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Abstract: Recent advancements in space exploration technology have significantly increased the
number of diverse satellites in orbit. This surge in space-related information has posed considerable
challenges in developing space target surveillance and situational awareness systems. However,
existing detection algorithms face obstacles such as complex space backgrounds, varying illumination
conditions, and diverse target sizes. To address these challenges, we propose an innovative end-to-
end Attention-Guided Encoder DETR (AgeDETR) model, since artificial intelligence technology has
progressed swiftly in recent years. Specifically, AgeDETR integrates Efficient Multi-Scale Attention
(EMA) Enhanced FasterNet block (EF-Block) within a ResNet18 (EF-ResNet18) backbone. This
integration enhances feature extraction and computational efficiency, providing a robust foundation
for accurately identifying space targets. Additionally, we introduce the Attention-Guided Feature
Enhancement (AGFE) module, which leverages self-attention and channel attention mechanisms to
effectively extract and reinforce salient target features. Furthermore, the Attention-Guided Feature
Fusion (AGFF) module optimizes multi-scale feature integration and produces highly expressive
feature representations, which significantly improves recognition accuracy. The proposed AgeDETR
framework achieves outstanding performance metrics, i.e., 97.9% in mAP0.5 and 85.2% in mAP0.5:0.95,
on the SPARK2022 dataset, outperforming existing detectors and demonstrating superior performance
in space target detection.

Keywords: space target detection; attention-guided feature enhancement; attention-guided feature fusion

1. Introduction

With the rapid advancement of technology, the number of active spacecraft in orbit
continues to increase [1]. Satellite infrastructure is crucial in various fields [2–6], such as
communications, transportation, and weather forecasting, and has become indispensable
in our daily lives. Ensuring the safety of space assets is of paramount importance [7–9], as
space collisions pose a significant threat. This highlights the necessity for spacecraft that can
autonomously detect surrounding objects, a capability crucial to reducing collision risks and
enhancing Space Situational Awareness (SSA), which is key to maintaining the safety and
sustainability of space operations. Since the 1960s, both the United States and the former
Soviet Union have developed space surveillance systems [10]. These systems include
ground-based and space-based detection methods and are now mainstream in monitoring
space targets. The accurate identification of these targets from images captured by such
systems is fundamental for effective space surveillance missions. As space technology
evolves, detection techniques must also innovate to meet increasing monitoring demands
and navigate more complex space environments. This evolution is vital to managing space
traffic, safeguarding space assets, and promoting peaceful activities in space [11].
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However, the challenges of complex space backgrounds, varying illumination condi-
tions, and diverse target sizes significantly complicate the detection of space targets. Tra-
ditional methods often rely on filtering techniques, including spatial-domain [12,13], time-
domain [14,15], and combined spatial–time-domain approaches [16,17]. Meng et al. [12]
developed an adaptive technique for detecting dim and small objects against complex
backgrounds. Their approach leverages spatial-domain filtering to enhance the contrast
between target signals and background noise. Despite its effectiveness, the method ex-
hibits sensitivity to parameter adjustments and shows limited robustness when dealing
with strong noise or significant background variations. Smith et al. [15] introduced a tem-
poral filtering method to improve space target detection by enhancing the signal-to-noise
ratio. While this technique offers improved accuracy, it faces challenges in adapting to
varying or unpredictable signal conditions due to its reliance on specific temporal patterns.
Liu et al. [16] developed a spatio-temporal filtering strategy for detecting dim and small
targets within aerospace systems. By integrating spatial and temporal filtering, their approach
achieves better noise isolation and detection precision. However, this approach introduces
significant computational complexity and sensitivity to parameter selection, which poses
challenges for practical implementation. Overall, while these image processing methods are
effective to an extent, they can be complex and typically produce only limited, low-level visual
features which do not meet the rigorous requirements for space target detection. In particular,
against the intricate backdrop of a starry sky, dim and faint targets can easily be obscured by
background noise, presenting a significant challenge for conventional filtering methods.

With the rise of deep learning, coupled with rapid advancements in hardware com-
puting power, significant progress has been made in computer vision, particularly in image
classification [18,19], segmentation [20], and object detection [21]. Recent research has in-
creasingly focused on optimizing and enhancing space target detection algorithms through
deep learning. With its rapid development, target detection technology in computer vi-
sion has gradually outperformed traditional image processing methods [22,23]. A notable
advantage of deep learning-based target detection is its ability to identify space targets
effectively under challenging conditions. For instance, Xue et al. [24] developed a Convolu-
tional Neural Network (CNN) model specifically designed for detecting weak and small
targets against starry sky backgrounds and achieved pixel-level segmentation. Similarly,
Xiang et al. [25] employed a Fast Grid-Based Neural Network architecture, which divides
images into 14 × 14 segments to locate space debris accurately. Additionally, Xi et al. [26]
proposed a comprehensive detection framework that combines pre-processing techniques
to generate candidate regions for classification using CNNs, thus producing robust detec-
tion outcomes. These CNN-based methods illustrate the dominance of such systems in the
target detection field. Among these, You Only Look Once (YOLO) detectors [27–34] are
notable for their superior performance in detection accuracy and speed. However, these
detectors typically need Non-Maximum Suppression (NMS) for post-processing, which
increases the computational load and may hinder real-time performance. Therefore, it is
crucial to develop algorithms that function independently of NMS to streamline detection
processes and improve operational efficiency in target detection.

Subsequently, Carion et al. [35] introduced Detection Transformer (DETR), an end-to-
end target detection framework that quickly gained significant attention in the academic
community. DETR stands out by providing an end-to-end training method that eliminates
the need for traditional NMS post-processing and significantly enhances the understanding
of the image context through a self-attention mechanism inspired by Transformers. How-
ever, despite its considerable promise in target detection tasks, DETR encounters challenges
such as high sensitivity to parameters, computational intensity, and limitations in handling
multi-scale targets. These issues may constrain its real-time performance and broad applica-
bility. To address these issues, researchers have suggested various enhancements, including
optimizing query initialization [36–40], adjusting the attention architecture [41–44], and
effectively utilizing multi-scale features [45–47].
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For instance, Zhang et al. introduced the DINO [40] model, which features a signifi-
cant advancement by employing a novel mixed query selection strategy. The strategy is
utilized by the encoder output to initialize the decoder position queries while preserving
the learnability of content queries. This method enables the effective use of enhanced
positional information and significantly improves the ability of the model to aggregate
and utilize comprehensive content features from the encoder. Another key innovation
was the dual-query mechanism in DQ-DETR [37], which typically relies on a fixed set of
queries for predicting target bounding boxes and categories. Thus, this approach notably
improves the target detection capabilities of the model compared with traditional mod-
els like DETR. Deformable DETR [41] presents a deformable attention mechanism that
improves computational efficiency and facilitates the use of multi-scale feature maps for
predictions. While Deformable DETR is more efficient, its deformable attention mechanism
is more complex to implement than standard Transformer attention. Dynamic DETR [44]
further enhances adaptability and performance in target detection tasks through dynamic
adjustment mechanisms. These dynamic features allow the model to respond more flexibly
to variations in input conditions, thus enabling efficient and accurate target recognition
and localization. Cao et al. also contributed to the field, with CF-DETR [45], a model that
effectively harnesses multi-scale features to enhance spatial perception within its detection
framework. This approach significantly improves precision and efficiency in detecting
small and less distinguishable targets.

In this study, we refine the DETR model specifically for space target detection due to its
substantial advantages over YOLO detectors. The end-to-end detection framework of DETR
enhances precision and robustness in complex spatial environments through improved
context understanding. Unlike YOLO detectors, DETR models eliminate traditional post-
processing steps such as NMS, which simplifies the detection process and potentially
increases detection speed. However, despite their strong performance in natural image
detection, DETR models have limitations in optimization for the specific characteristics of
space targets, which affects their practical application performance in space target detection.
To tackle this issue, we conducted comprehensive analysis and evaluation of space target
characteristics, leading to the development of AgeDETR. This novel model builds on the
strengths of DETR while introducing significant improvements by simplifying the network
structure and incorporating advanced attention mechanisms. These enhancements delve
into the advantages of advanced attention mechanisms, providing a deeper understanding
and addressing the specific needs of space target detection. Experimental evaluations
on the SPARK2022 [48] public dataset show that AgeDETR achieves exceptional target
detection performance, with 97.9% in mAP0.5 and 85.2% in mAP0.5:0.95.

AgeDETR introduces several significant advancements to enhance the detection of
space targets by incorporating sophisticated attention mechanisms and advanced network
architectures. This section outlines the key contributions of AgeDETR and details its novel
approach and technological improvements:

1. We introduce AgeDETR for space target detection, which significantly improves
detection performance by incorporating advanced attention mechanisms into the
backbone network and encoder. The model comprises four principal components: the
EF-ResNet18 backbone network, the AGFE module, the AGFF module, and a sophis-
ticated decoder that ensures precise target localization and classification. Together,
these components effectively tackle the common challenges in space target detection.

2. To tackle illumination variability encountered in space target detection, we design
the EF-ResNet18 architecture as the backbone network. This architecture creatively
combines the FasterNet block [49] and EMA [50] technologies to establish the EF-Block
module, which is seamlessly integrated into ResNet18 [51]. This design significantly
boosts the feature extraction capabilities of the backbone network and optimizes
computational efficiency. With these enhancements, EF-ResNet18 provides stable
target detection under varying lighting conditions and improves the precision and
robustness of the detection results.
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3. To overcome the challenges posed by complex space backgrounds, we propose the
AGFE module. This module meticulously integrates two complementary attention
mechanisms, specifically designed to enhance target feature recognition and optimize
the extraction of critical information. The AGFE module also employs a single-layer
Transformer encoder to efficiently process high-level features, simplifying compu-
tational steps. This strategy significantly improves the accuracy of the model in
recognizing and locating targets against complex backgrounds and optimizes compu-
tational efficiency.

4. To address the issues associated with diverse target sizes, we introduce the AGFF
module. Unlike traditional multi-scale fusion methods for natural images, AGFF
employs an attention-guided strategy. This strategy facilitates the fusion of features
across adjacent layers through high-level attention mechanisms, which effectively en-
hance feature fusion performance. Consequently, this module significantly enhances
the capability of the model to detect and classify targets of varying scales accurately,
thereby boosting overall detection performance.

The following sections of this paper are organized as follows: Section 2 provides a
brief overview of related work in the field. Section 3 details the methodology of AgeDETR.
Section 4 presents experimental results and analyses. Section 5 concludes the paper by
summarizing the key findings.

2. Related Work

In space target detection, the evolution of object detection algorithms and the inte-
gration of attention mechanisms are paramount. This section explores the current state of
object detection algorithms, with a focus on the advancements and limitations of promi-
nent methods such as YOLO and DETR. Additionally, we examine the critical role of
attention mechanisms in enhancing detection accuracy and efficiency. By analyzing these
technologies, we aim to provide effective solutions for space target detection.

2.1. Current State of Object Detection Algorithms

Space target detection requires high accuracy and real-time performance, making it
essential to select an optimal detection method that effectively balances these requirements.
YOLO detectors have garnered widespread acceptance in this area due to their efficient
and precise single-stage object detection capabilities. Since Joseph Redmon first introduced
YOLOv1 [27] in 2015, the algorithm has evolved through multiple iterations, with each one
breaking through previous limitations and enhancing detection performance. YOLOv1 faced
limitations in handling objects of varying sizes due to its reliance on fully connected layers,
which restricted its ability to generalize across different scales. YOLOv2 [28] addressed this
by incorporating anchor boxes, which facilitated the automatic determination of optimal
anchor sizes, but still struggled with complex backgrounds. YOLOv3 [29], with its deeper
Darknet-53 network, improved feature extraction but encountered challenges in balancing
speed and accuracy. YOLOv4 [52] introduced the CSPDarknet53 backbone network, refin-
ing feature fusion strategies to improve the detection of smaller objects, yet still required
further enhancement in handling low-contrast scenarios. YOLOv7 [32] introduced the Con-
volutional Block Attention Module (CBAM) [53], which significantly enhanced the feature
extraction capabilities by focusing on relevant parts of the image, though it added some
computational overhead. YOLOv8 [33], with its Cross Stage Partial Network with Two Filters
construction blocks, continued to optimize the network architecture but faced difficulties in
maintaining real-time performance for very-high-resolution images. YOLOv9 [34] addressed
limitations in detection accuracy through advancements in the loss function, which improved
the precision in detecting objects under challenging conditions, though the model complexity
slightly increased.

Despite the successful application of YOLO detectors in general object detection tasks,
their reliance on CNN architectures may restrict their ability to capture the comprehensive
global context. Additionally, these detectors typically depend on NMS for post-processing
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to eliminate overlapping predictions and improve accuracy. However, implementing NMS
is intricate, and its hyperparameters significantly affect performance, which can poten-
tially compromise detection speed and robustness. Consequently, developing algorithms
that operate independently of NMS is essential to streamlining the detection process and
enhancing operational efficiency. In contrast, DETR, proposed by Facebook AI in 2020,
has made significant advancements in object detection tasks. DETR simplified the detec-
tion process by predicting sets of objects directly without the need for candidate region
extraction or NMS post-processing. By leveraging the self-attention mechanism of the
Transformer architecture, DETR has significantly enhanced the understanding of image
context and achieved breakthrough performance in object detection tasks.

The decision to investigate DETR for space target detection in this study stems from its
inherent advantages over YOLO detectors. While YOLO excels in real-time performance,
DETR provides superior context understanding and eliminates the complexities associated
with NMS. However, DETR faces challenges such as parameter sensitivity, high compu-
tational requirements, and limitations in handling multi-scale objects. To address these
challenges, a series of improvements have been proposed. For instance, while Deformable
DETR introduced a deformable attention module that enhanced image feature processing
and accelerated model training, it also had to manage the increased complexity introduced
by deformable attention. Efficient DETR [54] improved the initialization process of object
queries and reference points to accelerate model convergence but required the careful tun-
ing of these parameters to maintain performance. Dynamic DETR, despite enhancing model
performance and training efficiency with a dynamic attention mechanism, had to overcome
the challenge of balancing model complexity with efficiency gains. Lite DETR [55] opti-
mized the efficiency of the encoder by reducing the update of low-level features, though
this reduction necessitated additional strategies to preserve detection accuracy. Anchor
DETR [36] improved interpretability with an anchor-based query design and reduced
memory consumption with the Row–Column Decoupled Attention variant; however, this
approach required careful management of anchor sizes to avoid potential issues in detec-
tion precision. Conditional DETR [38] increased positioning accuracy and expedited the
training process with conditional spatial queries, but at the cost of increased complexity in
the query design. DAB-DETR [56] adopted four-dimensional dynamic anchor boxes, using
prior location information to accelerate model convergence, though it introduced additional
overhead in managing dynamic anchors. DN-DETR [39] introduced noisy object queries
to reduce instability in the matching process, effectively solving the slow convergence
issue but necessitating careful noise management to avoid degradation in performance.
RT-DETR [47] integrated the advantages of Transformer and DETR to achieve accurate
real-time object detection, though balancing real-time performance with detection accuracy
remained a challenge. In this paper, we build upon the strengths of DETR to develop a
robust and efficient model specifically designed for space target detection. By focusing on
reducing computational complexity and optimizing the architecture, we propose a tailored
solution that effectively addresses the unique challenges of this task.

2.2. Attention Mechanism

Attention mechanisms are pivotal in computer vision and greatly enhance the effi-
ciency of visual information processing in models. They improve the interpretation of
complex scenes and increase the adaptability of systems across diverse visual tasks. The
diversity and flexibility of attention mechanisms allow for adaptation to various visual
tasks and data types. The main types of attention mechanisms include the following:

• Channel attention. Channel attention boosts performance by dynamically adjust-
ing the importance of each channel and selectively focusing on relevant features.
Hu et al. [57] introduced the concept of channel attention with the development of
SENet, centered around the Squeeze-and-Excitation (SE) block. This block collects
global information, captures channel-wise relationships, and enhances representa-
tional capabilities. It recalibrates channel-wise feature responses to improve feature
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discriminability. Nevertheless, an SE block captures global information solely through
global average pooling, which restricts its modeling capability, limiting its ability to
capture complex interactions between channels. To address this issue, Gao et al. [58]
introduced a Global Second-order Pooling block into the squeeze module. This module
enables the modeling of high-order statistics and the synthesis of global information,
thus enhancing the expressive power of the network. However, this enhancement
increases computational demands. Lee et al. [59] developed the lightweight Style-
based Recalibration Module (SRM) to overcome the limitations of existing channel
attention methods. This module effectively recalibrates CNN feature maps by extract-
ing and integrating style information from each channel. SRM utilizes style pooling
to derive style details from the channels and assigns recalibration weights through
channel-independent integration. Despite its effectiveness, the focus on style informa-
tion might not generalize well to tasks requiring a broader context. Wang et al. [60]
introduced the Efficient Channel Attention (ECA) block, which uses a 1D convolution
to determine the interaction between channels instead of relying on dimensionality re-
duction. This approach significantly reduces the computational complexity associated
with dimensionality reduction techniques, making the ECA block more efficient. Still,
while this method improves computational efficiency, it also introduces challenges
in capturing more complex channel interactions that might be better addressed with
higher-dimensional convolutions or more sophisticated attention mechanisms.

• Spatial attention. Spatial attention is a mechanism that adaptively selects and empha-
sizes specific spatial regions. By focusing on areas of interest, this approach optimizes
the extraction of relevant features and improves overall performance. For instance,
Mnih et al. [61] proposed the Recurrent Attention Model (RAM), which sequentially
focuses on different regions. This approach enables the model to process one part of
the input at a time and decide on the subsequent focus point, mirroring the human
method of scanning visual scenes. Although the RAM demonstrates effectiveness in
tasks requiring sequential attention and context accumulation, it relies heavily on se-
quential processing, which might limit its application in real-time tasks. From another
perspective, CNNs excel at processing image data due to their translation equivari-
ance. Nonetheless, they lack rotation, scaling, and warping invariance, limiting their
robustness in certain scenarios. To address these limitations, Jaderberg et al. [62] pro-
posed Spatial Transformer Networks (STNs), the first attention mechanism explicitly
designed to predict relevant regions and provide transformation invariance to deep
neural networks. While STNs enhance the ability to focus on important regions and
learn these invariances, they also introduce increased model complexity and potential
computational overhead. The limitations of both the RAM and STNs suggest that
while each addresses specific challenges, neither fully overcomes the trade-offs among
efficiency, accuracy, and complexity.

• Hybrid attention. Hybrid attention integrates channel and spatial attention mech-
anisms for a holistic understanding of image features. Woo et al. [53] proposed a
hybrid attention mechanism known as CBAM. By sequentially combining channel
and spatial attention, CBAM leverages the spatial and cross-channel relationships of
features to guide the network on what and where to focus. Despite its effectiveness in
enhancing feature selection, CBAM faces the challenge of increased model complex-
ity. The Residual Attention Network [63] highlights the importance of informative
features across spatial and channel dimensions. This network uses a bottom-up struc-
ture with multi-level convolutional layers to generate a three-dimensional attention
map encompassing height, width, and channel. However, it faces challenges such
as high computational expenses and limited receptive field expansion. To address
these challenges, Park et al. [64] proposed the Bottleneck Attention Module (BAM)
to enhance network representational capability. The BAM uses dilated convolutions
to broaden the receptive field and implements a bottleneck structure, which helps
to minimize computational expenses. Additionally, it adjusts features in both the
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channel and spatial dimensions, thus enhancing feature representation. Despite the
effectiveness of dilated convolutions in expanding the receptive field, they struggle to
capture long-range contextual information and enhance cross-channel relationships.
Liu et al. [65] proposed Cross-scale Attention, a mechanism that enables dynamic
feature interaction across different scales. By integrating information from multiple
scales, this approach enhances the robustness of feature representation, allowing the
model to more effectively address challenges arising from scale variations. However,
the process of fusing features across scales could introduce additional computational
complexity, potentially increasing inference time. Ouyang et al. proposed EMA, a
multi-scale attention mechanism designed to effectively focus on relevant features
across different scales. This mechanism aims to retain information within each chan-
nel while reducing computational overhead. By dynamically allocating attention to
various scales, EMA enhances model performance. It integrates feature information
from different levels, enabling the model to detect local details while perceiving global
context. This fusion of multi-scale features has proven crucial to advancing computer
vision research, particularly in handling complex visual scenes.

• Self-attention mechanism. The self-attention mechanism, initially introduced by
Vaswani et al. [66] in natural language processing, has significantly impacted com-
puter vision, especially in object detection. This mechanism is highly effective in
capturing long-range dependencies and the global context, which is essential to com-
prehending complex visual scenes. Specifically, Vision Transformer (ViT) presented by
Dosovitskiy et al. [67] demonstrates the power of self-attention in computer vision.
By treating image patches as tokens and applying Transformer to these sequences, ViT
achieves competitive performance compared with traditional CNNs on large-scale
image classification tasks. Even so, ViT encounters challenges in processing high-
resolution images due to its reliance on a fixed number of tokens, which limits its
ability to efficiently handle finer details. Additionally, Wang et al. [68] developed
Non-Local Neural Networks, which apply self-attention in video and image tasks to
capture long-range dependencies more effectively than convolutional layers. This
method has been shown to have greater performance on various tasks, including
video classification and object detection, by incorporating global information into the
feature representation. Despite these improvements, Non-Local Neural Networks still
face challenges in computational efficiency due to the quadratic complexity of the
self-attention mechanism. Particularly, Carion et al. pioneered using self-attention
in object detection with the introduction of DETR. This model uses the Transformer
architecture to process entire images as sequences, directly modeling relationships
between distant regions. Although DETR achieves state-of-the-art performance, it
struggles with slow convergence during training and requires large datasets to gener-
alize effectively. Building on the success of DETR, Zhu et al. introduced Deformable
DETR, which improves the original with deformable attention modules. These mod-
ules dynamically adjust the receptive fields based on the input features, making the
model more efficient with high-resolution images and improving detection accuracy.
Nevertheless, while Deformable DETR improves efficiency, it still faces challenges
in balancing complexity with accuracy, especially in scenarios requiring real-time
processing. Over the years, significant improvements have been made to enhance the
efficiency and effectiveness of self-attention mechanisms. For instance, Yin et al. [69]
introduced Disentangled Non-Local Neural Networks, which disentangle non-local
operations to boost the representational power of self-attention. This enhancement en-
ables more accurate and effective capture of long-range dependencies. Even with these
advancements, challenges remain in optimizing the trade-off between computational
cost and the accuracy of long-range dependency modeling.

In this study, we adopt attention mechanisms to enhance the performance of models
in space target detection. These mechanisms allow a model to selectively highlight key
features when processing space images, thereby improving detection accuracy and stability
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in dynamic and complex environments. We chose to apply attention-guided strategies
because they efficiently capture local and global feature dependencies, which are essential
to accurately identifying and classifying space targets under varying conditions.

3. Method

This section provides a comprehensive overview of our approach. Section 3.1 intro-
duces the enhanced backbone network, EF-ResNet18, Sections 3.2 and 3.3 provide detailed
explanations of the AGFE and AGFF modules, respectively.

AgeDETR, depicted in Figure 1, consists of four fundamental components: EF-ResNet18,
AGFE, AGFF, and a decoder. The EF-ResNet18 backbone integrates the EF-Block module,
which combines the advanced FasterNet block architecture with the EMA mechanism. This
integration significantly enhances the performance of the traditional ResNet18 by optimiz-
ing computational workflows and boosting feature extraction efficiency for space targets.
The EF-Block module allows the backbone to manage varying illumination conditions
inherent in space target detection by dynamically adjusting feature extraction processes,
which ensures more accurate and reliable detection performance. The AGFE module in-
corporates self-attention and channel attention mechanisms across multiple layers of the
backbone network. This dual attention approach allows the model to discern and prioritize
essential features, which ensures that the critical aspects of space targets are highlighted. By
focusing on these key features, the AGFE module optimizes the extraction of space target
characteristics, effectively mitigating the challenges posed by complex space backgrounds.
This refined feature extraction enhances the model in distinguishing space targets from
noise and significantly boosts overall detection accuracy and robustness. The AGFF module
facilitates the transfer of high-level features from the Transformer encoder to lower levels.
By utilizing attention-weighted feature fusion, AGFF implements a top-down strategy
to create a new, more expressive feature layer. This method ensures efficient multi-scale
feature fusion, which is crucial to accurately identifying and localizing space targets of
varying sizes. By integrating features across different scales, the AGFF module detects
small and large targets more effectively, which improves detection precision and robustness.
The decoder, equipped with auxiliary prediction heads, iteratively refines object queries
and generates precise predictions for object categories and their bounding boxes.

Figure 1. Overview of the proposed AgeDETR.
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3.1. EF-ResNet18

In the EF-ResNet18 architecture, EF-Block (Figure 2c) is crucial, as it integrates inno-
vations from the FasterNet block and incorporates EMA. The FasterNet block introduces
efficient convolutional operations that accelerate processing speed while maintaining accu-
racy. The EMA mechanism allows the model to focus on relevant features across different
scales, improving the robustness and precision of feature extraction. This integration re-
duces model parameters, lowers computational demand, and improves the capability to
process multi-channel information. These advancements are vital for the robust recognition
of space target characteristics under varying illumination conditions, ensuring improved
performance and technical reliability.

Figure 2. (a) Overview of the overall framework of the proposed EF-ResNet18 architecture.
(b) The improved residual connection structure incorporating the EF-Block module. (c) A detailed
structural diagram of the EF-Block module.

EF-Block employs the FasterNet block, which begins with a Partial Convolution
(PConv) layer [49], followed by two Pointwise Convolution (PWConv) layers. The PConv
layer serves as the core of the FasterNet block and introduces a novel convolution approach
that promotes feature extraction efficiency while reducing computational redundancy. As
shown in Figure 3, PConv selectively applies filters to specific input channels, leaving others
unmodified. Assuming that the input and output feature maps both have C channels, the
floating-point operations (FLOPs) for PConv can be expressed as

h × w × k2 × C2
p (1)

where h and w are the dimensions of the output feature map, k is the kernel size, and Cp
denotes the number of channels involved in the convolution. In contrast, the FLOPs for
regular convolution are

h × w × k2 × C2 (2)

by defining the ratio r =
Cp
C , the FLOPs of PConv amount to only r2 of those for a regu-

lar convolution. This selective filtering significantly enhances performance by avoiding
uniform processing across all channels. The subsequent PWConv layers further refine and
consolidate the extracted features. EF-Block fuses the FasterNet block with the EMA mod-
ule. The integration of the FasterNet block optimizes convolution operations by directing
computational resources to relevant channels, which improves both speed and efficiency.
Additionally, the EMA module encodes global information to recalibrate channel weights
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across parallel branches, aggregates output features through cross-dimensional interaction,
and captures crucial pixel-level relationships. By prioritizing the most relevant features
and enabling comprehensive feature aggregation from multiple dimensions, the module
captures essential spatial details and relationships. This is vital to accurately detecting
and analyzing complex features, particularly under varying illumination conditions. The
integration boosts the capability to represent features more effectively, enhancing both the
accuracy and efficiency of feature extraction. In the ResNet18 architecture, each residual
block consists of two convolutional layers: the first layer is responsible for spatial feature
extraction, while the second layer typically refines the features and reduces dimensionality.
In this study, we seamlessly integrate EF-Block into the residual network framework of
ResNet18 by replacing the second standard convolutional layer in each residual block
with our module (as shown in Figure 2a). This approach enhances overall performance
and efficiency.

Figure 3. The schematic of the principle of Partial Convolution.

In summary, the EF-ResNet18 architecture represents an advanced approach to feature
extraction and representation, leveraging the advantages of the EF-Block module within
the ResNet18 framework. This architecture enhances convolution operations through
selective filtering and global information encoding, significantly improving the speed and
precision of feature handling. These methodological improvements are critical for robust
performance in environments with complex spatial dynamics.

3.2. AGFE Module

We incorporate EF-ResNet18 as the backbone of AgeDETR to leverage its outstanding
feature extraction capabilities. However, despite its effectiveness, the CNN-based archi-
tecture of EF-ResNet18 faces challenges in capturing comprehensive global features of
space targets, which can impact target localization precision and classification accuracy.
To overcome this limitation, we integrate the feature sets from the final three stages of
the backbone {S3, S4, S5} into an advanced AGFE module, as depicted in Figure 1. This
module strengthens feature integration and representation by enhancing spatial coherence
and contextual understanding. The AGFE module comprises two complementary compo-
nents that work in tandem to enhance the performance of the model. The following section
delves into the specifics of these two attention mechanisms.

3.2.1. Self-Attention-Guided Feature Enhancement (SaGFE) Module

We propose the SaGFE module, a component specifically designed to refine the feature
extraction process, with a particular focus on enhancing the expressiveness and compu-
tational efficiency of high-level features denoted by S5. The SaGFE module is applied
specifically to the S5 feature layer because incorporating self-attention mechanisms at this
level enables the precise capture and association of rich semantic concepts, which is crucial
for accurate object localization and recognition in subsequent modules. In contrast, apply-
ing the SaGFE module to low-level features would likely result in redundant processing
and potential confusion due to their limited semantic information, thereby reducing overall
model performance. The module integrates a single-layer Transformer encoder that applies
self-attention directly to S5 features to dynamically focus on the most relevant aspects of
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the input without traditional sequential constraints. The computational steps involved are
detailed in the following equations:

Q = K = V = Flatten(S5) (3)

P5 = Reshape(SaGFE(Q, K, V)) (4)

where S5 is flattened into a one-dimensional array, which then serves simultaneously as the
Query(Q), Key(K), and Value(V) inputs, essential for the self-attention mechanism. The
SaGFE module incorporates a self-attention function specifically designed to capture global
information from these inputs efficiently. The resulting data are subsequently reshaped
into P5, ensuring compatibility with subsequent layers and facilitating integration into the
overall network architecture.

The SaGFE module stands out due to its innovative use of a single-layer Transformer
encoder, which fundamentally changes how high-level features are processed in space
target identification and localization. Unlike traditional CNNs, which focus on local
features and often struggle to capture long-range dependencies, the module dynamically
evaluates the entire feature set, uncovering subtle and distant relationships crucial for
a comprehensive understanding of space targets. This capability enables the module to
prioritize the most relevant aspects of the input data, free from the constraints of traditional
sequential processing. As a result, it adapts more effectively to diverse and unpredictable
environments. Additionally, this approach reduces computational demands by utilizing
a single-layer encoder. By deeply integrating the advantages of Transformer technology
into feature extraction, the SaGFE module provides a more nuanced, efficient, and precise
analysis of space targets.

3.2.2. Channel Attention-Guided Feature Enhancement (CaGFE) Module

We propose the CaGFE module to process low-level features S3 and S4. The framework
of the CaGFE module is illustrated in Figure 2. Initially, the CaGFE module processes the
input feature map fin ∈ RC×H×W , where C represents the number of channels, and H and
W denote the height and the width of the feature map, respectively. The CaGFE module
harnesses the strengths of global average and global maximum pooling by applying these
operations sequentially to fin. This synergistic combination incorporates global context and
local details, which enriches the overall feature expression. Mathematically, this process
can be represented as

CA = δ( fc1(MaxPool(x)) + fc2(AvgPool(x))) (5)

Pi = CA(Si) ∗ Si (6)

where CA represents the channel attention function, δ denotes the sigmoid function, and i
indicates the index of pyramid levels. The CA mechanism is vital to boosting performance
by learning channel interdependencies and dynamically adjusting their weights. This
process emphasizes crucial features while suppressing irrelevant ones. By focusing on
lower-level features like S3 and S4, rich in spatial details, the CA mechanism improves
recognition accuracy. It strengthens important intra-channel features, enhancing overall
discriminative power. Additionally, the CA module is lightweight and efficient, enhancing
low-level features with minimal computational overhead, thereby preserving efficiency.

The AGFE module synergistically enhances feature integration and representation by
combining the SaGFE and CaGFE components. The SaGFE module, with its innovative use
of a single-layer Transformer encoder, excels at capturing long-range dependencies and the
global context, while the CaGFE module focuses on enhancing low-level feature details.
This integration significantly improves efficiency and the capability to detect and localize
space targets, ensuring exceptional performance even in challenging environments with
complex backgrounds.
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3.3. AGFF Module

In deep learning networks, hierarchical feature extraction reveals a wealth of informa-
tion. Low-level features capture fundamental visual elements such as edges and textures,
which are crucial for spatial resolution and local detail expression. In contrast, high-level
features encapsulate sophisticated semantic attributes and offer critical insights for a com-
prehensive understanding of image content. Leveraging this principle, fusing features
across different levels of abstraction significantly enhances the comprehensiveness of fea-
ture representation and achieves a synergistic effect that combines the strengths of each
level. The multi-level feature integration strategy is pivotal to improving the accuracy and
robustness of space target detection. A common approach involves directly adding upsam-
pled high-level and low-level features pixel-wise. However, this method lacks a strategic
feature selection process and merely sums pixel values across layers without discrimination.
To address this limitation and fully utilize the potential of multi-scale feature fusion, we
introduce the AGFF module. This module optimizes the feature fusion process within
the network by intelligently selecting and integrating the most informative features from
adjacent layers, which enhances overall model performance. This improvement enables the
model to detect space targets with greater precision and robustness across multiple scales.

In specific, AGFF integrates attention mechanisms with Feature Pyramid Networks [70]
to enhance the precision of multi-scale target detection. By utilizing the attention weights
generated by these high-level features as a key fusion factor for integrating low-level fea-
tures, the AGFF module ensures that the fusion process is both strategic and effective. This
approach allows for more precise selection and weighting of features, which significantly
improves the ability to capture and synthesize critical information from diverse feature
representations. The primary advantage of using attention weights is that they provide a
dynamic and context-aware method for emphasizing the most relevant features, leading
to richer and more accurate feature integration. This creative fusion approach ensures so-
phisticated weighting and consolidation of features across different levels, which improves
the ability to capture and synthesize critical information from diverse feature represen-
tations. To maintain the spatial dimensional consistency of feature maps, we combine
transposed convolution and bilinear interpolation techniques. The transposed convolution
expands the feature map and reconstructs input through learned parameters, while bilinear
interpolation offers a rapid and direct method for scale adjustment, effectively addressing
non-uniform sampling issues. The integration of these technologies enhances performance
and streamlines processing efficiency, which leads to an effective solution for multi-scale
target detection. The formulations for this process are detailed in (7) and (8):

α = CaGFF(BL(T − Conv(P5))) (7)

Ni = Pi ∗ α + Pi+1 (8)

where T − Conv and BL represent transposed convolution and bilinear interpolation,
respectively. α serves as the fusion factor, and i denotes the index of pyramid levels.
Initially, we employ a combination of transposed convolution and bilinear interpolation
techniques to adjust the scale of high-level features. After that, adjusted feature P5, as
shown in Figure 1, undergoes processing in the CaGFE module, which enhances these
high-level features by using attention mechanisms and computes the fusion factor α, a key
parameter for feature fusion.

The AGFF module significantly enhances multi-scale target detection by optimizing
feature fusion through attention mechanisms and integrating feature pyramids. This
method improves precision and strengthens the capability of the model to capture and
utilize critical information across different levels of feature abstraction. Consequently, the
model can detect space targets with higher accuracy and robustness across various scales.
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4. Experiments
4.1. Datasets and Evaluation Measures

We conducted experiments on the SPARK2022 dataset [48], and some examples are
shown in Figure 4. The SPARK2022 dataset is a unique space multi-modal annotated image
dataset containing 110k RGB images of 11 object classes, including 10 spacecraft and 1 class
of space debris. These images were generated in a realistic space simulation environment,
encompassing diverse sensing conditions, such as extreme orbital scenarios, background
noise, low signal-to-noise ratio, and high image contrast typical of space imagery. For
our experiments, we randomly partitioned the SPARK2022 dataset into a training set
of 8800 images and a validation set of 2200 images to evaluate our proposed algorithm.
Figure 5 provides a detailed quantitative analysis of the dataset characteristics. Specifically,
Figure 5a shows the exact instance counts for each object category, while Figure 5b depicts
the distribution of bounding box sizes, illustrating the range of object dimensions within the
dataset. Figure 5c illustrates the distribution of object–bounding box centers and highlights
a concentration in the mid-areas of the images with darker tones. Finally, Figure 5d presents
a scatter plot correlating their width and height, which underscores the dataset’s significant
scale diversity and the associated challenges in accurate space target detection. Through
rigorous training and validation, we demonstrated the practicality and efficacy of our
model in space target detection.

(a) (b) (c)

(d) (e) (f) (g)

(h) (i) (j) (k)
Figure 4. Examples of SPARK2022 dataset. (a) Proba 2, (b) Cheops, (c) Debris, (d) Double star,
(e) Lisa Pathfinder, (f) Smart 1, (g) Soho, (h) Proba 3 CSC, (i) Proba 3 OCS, (j) Xmm newton, and
(k) Earth Observation Sat 1.
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(a) (b)

(c) (d)

Figure 5. Information about the manual labeling of the objects in the SPARK2022 dataset.

To thoroughly assess the performance of our model, we utilized the standard evalua-
tion metrics in object detection for a comprehensive performance analysis. These metrics
include precision, recall, mean average precision (mAP), the count of model parame-
ters, and the computational complexity (GFLOPs). Precision measures the proportion of
correctly identified targets among all detection results of the model, which is calculated as

Precision =
TP

TP + FP
(9)

where TP denotes the true positives (the number of correctly identified targets) and FP
denotes the false positives (the number of targets incorrectly identified as positive). Recall
reflects the ability of the model to detect all actual targets and is defined as

Recall =
TP

TP + FN
(10)

where FN signifies false negatives (the number of targets that were not detected). Average
precision (AP) is a crucial metric that provides an aggregate measure of the performance
of the model across different object categories. It evaluates the precision–recall curve
and averages the precision values at different recall levels. Specifically, mAP0.5 represents
the mean average precision at an Intersection over Union (IoU) threshold of 0.5, while
mAP0.5:0.95 indicates the mean AP computed across an IoU range from 0.5 to 0.95 with
a step size of 0.05. These metrics offer a comprehensive evaluation of the ability of the
model to detect objects accurately under various IoU criteria, reflecting its robustness and
reliability in diverse detection scenarios. Additionally, we considered the count of model
parameters and computational complexity (measured in GFLOPs) to assess the efficiency
and scalability of our model in practical deployment scenarios.

We used these metrics to perform a comprehensive analysis of the proposed model’s
performance in space target detection. This analysis demonstrated the effectiveness and
suitability of the model for real-world applications.
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4.2. Experimental Settings

We developed the AgeDETR model by utilizing Python and the PyTorch deep learning
framework. To initialize the object queries in the decoder, we adopted a strategy that selects
the top 300 encoder features with the lowest uncertainty, ensuring a precise starting point for
effective object detection. Our training methodology and hyperparameter settings closely
followed those specified in RT-DETR [47]. AgeDETR was trained by using the AdamW
optimizer on an NVIDIA RTX 2080 Ti GPU with a batch size of 4. The training regimen
spanned 300 epochs, starting with an initial learning rate of 0.0001 and a weight decay
rate of 0.0001. We trained the model with 640 × 640 pixel images to ensure comprehensive
coverage of spatial details and features. We strictly followed established object detection
algorithms in all experiments to achieve optimal performance and generalization capability.
This approach strengthens the training process and establishes a foundation for accurate
and efficient object detection in real-world applications.

4.3. Comparisons with Other Methods

We validated the effectiveness of the AgeDETR model with comparative experiments
on the SPARK2022 dataset and performed a detailed comparison with multiple versions
of YOLOs, including YOLOv5s, YOLOv6s, YOLOv8s, and YOLOv9c. Detailed compar-
ative data are presented in Table 1 and Figure 6. On the SPARK2022 dataset, AgeDETR
demonstrated outstanding performance, with 97.7% in mAP0.5 and 85.2% in mAP0.5:0.95.
Despite the increased computational complexity compared with YOLOv5s, YOLOv6s, and
YOLOv8s, AgeDETR achieved significant improvements in mAP0.5 and mAP0.5:0.95.

Table 1. Comparison of performance of different detection models on SPARK2022 dataset.

Precision (%) Recall (%) mAP0.5 (%) mAP0.5:0.95 (%) Parameters, M GFLOPs

YOLOv5s 94.1 89.4 95.9 81.3 9.1 23.8
YOLOv6s 93.1 87.8 94.5 81.6 16.3 44.0
YOLOv8s 94.9 92.2 96.9 83.9 11.1 28.5
YOLOv9c 96.9 94.2 97.8 86.9 25.3 102.1
RT-DETR 95.5 91.8 94.6 81.2 20.1 58.6
AgeDETR 97.9 96.0 97.9 85.2 15.1 47.9

Compared with YOLOv9c, which achieved the same mAP0.5 but with higher GFLOPs,
AgeDETR proved to be more efficient. To substantiate our findings, we also compared
AgeDETR with RT-DETR, a real-time object detection algorithm using a ResNet-18 back-
bone. The results show that AgeDETR achieved additional improvements of 3.3% in mAP0.5
and 4.0% in mAP0.5:0.95 while reducing GFLOPs by 18.7%.

These comparative analyses underscore the superiority of AgeDETR in terms of
efficiency, reliability, and accuracy in object detection tasks. The enhanced performance
of the model in space object detection advances research and offers promise for practical
applications requiring precise and efficient detection capabilities.

To explore the performance enhancements of AgeDETR, we conducted a detailed
visual analysis, as depicted in Figure 7. Through meticulous comparative analysis, it became
evident that AgeDETR excels at focusing on and densely populating key feature areas.
Compared with baseline models like RT-DETR and YOLO series algorithms, AgeDETR
stood out by effectively reducing interference from irrelevant features and concentrating
on critical feature regions. This contributed significantly to the improved accuracy and
robustness of the model.
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Figure 6. Comparison of recognition effectiveness of different detection models on SPARK2022 dataset.

(a) (b) (c) (d) (e) (f) (g)

Figure 7. Visualization of feature maps with different models. (a) Input image, (b) YOLOv5s,
(c) YOLOv6s, (d) YOLOv8s, (e) YOLOv9c, (f) RT-DETR, and (g) AgeDETR.

Our visual findings verify the excellence of AgeDETR in feature recognition and
provide actionable insights for algorithm optimization. This detailed examination enhances
our understanding of operational mechanisms, laying a solid foundation for future research
and model enhancements.

4.4. Ablation Studies

In this section, we present the findings from our ablation studies, which were con-
ducted to thoroughly evaluate the contributions of the proposed modules (EF-ResNet18,
AGFE, and AGFF) within the AgeDETR framework (refer to Table 2). We initiated our
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analysis by establishing a baseline model based on the AgeDETR framework, utilizing a
standard ResNet18 as the backbone network while postponing the integration of the AGFE
and AGFF modules. Our initial approach involved directly concatenating the multi-layer
features extracted by the backbone network and feeding them into the decoder module.
Figure 8a shows the input image and the label, while Figure 8b,c provide a comparative
visualization of feature layer outputs from the standard ResNet18 and the EF-ResNet18
networks, respectively. The comparison reveals that the feature map of EF-ResNet18 ex-
hibits a more pronounced response in the target region, indicating a greater focus on the
target area during the feature extraction process.

Table 2. Comparison results of ablation experiments.

EF-ResNet18 AGEE AGFF Precision
(%) Recall (%) mAP0.5 (%) mAP0.5:0.95

(%)
Parameters,

M GFLOPs

× × × 93.3 90.7 92.8 78.3 15.3 42.1
✓ × × 97.2 95.2 96.6 83.4 12.3 36.3
✓ ✓ × 97.1 95.8 96.8 83.7 13.2 36.4
✓ ✓ ✓ 97.9 96.0 97.9 85.2 15.1 47.9

(a) (b) (c)

Figure 8. Visualization results of random initial weight output feature maps for different network
architectures. (a) Input images, (b) ResNet18, and (c) EF-ResNet18.

Subsequently, to isolate the effects of each module, we systematically reintegrated them
into the baseline AgeDETR model. Notably, when integrating the EF-ResNet18 module, we
omitted the AGFE and AGFF modules, facilitating a straightforward concatenation of the
features for input into the decoder. Throughout the experiment, we meticulously monitored
and documented the training progress and prediction outputs, ensuring a comprehensive
examination of the functionality.

The results indicate that the EF-ResNet18 module alone yielded a performance im-
provement of +3.8 mAP0.5 compared with the baseline model. Furthermore, the integration
of EF-ResNet18 with the AGFE module resulted in an additional performance boost of
+4.0 mAP0.5. Ultimately, when all modules were combined, AgeDETR exhibited exceptional
overall performance, significantly enhancing the accuracy of target detection.

Figure 9 displays some of the detection results from the SPARK2022 dataset, with the
upper section representing the labels of space targets and the lower section illustrating the
predictions of AgeDETR. The experimental results not only validated the effectiveness of
each module but also yielded profound insights crucial to further optimizing the algorithm.
These findings are invaluable for deepening the understanding of the operational mecha-
nisms of AgeDETR and will guide the refinement and advancement of future models. They
serve as a cornerstone for enhancing the model’s performance and capabilities in object
detection tasks, establishing a solid foundation for ongoing research and development in
this field.



Remote Sens. 2024, 16, 3452 18 of 21

(a) (b) (c) (d)

(e) (f) (g) (h)
Figure 9. Prediction results on the SPARK2022 dataset: the upper section shows the ground truth
labels for space targets, while the lower section shows the predictions by AgeDETR.

5. Conclusions

In this work, we propose the AgeDETR model, which significantly improves the
performance of space target detection. Particularly, AgeDETR includes three critical ad-
vancements: an improved EF-ResNet18 backbone network, which boosts feature extraction
capabilities and optimizes computational efficiency; the AGFE module, which enhances
target feature recognition and optimizes critical information extraction; and the AGFF
module, which further augments feature fusion performance. Additionally, the proposed
AgeDETR eliminates the inconvenience of NMS thresholds, which facilitates practical
applications. Despite challenges such as detecting weakly textured targets and reducing
false positives from background noise, the effectiveness of AgeDETR is demonstrated on
the SPARK2022 dataset, achieving a substantial advancement in space target detection.
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