e.g., the LAI) and yield for dozens of fields in a
given region, converting these simulated LAI values to satellite vegetation indices using
empirically derived formulae from the literature and developing a relationship between
simulated vegetation indices and yield that can be applied to satellite imagery [27].

6. Conclusions

In conclusion, we found that we were able to use Sentinel-2 satellite imagery to map
field-level maize yields accurately, particularly in the eastern portion of our study region,
where we achieved an R2 of 0.63 in our best-performing model. This accuracy is similar
to the best-performing models from other studies that have mapped field-level yields in
smallholder systems [13,25,58]. We found that random forest models that used the MTCI
were the best-performing models, though these models were less generalizable than linear
regression models. We found that there were significant differences in model performance
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across regions, with accuracies dropping substantially in the Jimma region which was
plagued with more cloud cover and haze. We found that while imputing missing values
increased the number of fields that we could consider in our analysis, it significantly
reduced model prediction accuracy (a reduction in R2 of 0.13). We also found that adding
environmental variables to our models did not improve accuracy, likely because the small
spatio-temporal scale of our analysis did not allow for much variation in these variables.
Finally, we found that our models were not very generalizable, likely due to differences
in climate, crop management, and cloud cover across our two study regions. Overall, our
results highlight the strength of MTCI and Sentinel-2 for mapping field-level yields, even
during the rainy season in regions with heterogeneous smallholder fields.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs16183451/s1, Figure S1: Pairwise correlation heatmap of yield
and monthly NDVI composites; Figure S2: Pairwise correlation heatmap of yield and monthly
GCVI composites; Figure S3: Pairwise correlation heatmap of yield and monthly MTCI composites;
Figure S4: Sentinel-2A 30-day image composite.
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