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Abstract: The objective of this article is to investigate the possible correlations between vegetation
indices and surface temperature in the Cananéia–Iguape Coastal System (CICS), in São Paulo (Brazil).
Vegetation index data from MODIS orbital products were used to carry out this work. The Normal-
ized Difference Vegetation Index (NDVI) and the Enhanced Vegetation Index (EVI) were acquired
from the MODIS/Aqua sensor (MYD13Q1) and the leaf area index (LAI) from the MODIS/Terra
(MOD15A2H). Surface temperature data were acquired from MODIS/Aqua (MYD11A2). The data
were processed using Google Earth Engine and Google Colab. The data were collected, and spatial
and temporal correlations were applied. Correlations were applied in the annual and seasonal period.
The annual temporal correlation between vegetation indices and surface temperature was positive,
but statistically significant for the LAI, with r = 0.43 (90% significance). In the seasonal period,
positive correlations occurred in JFM for all indices (95% significance). Spatially, the results of this
research indicate that the largest area showed a positive correlation between VI and LST. The hottest
and rainiest periods (OND and JFM) had clearer and more significant correlations. In some regions,
significant and clear correlations were observed, such as in some areas in the north, south and close
to the city of Iguape. This highlights the complexity of the interactions between vegetation indices
and climatic attributes, and highlights the importance of considering other environmental variables
and processes when interpreting changes in vegetation. However, this research has significantly pro-
gressed the field, by establishing new correlations and demonstrating the importance of considering
climate variability, for a more accurate understanding of the impacts on vegetation indices.

Keywords: vegetation indices; seasonal variation; MODIS/Aqua

1. Introduction

Vegetation is one of the main components of ecosystems and plays a key role in
the analysis of global climate change and its impacts. Thus, the study of vegetation
dynamics can provide important information about changes in vegetation cover and
climatic attributes on a regional scale [1].

To understand vegetation dynamics over larger areas, remotely sensed vegetation
indices are used as valuable tools to monitor vegetation [2]. Vegetation indices (VI) are
widely used to identify the health of vegetation. In recent years, research using satellite-
based VI, which seeks to characterize the response of vegetation to climate variability and
changes in different areas, has become more recurrent [3].

The three most often used vegetation indices are the Normalized Difference Vegetation
Index (NDVI), the Enhanced Vegetation Index (EVI) and the Leaf Area Index (LAI). These
indices are widely accepted remote sensing metrics for monitoring vegetation growth and
changes in cover [1], in addition to detecting vegetation health [4].

NDVI is sensitive to chlorophyll, while EVI responds better to canopy structural vari-
ations. The two vegetation indices are complementary in global and regional vegetation
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studies. EVI was developed to optimize the vegetation signal with greater sensitivity in
regions of high biomass, providing better vegetation monitoring. This is achieved by decou-
pling the background signal from the canopy and reducing atmospheric influences [1,5,6].

The leaf area index (LAI) was defined as the integrated leaf area of the canopy per unit
of projected soil surface (m2/m2) [7]. This index is calculated considering the surface area
of just one of the leaf faces. Thus, LAI is a key biophysical parameter that determines the
state of plant growth [8]. The LAI results from the ecophysiological responses of plants to
the chemical, physical and biological conditions of the soil; microclimate conditions; and
the interdependence of these factors in the different successional stages of vegetation [9,10].

In the climatic context, rainfall and surface temperature are the most used factors
to understand vegetation dynamics. Periods of heavy rainfall can lead to greater plant
growth and the expansion of vegetated areas [11]. For example, the study in the Hanjing
River basin in central China, in which the authors demonstrated that rainfall was the
dominant climate factor for NDVI change [12]. Research shows that NDVI has correlations
with rainfall (P) and surface temperature (LST) [13]. Some studies, however, show that
variation in vegetation indices (VI) may have insignificant correlations with climatic factors.
For example, between rainfall and NDVI in the arid northwestern region of China [14].
Precipitation also did not show significant correlations with NDVI in the Upper Knoh River
basin in the Himalayas. However, when using EVI, precipitation and other climatic and
hydrological factors exhibited significant correlations. Thus, the authors suggest that EVI
better captures changes in vegetation phenology than NDVI [15]. The study carried out
in the tropical city of Raipur (India) also investigated the relationship between surface
temperature and NDVI [13]. The authors’ main conclusions were that the correlation
between LST and NDVI was strongly negative (−0.51) on the vegetated surface, moderately
positive in water bodies (0.45), and weakly positive in built-up areas and bare land (0.14).

NDVI was also the focus of study in the Gautam Buddh Nagar district, located in
northern India [16]. The authors identified that the correlation between NDVI and LST
(−0.45) was stronger than the other correlations analyzed, such as soil moisture (r = 0.43)
and precipitation (r = 0.341). Thus, the results suggest that NDVI is more sensitive to LST
compared to these other factors. The impacts of climate change and human activities on veg-
etation growth were investigated in the Hanjiang River Basin (China), during the 2001–2016
period [12]. The results produced by the authors indicated that areas with positive corre-
lations between temperature and NDVI were relatively more dispersed throughout the
study area. Additionally, only 1.8% of the area showed statistically significant negative
correlations between temperature and NDVI.

EVI and NDVI were the focus of study in the Upper Knoh River basin in the Himalayas.
The authors sought to evaluate the spatiotemporal variability of vegetation and associated
climatic and hydrological factors in the river basin on annual and seasonal scales [12];
and the temporal variation of NDVI and LAI and their associations with hydroclimatic
variables in the combined Sacramento and San Joaquin River basins in the United States [3].
The results produced by the authors suggest that NDVI and LAI have distinct relationships
with hydroclimatic indicators. Furthermore, LAI is more strongly correlated with most of
the hydroclimatic variables considered.

In Ethiopia, the spatial and temporal variability of NDVI and its response to potential
evapotranspiration, rainfall, soil moisture and surface temperature in the Abbay River
basin (Nile River tributary) was investigated [17]. The results demonstrate that NDVI
was strongly correlated with the climatic variables, and that precipitation, temperature,
potential evapotranspiration, and soil moisture have distinct effects on vegetation growth
across various land use and land cover (LULC) categories and seasons. In the northeastern
region, changes in vegetation cover as a function of surface temperature and rainfall were
investigated from 2001 to 2020 [2]. In the northern region of Iran, the spatiotemporal
relationship between MODIS EVI and climatic variables was also studied. The results show
a significant spatial correlation between EVI and LST values, which was direct during
winter and inverse during summer.
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In Nigeria [18], the variation of vegetation and the correlation between precipitation
and surface temperature were investigated in the humid and dry tropical regions. The
results showed that NDVI had a negative correlation with temperature in 59.1% of the
study area. The percentage of the region where NDVI had a positive correlation with
temperature was 3.54%. NDVI was negatively correlated with temperature in six land
cover types, including savannas, degraded forests, and Sahelian grasslands. However, the
correlation analysis revealed a positive but weak association between temperature and
NDVI in mangroves, forests, and forest vegetation.

In Brazil, studies on surface temperature are mostly limited to comparative studies
with land use—such as in the Piracicaba region, São Paulo (Brazil)—focusing on grain pro-
duction [19]; and in the Pontal do Paranapanema, located in western São Paulo (Brazil) [20].
Other studies seek to understand the relationship between anthropization and surface
temperature warming, such as in the North Coast of São Paulo state (Brazil) [21]; and the
spatiotemporal relationship between land surface temperature, green vegetation cover, and
built-up areas in Brasília, Federal District, Brazil [22]. Additionally, some studies aim to
evaluate vegetation and surface temperature during drought periods, such as in the Upper
Paraíba River basin, a semi-arid region of Brazil.

Thus, satellite-based remote sensing products offer an interesting opportunity to
analyze VI changes in response to climate change on a regional scale. Furthermore, this
information can benefit regional ecological restoration and environmental conservation
projects. In Brazil, especially in the southern coastal region of São Paulo, there is a research
gap regarding the understanding of vegetation dynamics in response to surface temperature
changes. Previous studies have focused on mangrove areas; for example, mangrove
mapping [23,24] and mangrove microclimate [25–28]. Therefore, studies addressing climatic
issues and vegetation variation are important in the region. In the study area, this becomes
important due to the presence of environmental preservation with conservation units, in
addition to the mangrove ecosystem, which serves as an important part of the ecosystem
of society.

However, with climate change and shifts in air temperature and precipitation patterns,
studies aiming to understand the relationship between surface temperature and vegetation
could fill this gap and encourage further research to incorporate new methodologies, such
as the use of remote sensing data, to understand vegetation patterns in the context of current
climatic issues. Moreover, this study enhances the scientific community’s understanding of
the relationship between climatic variables and vegetation growth in ecosystems, particu-
larly due to the importance of ecosystem services provided by preserved vegetation and
mangroves in the study region. Therefore, the objective of this work is to investigate the
possible correlations of vegetation indices (NDVI, EVI and LAI) with surface temperature
in the Cananéia–Iguape Coastal System, SP.

2. Materials and Methods
2.1. Study Area

The Cananéia–Iguape Coastal System (CICS) is located on the southeastern coast of
Brazil (Figure 1). The CICS is made up of three municipalities: Cananéia, Iguape and Ilha
Comprida. Together, they have a current population of 54,823 inhabitants [29], with the
majority residing in urban areas. The main economic activities in this region are banana
farming and tea culture [30]. In addition, other important economic activities include
aquaculture—which encompasses the breeding of fish, crustaceans and molluscs—and
ecological tourism, which plays a significant role in generating local income [31].

The CICS’s economic activities occupy an area of approximately 262 km2, represent-
ing around 8% of the total area, as indicated by MapBiomas [32] mapping for the year
2022 (Figure 1C). Most of the region is covered by arboreal forest vegetation (35%) and
arboreal restinga (45%). The predominant vegetation is dense ombrophylous forest, with
submontane and montane subtypes, the latter being less predominant. The area occupied
by mangroves corresponds to just 2% of the total. Other land uses include urbanized areas
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(1%), flooded fields and swampy areas (2%), water bodies (5%) and herbaceous restinga
(2%) [20].

Remote Sens. 2024, 16, x FOR PEER REVIEW  4  of  21 
 

 

The CICS’s economic activities occupy an area of approximately 262 km2, represent‐

ing around 8% of the total area, as  indicated by MapBiomas [32] mapping for  the year 

2022 (Figure 1C). Most of the region is covered by arboreal forest vegetation (35%) and 

arboreal restinga (45%). The predominant vegetation is dense ombrophylous forest, with 

submontane and montane subtypes, the latter being less predominant. The area occupied 

by mangroves corresponds to just 2% of the total. Other land uses include urbanized areas 

(1%), flooded fields and swampy areas (2%), water bodies (5%) and herbaceous restinga 

(2%) [20]. 

 

 

 

Figure 1. Location of the study area (A,B) and land use mapping (C). 

The southern coast of the state of São Paulo is classified as the “Cfa” climate type, 

which defines a humid subtropical climate with a hot summer and no well‐defined dry 

season, with the average temperature of the coldest month below 18.0 °C and the temper‐

ature of the hottest month above 22.0 °C [33,34]. 

The surface temperature (LST) corroborates the air temperature data, with the lowest 

temperature records occurring in the winter months (18.0 °C). In the summer months, the 

values are higher (25.0 °C) – (Figure 2A). Annually, the surface temperature did not show 

considerable fluctuations. Annual values were between 20.0 °C and 22.0 °C (Figure 2B). 

 

Figure 1. Location of the study area (A,B) and land use mapping (C).

The southern coast of the state of São Paulo is classified as the “Cfa” climate type,
which defines a humid subtropical climate with a hot summer and no well-defined dry sea-
son, with the average temperature of the coldest month below 18.0 ◦C and the temperature
of the hottest month above 22.0 ◦C [33,34].

The surface temperature (LST) corroborates the air temperature data, with the lowest
temperature records occurring in the winter months (18.0 ◦C). In the summer months, the
values are higher (25.0 ◦C)—(Figure 2A). Annually, the surface temperature did not show
considerable fluctuations. Annual values were between 20.0 ◦C and 22.0 ◦C (Figure 2B).

Annual rainfall varies between 2000 mm and 3000 mm [35,36] along the CICS
(Figure 2B). However, monthly rainfall presents lower values in the period from May
to September [36]. In the historical series analyzed (2003–2022), it was observed that the
month of August recorded the lowest rainfall (70.1 mm), while January had the highest
volume (301.5 mm)—(Figure 2A). This lower volume during the winter period is attributed
to the action of the Atlantic Tropical Anticyclone [37], while the highest volumes occur
in summer due to air convection resulting from the greater incidence of sunlight and the
action of intertropical atmospheric mechanisms (ZCAS) [38].
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2.2. Data Used

The data used in this research were obtained from the Moderate-Resolution Imaging
Spectroradiometer (MODIS) sensor. The MODIS sensor has two receivers, Aqua and Terra,
which orbit the planet every 1 or 2 days. The vegetation indices used were the normalized
vegetation index (NDVI), enhanced vegetation index (EVI) and the Leaf Area Index (LAI).
NDVI and EVI data was collected from the MODIS/Aqua receiver (MYD13Q1) [39]. This
sensor collects images during the day and the night. The data are available at a temporal
resolution of 16 days and a spatial resolution of 250 m [39], enabling broad and detailed
coverage of the areas studied [40,41].

MODIS datasets are recognized for providing consistent, long-term information on
vegetation characteristics [1], being widely used in environmental studies. Furthermore,
these data are easily accessible and free, which makes it valuable for scientific research [1].

Leaf Area Index (LAI) data were obtained from the MODIS/Terra sensor (MOD15A2H).
These data refer to an 8-day composite, with a spatial resolution of 500 m. The algorithm
selects the “best” pixel available among all Terra sensor acquisitions over a period of
8 days [42].
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Surface temperature (LST) data were acquired from the MODIS/Aqua satellite
(MYD11A2) [43,44]. These data is available at 1:30 a.m. and at 1:30 p.m. (day/night)
local time. It is provided with a spatial resolution of 1 km and a temporal resolution
that corresponds to the average of 8 days of day and night data. This sensor has two
temperature bands, daytime (LST_Day_1km) and nighttime (LST_Night_1km). To estimate
the average daytime temperature, called LST, we used the average of these two bands, as
reported in previous studies [5,45,46].

2.3. Data Processing and Analysis

The results were analyzed in two stages: temporal correlation and spatial correlation.
The first step, the temporal correlation, was carried out in Python language on Google
Colab, using the corr function (S1) for annual and seasonal data. The Pearson coefficient (r)
was used as a correlation measure [5,10,47,48]. The annual correlation was calculated from
the annual average data for the entire CICS region for the 2003–2022 period. Additionally, in
the annual and seasonal temporal analysis, statistical analyses of the data were conducted,
including calculations of the average, minimum and maximum values, standard deviation
(σ), and coefficient of variation (CV) in Google Colab.

For seasonal correlation, the data were summed into seasonal averages for the LST,
NDVI, EVI and LAI variables. These monthly averages were calculated for the periods:
JFM (January, February and March), AMJ (April, May and June), JAS (July, August and
September) and OND (October, November and December). To analyze the variability of
the indices over time, the average value of all pixels in the CICS was calculated, as carried
out in previous works [15].

In Google Earth Engine (GEE) [49,50], spatial correlation was performed between the
values of the variables pixel by pixel. Surface temperature and LAI data were resampled to
250 m. To calculate the correlation, the ee.Reducer.pearsonsCorrelation reducer (S1) was
used, which allows for obtaining Pearson’s Linear Correlation (r) between the annual and
seasonal values of the variables [10,48,51]. In this study, the correlation analysis was based
on pixels, which means that each pixel has the correlation between vegetation indices and
climate variables [15]. The spatial results were later manipulated in QGIS for more detailed
analysis and the graphs were generated in Rstudio (2024).

3. Results
3.1. Temporal Correlation of Vegetation Indices with Climate Variables
3.1.1. Annual Temporal Correlation

The temporal analysis of vegetation indices revealed that annual values remained
relatively stable in the CICS (Figure 3). The standard deviation for all indices analyzed was
low, with an NDVI of 0.02, an EVI of 0.01 and an LAI of 0.20. Likewise, the coefficient of
variation showed similar variation, with 2.1% for NDVI, 2.9% for EVI and 4.2% for LAI. The
average NDVI and EVI values were 0.8 and 0.5, respectively. The maximum and minimum
EVI values were 0.5 and 0.4, respectively, with 85% of years recording an EVI of 0.5 and
15% an EVI of 0.4.

The NDVI had a minimum value of 0.7 (5%) and a maximum value of 0.8 (95%). The
year 2005 recorded the lowest NDVI and EVI values. The LAI showed similar variation,
with a minimum value of 3.9 (2005), a maximum of 4.6 (2014) and an average value of
4.3, which represents 25.3% of the data. The correlations of annual values between NDVI
and EVI values and LST were not statistically significant (p-value > 0.05) and were weak
(Figure 4). Thus, LST showed a positive correlation with NDVI (r = 0.15) and EVI (r = 0.11).
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3.1.2. Seasonal Temporal Correlation

In seasonal periods (JFM, AMJ, JAS and OND), vegetation indices also showed little
variation. The LAI showed a greater variation in the JFM and OND periods, with σ = 0.5
and CV = 10.2% and 13.6%, in that order, and lower in AMJ and JAS with σ = 0.4 and 0.3
and CV = 8.3%, in order. Considering the CV, the JAS and OND periods had higher values
for NDVI and EVI, with CV between 4.3% and 5.3% (Table 1).

Table 1. Descriptive statistics for VI and seasonal periods in the Cananéia–Iguape Coastal System.

Period JFM AMJ JAS OND

Variables NDVI EVI LAI NDVI EVI LAI NDVI EVI LAI NDVI EVI LAI

Average 0.8 0.5 4.6 0.8 0.5 4.6 0.8 0.4 4.0 0.7 0.5 4.0

Minimum 0.7 0.5 3.8 0.7 0.4 3.7 0.7 0.4 3.5 0.6 0.4 3.0

Maximum 0.8 0.5 5.6 0.8 0.5 5.2 0.8 0.5 4.6 0.8 0.5 4.7

Standard
deviation 0.0 0.0 0.5 0.0 0.0 0.4 0.0 0.0 0.3 0.0 0.0 0.5

Coefficient of
variation (%) 3.4 3.4 10.2 3.5 3.3 8.3 4.3 4.6 8.3 5.1 5.3 13.6
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Figure 4. Scatter plot of annual NDVI (a), EVI (b) and LAI (c) values and surface temperature from
2003 to 2022.

The lowest NDVI value was 0.6 in the OND quarter (1.6% of the data). The highest
NDVI value was 0.8 (76.3%). The EVI varied between 0.4 and 0.5, corresponding to 32.8%
and 67.1%, in that order. Therefore, it is observed that the maximum values of EVI and
NDVI corresponded to all months of the quarters.

The LAI showed greater variability in the CICS. The minimum value was 3.0 (1.3%)
and the maximum value was 5.6 (1.3%). In the OND and JAS periods, the average LAI
value was 4.0 and 5.2%, while in the JFM and AMJ periods, the average LAI value was
4.6 (9.2%).

In the AMJ (Figure 5) and JAS (Figure 6) quarters, the correlations between the NDVI,
EVI and LST were weak and without statistical significance. However, the correlation of
LAI and LST was 0.53 (p-value < 0.05) (Figure 6c). In the OND period, vegetation indices
and LST had negative and weak correlations (EVI r = −0.15 and LAI r = −0.13) (Figure 6f).
Also in this period, EVI has the best response compared to NDVI for CICS.
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3.2. Components Spatial Correlation of Vegetation Indices with Surface Temperature
3.2.1. Spatial Annual Correlation

Spatial correlation was applied to each pixel of the study area, at a spatial resolution of
250 m. Spatial correlation analysis revealed that small areas in the CICS showed significant
correlations between vegetation indices and surface temperature (Supplementary Material 2).
Positive and moderate correlations (0.40 to 0.69) between NDVI and LST occupied 6.6%
of the area. These areas are in small portions of the CICS, mainly in the northern region
(Figure 7). The negative correlations (1.4%) occurred close to the urban area of Iguape and
in small areas in portions of land with agricultural cultivation, mainly, and with arboreal
restinga (Figure 1B).
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In relation to EVI, a positive and moderate correlation was observed in 4.5% (0.40 to
0.69) of the study area. The correlation is negative and moderate in 2.1% (0.69 to −0.40). The
positive and moderate correlation was recorded in the northern sector of the municipality
of Iguape, in an area with arboreal restinga and arboreal vegetation. Moderate (2.1%) and
strong (0.1%) negative correlations are present near the Ribeira de Iguape river (Figure 1C)
and in some areas where there is agricultural cultivation, such as pasture or plantation, in
the municipality of Iguape (southern sector) and Cananéia (northern sector). Furthermore,
some areas with negative and moderate correlation were observed in the south of the CICS.
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The correlation of LST with LAI showed more expressive results. The correlation was
moderate and positive in 14.5% of the area, mainly in the central sector of the CICS. The
correlation was strong and positive at 0.1% of the CICS (Figure 7C). In the south of the
CICS, areas with a negative correlation between LAI and LST were observed. This area is a
region with a predominance of conservation units, being one of the most preserved areas
in the CICS (Figure 1A).

3.2.2. Seasonal Spatial Correlation

In spatial seasonal correlations, it was observed that the largest area of the CICS
does not present significant statistical correlations between VI and LST. However, some
small areas had significant statistical relationships (Supplementary Material 2). Positive
correlations between LST and LAI stand out in the JFM and JAS quarters, where the
largest areas with significant correlations were identified. Thus, a positive and moderate
correlation for LAI occurred in 53.3% of the area in JFM, and 22.3% in JAS.

In the JFM quarter (Figure 8A–C), the correlations between NDVI and LST were
predominantly positive and moderate (14.8%). Positive correlations are in the extreme west
and north of the CICS. These areas are dominated by arboreal forest and some areas with
arboreal restinga, mainly in the municipality of Iguape. In the central region of the CICS,
close to the city of Iguape, there is a negative correlation (0.9%). This contains areas of
agricultural cultivation and arboreal restinga.
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The relationship between EVI and LST follows the same pattern as NDVI, with 11.7% of
the area corresponding to a moderate positive correlation and 1.0% to a moderate negative
correlation. The positive and strong correlation (0.2%) was observed in small areas in the
central sector of the CICS, southwest and northeast, mainly in areas that generally occur in
areas with arboreal forest vegetation. For the correlation between LST and EVI, negative
correlations are found in the central sector, where the arboreal restinga and agriculture
areas are located.

In the AMJ quarter, it was observed that negative correlations were more present in
the study area for EVI and LAI. The areas with a negative correlation between EVI and
LST (42.9%) were concentrated in the southern sector and in some areas of the northern
region (municipality of Iguape), although without significance. In the south, this area
corresponds to the transition from arboreal forest to arboreal restinga. In the north, the
negative correlation is present around agriculture and arboreal restinga areas. Within these
areas, the negative and moderate correlation values (2.4%) were significant. The NDVI also
showed a reduction in significant correlation (Supplementary Material 2); however, in the
northern sector and in the central region there were positive and moderate correlations
(8.5%) and positive and strong correlations (0.2%). Positive correlations are present in
the central sector, on the border between the three municipalities, where arboreal and
herbaceous restinga occur.

Regarding the correlation of LAI and LST, the negative areas (1.2%) are in small
partd of the northern sector. The areas with positive correlation (3.5%) are in the munici-
pality of Cananéia, where herbaceous restinga and agriculture predominate (Figure 8F)
in AMJ. Therefore, it was observed that there is a difference between correlations in
seasonal periods.

In the JAS quarter, it was observed that the correlations between LST, NDVI and
EVI had similar variations, with few areas with significant correlations (Supplementary
Material 2). A negative correlation between NDVI and LST was identified in the southern
sector of Cananéia and in the northern sector of Iguape (adding up to 1.0% of the area). A
positive and moderate correlation (3.8%) occurred in the central sector of Cananéia and in
the extreme west of Iguape (Figure 9A).

The correlation between LST and EVI presented the largest area with a positive and
moderate correlation in the central sector of the CICS (2.6%). The positive correlation
occurred in the same areas as the correlation between LST and NDVI, but in smaller
proportions. For the LAI, the correlation between the LST and LAI identified that the
northern sector has a positive and moderate correlation (22.3%), close to the correlation
observed in JFM.

In the OND quarter, a positive and moderate correlation for LAI and LST occurred
in 1.1% of the study area, differing from the other quarters analyzed. However, for this
relationship, a negative and moderate correlation is found in the northeast and southwest
sectors of the CICS, representing 4.2% of the area. However, the results found by LAI were
closer to those found for the other indices in this quarter (Figure 9).

The correlation results identified that most of the CICS had weak negative correlations,
being 53.1% (NDVI) and 51.6% (EVI). Negative and moderate correlations occurred in 9.8%
and 7.4% of the CICS. These areas are mainly concentrated near the urban areas of Iguape
and Cananéia. Furthermore, in the west of Iguape, a small area stands out with a strong
negative correlation for NDVI and LST (Figure 9D). These correlations occur in places with
the presence of arboreal restinga, arboreal vegetation and agriculture.
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4. Discussion
4.1. Temporal Correlation of Vegetation Indices with Climate Variables

Our results indicate that the IVs did not show significant variations in CICS. In
other studies, the annual NDVI variation was higher; for example, in Brasília, where the
minimum and maximum values ranged from −0.49 to 0.83, respectively. The highest NDVI
values were observed for natural forests, particularly along streams [22]. In Nigeria, the
average annual NDVI is 0.41 (ranging from 0.10 to 0.79) with a standard deviation of 0.12
for the entire country [18]. These differing results may be related to different land uses; in
CICS, green areas with vegetation predominate, whereas in Brasília, there are more built-up
areas. In Nigeria, the presence of different types of vegetation may have influenced this
variation in NDVI.

Research in the Mongolia region (China) identified that the minimum EVI was 0.25 in
2021 and the maximum was 0.30 in 2012. Thus, the authors observed greater variability
in EVI. Mongolia is in the transition zone from arid and semi-arid monsoon climates to
humid and semi-humid climates [52]. This factor may be responsible for the lower EVI
values, as were also found for the NDVI in Nigeria [18].

The EVI values found for the northern region of Iran were more similar to those of
the CICS. The average EVI over 17 years (2000–2016) was about 0.45, with a maximum of
0.48 in 2011 and a minimum of 0.42 in 2000 [5]. The climate of northern Iran is considered
very humid, humid, Mediterranean and western, central and eastern and mountainous
semi-humid, respectively. Thus, the results in this region [5] are similar to the CICS results,
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due to the similarity of climatic characteristics, with the CICS also having a humid climate
due to its proximity to the ocean.

For the Upper Khoh River Basin (UKR) in the Himalayas (India), we found the lowest
EVI values. Average NDVI values range from 0.54 to 0.64, while the average EVI ranges
from 0.31 to 0.35 [15]. The climate in the UKR is characterized by temperate conditions,
with an annual rainfall of 1400 mm, concentrated between June and September, and average
annual temperatures of 15.0 ◦C and 30.0 ◦C. The lower NDVI and EVI values for UKR are
due to the difference in climate between the regions. Although average annual temperatures
are approximate, the Upper Khoh River basin has temperatures close to zero in the highest
regions during winter.

The difference between the NDVI and EVI values presented in these studies is because
the EVI considers the effect of aerosol correction and canopy background adjustments that
are not accounted for in the NDVI estimate [15,53,54]. These values disagree with those
found in northern Iran, where the surface temperature, in annual data, indicated that the
vegetation varies according to temperature fluctuations [5]. The results in Blkh province in
northern Afghanistan showed that there is a strong and inverse correlation between NDVI
and LST for annual mean values [48].

The relationship between NDVI and LST varies depending on land use [13]. The
authors found that built-up areas and bare land present a positive and weak correlation
with surface temperature. Furthermore, the relationship is moderately positive in water
bodies. In the CICS, no significant correlations were found between the correlations, as
the CICS has a large volume of water bodies, such as the Ribeira de Iguape River and Mar
Pequeno (Figure 1B); this may have influenced the relationship between NDVI and LST.
These values indicate that the vegetation is dense and does not present significant changes
throughout the seasonal periods. Thus, no temporal seasonality was observed in the
variation of NDVI and EVI for the CICS, disagreeing with the results of other research [15],
where the greening of vegetation generally begins in May and reaches its maximum in
September (NDVI) and August (EVI), and from this period it starts to decrease until April.
Therefore, the higher LAI values in JFM and AMJ refer to the increase in rainfall that occurs
in these periods, as shown in Figure 2A [35,36].

The results of the vegetation indices showed that the average vegetation in the CICS
resulted in little variation during the analysis period. The high values indicate that the
vegetation is dense and stable, showing little change over the years and quarters. However,
changes in the NDVI variation are observed in different parts of the world, such as in
northern Iran, where the trend is for an increase in EVI and NDVI [5]. Research on
vegetation in the Khoh River basin also showed an increase in mean NDVI and EVI
values [15]. Thus, the climatic factors of these regions can influence the variation of these
indices. Furthermore, the type of vegetation also influences this variation. More arid
regions, such as the northern Balk province of Afghanistan, have lower and more variable
NDVI values, according to results found in another study [48]. Therefore, different climatic
realities have an impact on the variation of VI, as observed in this research.

In the Gautam Buddh Nagar district (India), the average NDVI (2005–2018) in the
study area was assessed at 0.45, indicating healthy vegetation. The highest and lowest
monthly averages of NDVI were observed in February 2005 (winter month) and May 2010
(pre-monsoon month), respectively. The authors showed that the negative and signifi-
cant correlation between NDVI and LST was for the pre-monsoon (r = −0.61), monsoon
(r = −0.65) (rainy) and post-monsoon (r = −0.87) seasons [16]. The authors attribute this
variation to the influence of climatic factors (precipitation and LST) on NDVI variation.
Thus, the authors’ results show that for India the NDVI responses are clearer compared to
the CICS results.

Seasonal correlations between vegetation indices and LST were more significant. In the
JFM quarter (Figure 5), the correlations between LST and vegetation indices were positive
and statistically significant (p-value < 0.05). Although these results do not confirm most
studies that indicate a negative correlation between NDVI and temperature [2] (Dastigerdi
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et al., 2024), the results indicate that a significant correlation occurred in the summer period.
In this sense, some recent research has shown a positive correlation between NDVI and
temperature [55]. The authors investigated the response of climate to NDVI variation in
the Loess Plateau (China) and identified that NDVI was strongly positively correlated
with temperature.

Positive results between LAI and LST were also found in another study [3]. The authors
found a correlation of 0.46 between the LAI and temperature for the Sacramento and San
Joaquin river basins (California, US). In addition to LAI, NDVI was positively correlated
with LST. The authors attribute the positive correlation between average temperature and
vegetation indicators to the fact that higher temperatures can make the environment more
favorable for vegetation activity and, thus, promote higher NDVI and IAF, provided that
adequate water is available.

Thus, the results indicated that temporal correlations between vegetation indices and
climatic attributes were significant in the JFM and OND quarters. The months of AMJ
and JAS did not obtain significant correlations. During these periods, higher volumes of
precipitation occur (Figure 2). Thus, the positive correlation between vegetation indices
and LST may be related to vegetation development, resulting in an increase in NDVI due
to the availability of water and heat. Therefore, the positive correlation between NDVI
and LST on the southern coast of São Paulo during the rainy summer is a result of the
combination of high solar radiation, increased vegetation, intense evapotranspiration [18]
and specific microclimatic characteristics of the region, such as proximity to the sea and
low altitude. Even with the presence of rainfall, intense radiation and vegetative growth
contribute to maintaining high LST, creating this positive correlation. Thus, land surface
temperature is measured based on the physical interactions between energy and water
flows in the surface–atmosphere system. Additionally, LST reflects local atmospheric
conditions, surface type, soil moisture, and the vegetation’s water balance [56].

In northern Iran, the spatiotemporal relationship between MODIS EVI and climate
variables was studied, and it was identified that the correlation was significant between
EVI and LST values, which was positive during winter (December to April) and inverse
during the summer [5]. The results found in CICS indicate that the correlation is inverse in
spring and positive in summer, disagreeing with other studies [5].

Some studies indicate a positive relationship between NDVI and LST, but in high-
latitude regions [57] or in winter [58]. Correlations between LST and NDVI depend on the
season and time of day [58]. The authors correlated NDVI with LST for North America.
They identified that the correlation between NDVI and LST is positive in winter and
negative in summer. Thus, other factors may be related to changes in NDVI [59] or also in
different types of land use and cover [51].

For CICS, the correlation was positive in summer and in the remaining periods there
were no significant correlations, although negative in OND, being more significant for EVI
and LAI. Although the variables studied interfere with terrestrial photosynthetic activity
and canopy structural variations [53], this relationship was not clear in the temporal
correlation in the CICS for the annual periods and AMJ and JAS.

4.2. Components Spatial Correlation of Vegetation Indices with Surface Temperature

Thus, these results corroborate those identified for the Horn of Africa region [60].
The authors found that in areas with agricultural crops, the correlation was negative
and significant between NDVI and temperature. In forest and wooded areas they were
positively correlated. In Nigeria, areas with forest and mangrove vegetation also showed
weak positive correlations. The authors conclude that moderate temperature ranges may
enhance vegetation growth in humid regions. Our results partially corroborate these
findings, indicating that in areas with vegetation, where NDVI is higher, LST is also higher.
However, no pattern was observed in the spatial variation of the correlation between
vegetation indices and LST in CICS. This suggests that other factors are influencing this
correlation. Furthermore, land surface temperature is regulated by the amount of shortwave
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radiation absorbed by the surface, surface thermal conductivity, amount of water available
for evaporative cooling, wind speed, and surface roughness, which regulate the strength of
sensible and latent heat fluxes. Thus, these factors may influence the variation in LST in the
study area [18].

These annual CICS results confirm those presented for the UKR river basin [15],
that EVI has a strong correlation with different hydroclimatic factors compared to NDVI.
Thus, the spatial correlation of the EVI was more significant for the CICS in some sectors,
compared to the correlations between the NDVI. Therefore, EVI is an index more sensitive
to changes in surface temperature, possibly because of aerosol correction and canopy
background adjustments, which are not accounted for in the NDVI estimate [15]. However,
the results found in this research differ from much of the work that seeks to understand the
relationship between NDVI and LST [13,16,51,59–61].

These studies indicate that NDVI is negatively correlated with LST. In general, the
results of this research indicate that most pixels, which comprise 61.2% of the area for
NDVI, 65.2% of the area for EVI and 87.9% of the area for LAI, show a positive correlation
between VI and LST. These results confirm the conclusions found in the Sacramento and
San Joaquin River basins [3]. The authors identified that the positive correlation between
LAI and LST provides a more favorable environment for vegetation activity.

The correlations between NDVI and EVI with LST were more similar and had correla-
tions closer to the results highlighted in the literature [16] and those found in the temporal
correlation for the quarter. Weak or non-existent correlations between NDVI and LST may
be related to the presence of water in the study area. Therefore, the relationship between
LST and NDVI is strongly effective in vegetation [13]. However, the relationship is positive
(weak to moderate) in water bodies and weakly positive in the built-up area and exposed
land. The authors found a negative correlation in all periods analyzed: pre-monsoon
(r = −0.40, −0.51, −0.45), monsoon (r = −0.48, −0.41, −0.47), post-monsoon (r = −0.63)
and winter (r = −0.12, −0.20, −0.18). In Nigeria, for example, areas with forest and man-
grove vegetation also exhibited weak positive correlations, while negative correlations
were found in savanna areas, settlements, degraded forests and Sahelian pastures. Thus,
the type of vegetation and the presence of water can be crucial in the correlation between
vegetation indices and LST. In CICS, the negative correlations, which confirm much of the
research on the relationship between vegetation indices and LST, were mainly observed
during the OND period. Thus, higher NDVI and EVI values are associated with lower LST
values [18].

Furthermore, the relationship between NDVI and LST can change with changing
land surface types [16,51,59,61]. The vegetation surface creates a strong correlation, and
the force is reduced on the unvegetated land surface, the built-up surface and the water
surface. The study for the city of Shanghai, China [51], identified that different types of
land use and cover have significantly different effects on LST and NDVI. In the CICS, it was
also observed that seasonal variation influences the spatial correlation between vegetation
indices and LST. Thus, the hottest and rainiest periods have clearer correlations, such as
in the OND and JFM periods. Considering this, it is observed that other factors, such as
precipitation, may influence NDVI variation.

Thus, EVI tends to relate better compared to NDVI [15]. These authors also recommend
using both vegetation indices to better understand the dynamics of seasonal and inter-
annual vegetation, given the limitations of the different indices. The seasonal results found
by this research disagree with the results found for the river basin UKR [15] and the annual
results of the CICS. Thus, NDVI showed more visible correlations in seasonal periods
compared to the annual scale results.

Seasonal spatial correlation indicated that areas close to water bodies and agriculture
present negative relationships between LST, EVI and NDVI. Some areas covered by forest
(dense ombrophylous forest) and arboreal restinga vegetation (Figure 1C) have a positive
relationship. Therefore, some studies indicate that the relationship between LST and NDVI
is influenced by the type of soil cover. Different types of land use and land cover have
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significantly different effects on LST and NDVI [51]. Furthermore, it is necessary to consider
that rainfall also plays an important role in vegetation dynamics, which was not considered
in this research.

5. Conclusions

This study showed that in the period analyzed (2003 to 2022), the vegetation indices
(NDVI, EVI and LAI) had little temporal variation in the annual and seasonal period.
The IVs (independent variables) show clearer responses in seasonal periods, particularly
in summer, compared to the annual period. In summer, LST positively influences the
variation in NDVI. Thus, the increase in LST is related to the increase in indices; however,
this positive correlation may also be related to the presence of water and exposed soil. In
turn, positive correlations in JFM months are also better adjusted to higher temperatures
and greater total rainfall. However, further research is needed to support this statement.

In the spatial analysis, the LAI showed a clearer correlation in the JFM and OND
periods, indicating that the increase in LST increases the LAI. Thus, temperature condi-
tions can positively influence the photosynthetic activity of vegetation. The correlation
between LST, NDVI and EVI indicate that the southern sector of the CICS and the central
region have a negative correlation, and the northern sector has more areas with a positive
correlation. This difference may occur due to different uses and land cover. Furthermore,
the negative correlation in the cooler period (AMJ and JAS) indicates that the reduction
in temperature decreases the photosynthetic activity of vegetation. In OND, there is an
increase in temperature, and it is still a transition season to the rainy season.

However, in a large part of the CICS area, the correlations were not significant, which
suggests that factors other than temperature may be influencing VI in the CICS region,
such as rainfall and evapotranspiration. These factors also need to be investigated in future
research to obtain more conclusive results. Thus, these results highlight the complexity of
interactions between vegetation indices and climatic attributes and highlight the impor-
tance of considering a variety of environmental variables and processes when interpreting
changes in vegetation.

Based on this, future research needs to consider climatic and hydrological variables
such as precipitation, air temperature and evapotranspiration to find more accurate and pre-
cise results regarding vegetation variation in the CICS (Coastal Intertropical Convergence
Zone). This research also did not consider vegetation types in the more detailed analysis of
the correlation between the IVs (independent variables) and surface temperature. Thus,
this gap could also be addressed in future studies.

Furthermore, it should be noted that understanding the correlation between climatic at-
tributes and vegetation indices is little explored in this area of study. However, this research
has significantly progressed this field, by establishing new correlations and demonstrating
the importance of considering climate variability for a more accurate understanding of the
impacts on vegetation indices. There is also the importance of satellite resources for ad-
vancing climatology research, as surface data are often scarce, which makes more in-depth
studies on the topic unfeasible.
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