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Abstract: Building change detection (BCD) from remote sensing images is an essential field for urban
studies. In this well-developed field, Convolutional Neural Networks (CNNs) and Transformer
have been leveraged to empower BCD models in handling multi-scale information. However, it
is still challenging to accurately detect subtle changes using current models, which has been the
main bottleneck to improving detection accuracy. In this paper, a multi-scale differential feature
self-attention network (MDFA-Net) is proposed to effectively integrate CNN and Transformer by
balancing the global receptive field from the self-attention mechanism and the local receptive field
from convolutions. In MDFA-Net, two innovative modules were designed. Particularly, a hierarchical
multi-scale dilated convolution (HMDConv) module was proposed to extract local features with
hybrid dilation convolutions, which can ameliorate the effect of CNN’s local bias. In addition,
a differential feature self-attention (DFA) module was developed to implement the self-attention
mechanism at multi-scale difference feature maps to overcome the problem that local details may be
lost in the global receptive field in Transformer. The proposed MDFA-Net achieves state-of-the-art
accuracy performance in comparison with related works, e.g., USSFC-Net, in three open datasets:
WHU-CD, CDD-CD, and LEVIR-CD. Based on the experimental results, MDFA-Net significantly
exceeds other models in F1 score, IoU, and overall accuracy; the F1 score is 93.81%, 95.52%, and
91.21% in WHU-CD, CDD-CD, and LEVIR-CD datasets, respectively. Furthermore, MDFA-Net
achieved first or second place in precision and recall in the test in all three datasets, which indicates
its better balance in precision and recall than other models. We also found that subtle changes,
i.e., small-sized building changes and irregular boundary changes, are better detected thanks to
the introduction of HMDConv and DFA. To this end, with its better ability to leverage multi-scale
differential information than traditional methods, MDFA-Net provides a novel and effective avenue
to integrate CNN and Transformer in BCD. Further studies could focus on improving the model’s
insensitivity to hyper-parameters and the model’s generalizability in practical applications.

Keywords: change detection; multi-scale feature extraction; self-attention mechanism

1. Introduction

Change detection (CD) using remote sensing is a well-developed field that aims to
identify the changes, especially land cover changes, between multiple remote sensing
images taken at different times in the same geographical area [1]. One of the primary land
cover changes is the change in buildings, including new constructions and demolitions
due to natural or manufactured disasters. Building change detection (BCD) using remote
sensing aims to monitor building construction and demolition at a large scale by comparing
and analyzing multi-temporal images of the same area, which has already become an
imperative topic in terms of its direct contributions to smart city studies, e.g., urban
planning, environmental management, and public policy [2,3].
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Traditional BCD methods using remote sensing can be classified into two groups:
pixel-based and object-based. Pixel-based methods tend to overlook the overall spatial
characteristics of changes, leading to incomplete extraction of change areas [4]. On the
other hand, object-based methods rely on manual definitions and prior knowledge, thus
resulting in limited robustness in generalization [5]. To this end, traditional BCD methods
have limited accuracies and struggle to adapt to various scenarios and applications [6–8].

Deep learning (DL) algorithms have been introduced into BCD since 2015 due to
their excellent capabilities in feature extraction and representation [9]. Existing DL BCD
methods can be categorized into three types based on their underlying network struc-
tures: convolutional-neural-networks (CNNs)-based, Transformer-based, and hybrid. CNN
was first introduced and demonstrated in BCD by directly extracting change maps from
multitemporal images by Gong et al. [9]. Since then, various CNN backbones and their
modification strategies, e.g., dense attention mechanism [10], multiscale feature model [11],
and end-to-end superpixel-enhanced network [12], have been implemented in BCD, all
of which made significant accuracy improvements in BCD. However, as highlighted by
Zheng et al. [13], CNN has shortcomings in modeling long-range features due to its local
receptive field, which tends to lead to ambiguities and omissions in prediction, particularly
when building changes may vary significantly in structure, scale, and context [14].

In contrast, Transformer has emerged as a powerful framework in computer vision
tasks for modeling long-range feature dependencies through attention mechanisms [15]. It
offers a compelling alternative to traditional CNN models in BCD. The Bitemporal Image
Transformer (BIT) model first implemented Transformer (attention mechanism) in change
detection in 2021 [16]. BIT utilized a bi-temporal image Transformer to effectively capture
contextual relationships within a spatial–temporal framework, which has demonstrated
impressive performance on several BCD datasets. Another work that should be noted is
the cross-temporal difference (CTD) attention, whose mechanism enhances the extraction
of changed features by focusing on the relational dynamics among objects over time [16].
Although implementing the Transformer in BCD is a prevailing topic, simple Transformer-
based BCD architectures usually face challenges in preserving local texture details of
buildings and tend to exhibit high computational complexity.

To address the above limitations in both CNN-based and Transformer-based methods,
scholars have explored the hybrid methods integrating CNN and Transformer in BCD. The-
oretically, the hybrid approaches are able to combine the local feature extraction capabilities
of CNN and the global contextual modeling strengths of Transformer. Existing experimen-
tal results prove that such integration can enhance both the accuracy and efficiency of BCD
methods [17]. The most pressing issue in BCD using remote sensing is how to leverage
CNN and self-attention mechanism in an integrated way. Currently, various methods have
been proposed for this issue. For example, the attention-based multi-scale Transformer
network (AMTNet) showcases the effective application of attention mechanisms within a
CNN–Transformer framework [18]. It employs a Siamese architecture to extract multi-scale
features while adeptly modeling contextual information [19]. Recently, CSDNet has im-
plemented a feature decoupling strategy that separates structural and contextual features
through a feature difference extractor. This approach significantly enhances the accuracy of
damage detection across various scenarios, including post-earthquake assessments [20].
One study that should be noted is the ultralightweight spatial–spectral feature cooperation
network (USSFC-Net) proposed by Lei et al. in 2023, which designed a multiscale decou-
pled convolution and an effective spatial–spectral feature cooperation strategy, achieving
the state of the art in BCD datasets [21].

However, existing CNN–Transformer BCD frameworks still encounter challenges in
detecting subtle changes for the following reasons. First, although current studies have
explored extending the local receptive field in CNN via modifications, e.g., leveraging an
attention mechanism Transformer [22], existing studies still have an inherent local bias
in CNN-based feature extraction, i.e., USSFC-Net [21], where subtle building changes
are unevenly treated. Second, current hybrid BCD models leverage the self-attention
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mechanism directly on concatenated differential feature maps, thus resulting in insufficient
attention to small-scale difference features [23].

To address the abovementioned issues, we proposed a novel multi-scale differential
feature self-attention net (MDFA-Net) model to effectively integrate the convolutional
feature extractor and the self-attention mechanism in BCD. The MDFA-Net model was
designed based on a pseudo-Siamese U-Net framework. Specifically, two new modules
were designed in MDFA-Net: (1) A hierarchical multi-scale dilated convolution (HMD-
Conv) module was developed, which leveraged hybrid dilations in non-weight-sharing
hierarchical convolutions to better extract multi-scale features than before; (2) a differential
feature self-attention (DFA) module was developed, where the self-attention mechanism
was implemented in each multi-scale difference feature map to provide compensation for
subtle feature expression.

The rest of the paper is organized as follows. In Section 2, related work, especially
detailed related deep learning change detection technologies, is introduced. In Section 3,
the detailed model framework, including two novel modules, is introduced in Methods. In
Section 4, the experimental settings and results are presented. In Section 5, we evaluate the
performance of the proposed model and discuss its advantages and limitations. Conclusions
are presented in Section 6.

2. Related Work

In related work, we introduced previous DL CD technologies from the following three
aspects: general frameworks, multi-scale bi-temporal feature extraction, and implementa-
tions of the attention mechanism.

2.1. General DL Frameworks

Taking advantage of DL has catalyzed significant advancements in CD using remote
sensing. The general DL frameworks in CD can be predominantly categorized into two
types. As shown in Figure 1a, the fusion image produced from the comparison of bi-
temporal images T1 and T2 is utilized as a singular input of the following deep neural
networks. This method allows for the collective processing of bi-temporal images, en-
abling direct change detection from the fused representation. However, as highlighted by
Daudt et al. [24], this approach often oversimplifies the complexities of change detection
tasks, which may lead to inaccuracies stemming from neglecting unique characteristics
inherent to BCD.

The other type of general DL framework in CD, particularly those employing the
Siamese network framework, has gained traction as a more robust alternative. As shown
in Figure 1b, this framework independently extracts features from both the bi-temporal
images T1 and T2, followed by a comparative analysis of the integrated features [25]. The
weight-sharing mechanism inherent in the Siamese framework enhances feature extraction
efficiency while reducing the overall parameter count, thus promoting computational
efficiency. Significant strides in this domain include the adaptation of the U-Net backbone
for change detection, as noted by Shen et al. [26]. One typical example adapting U-Net
in a Siamese framework is SNUNet proposed by Fang et al. [27], which incorporated
dense connections and multi-scale feature aggregation, thus leading to the emergence
of this model. This study underscores the importance of accurately modeling temporal
relationships in change detection tasks.

Therefore, utilizing a U-Net backbone in a Siamese framework has proven to be an
effective form of the CD model by addressing feature misalignment issues arising from
excessive intermediate and upsampling during deconvolution. However, it should be
noted that the weight-sharing mechanism in the Siamese framework will compromise the
ability to extract subtle change features [27]. To this end, we utilized a non-weight-sharing
pseudo-Siamese U-net as the backbone to balance efficiency and accuracy.
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Figure 1. The overall general DL frameworks in CD: (a) The difference fusion image produced from
the temporal comparison of bi-temporal images T1 and T2 is utilized as a singular input for deep
neural networks. (b) This framework independently extracts features from both bi-temporal images
T1 and T2, followed by a comparative analysis of the integrated features. The red dashed arrows
illustrate the various strategies employed within the BCD network to implement the self-attention
mechanism, while the black dashed arrows represent the calculation of the loss function based on the
ground truth and the output result image.

2.2. Multi-Scale Bi-Temporal Feature Extraction

One important task in CD is multi-scale feature extraction, which enables classifiers
to comprehensively leverage features in different scales, as low-level features help target
localization and high-level features provide semantic context. This capability is essen-
tial for representing spatial and contextual information, particularly for detecting subtle
changes [28]. Recent progress in multi-scale feature extraction has involved the integra-
tion of dense connections and attention mechanisms [29]. Nonetheless, existing methods
often grapple with limitations in computational efficiency and feature redundancy. As
highlighted by Zhang et al. [30], excessive information in feature maps will negatively
affect classification outcomes. Therefore, designing novel feature extraction techniques that
minimize redundancy while maximizing the representation of critical changes remains
essential and challenging.

In addition, bi-temporal feature extraction is another fundamental task to change in-
formation detection from sequential images. Although traditional methods, such as feature
concatenation, addition, and subtraction [31], have been employed to derive differential
information, these approaches often fail to retain significant details while effectively filter-
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ing background noise [32]. Concatenation and addition can lead to excessive background
retention, while subtraction may eliminate valuable edge details [33]. To ameliorate this
problem, Neural Architecture Search (NAS-FPN), proposed by Ghiasi et al. [28], has yielded
new feature pyramid architectures that facilitate cross-scale connections. This approach
illustrates advanced strategies for fusing multilevel features, highlighting potential ap-
plications in both object detection and pixel-level change detection tasks. This evolution
paves the way for utilizing cascade architectures to enhance change detection performance
through dual-decoder networks. These networks strategically separate change localization
from boundary refinement tasks, aligning with the increasing demand for finer granular-
ity in understanding and delineating changes [34]. Unlike feature pyramid frameworks,
USSFC-Net leveraged a multiscale decoupled convolution (MSDConv) to extend the re-
ceptive field in a CNN-based feature extractor, which had multi-scale convolutions and a
unique dilation module [21]. Although this model achieved state-of-the-art performance in
several BCD datasets, there is still space to improve, especially its performance in subtle
change detection.

To this end, in this paper, multi-scale features were extracted in an HMDConv module,
which is a modification of MSDConv in USSFC-Net. It is important to notice that the
HMDConv module implemented a hybrid dilated convolution in CNN-based feature
extractors instead of a constant dilation convolution to extend a limited receptive field at
each scale and self-attention in connecting multi-scale patterns. The specific structure will
be introduced in Section 3.

2.3. Attention Mechanisms

The incorporation of the attention mechanisms empowered BCD using remote sensing
images by enabling models to focus on relevant features and filtering out noises. The atten-
tion mechanisms can dynamically learn weighting coefficients, allowing neural networks
to prioritize regions exhibiting changes, thereby improving detection performance [30].
Given that CD aims to identify alterations in imagery, i.e., distinguishing dynamic from
static elements, the attention mechanisms prove particularly effective.

Recent studies have illustrated the effectiveness of several attention-based CD methods.
For instance, Zuo et al. [31] developed the Attention Residual Recurrent U-Net (R2AU-
Net), which integrates attention into the traditional U-Net architecture, enhancing perfor-
mance in both binary and multi-class change detection tasks for hyperspectral imagery.
Woo et al. proposed the Convolutional Block Attention Module (CBAM) in 2018 [35],
which integrated channel attention mechanisms (CAM) and spatial attention mechanisms
(SAM) sequentially, enhancing feature representation by focusing on informative regions
and channels. CAM and SAM are lightweight modules, so the attention mechanism can
be leveraged efficiently. Chen et al. [36] introduced a spatial-channel double attention
mechanism that captures long-range dependencies, thus improving feature representation.
Jiang et al. [37] designed a pyramid-feature-based attention-guided Siamese network (PGA-
SiamNet), employing multi-layer attention to manage feature dependencies across different
scales. Gong et al. [38] developed a spectral and spatial attention network (S2AN) designed
to systematically amplify change-related features using adaptive Gaussian distributions. A
landmark study was DSIFN, proposed by Zhang et al. [13], which used a Siamese network
to extract two-branch features in the encoding stage and used the attention mechanism to
improve the boundary integrity of the change map. Another study that should be noted is
Change Former [39], which integrated the hierarchical Transformer as the Encoder and the
multilayer perceptron (MLP) as the Decoder within a Siamese framework, thus having the
ability to accurately present long-range dependencies for CD.

To sum up, current related methods usually implement the self-attention mecha-
nism in two ways [40–42]: implementing self-attention as a feature extractor directly, e.g.,
CBAM [36], BIT [16], and Change Former [39], or implementing self-attention on differ-
ential feature maps after a CNN-based extractor, e.g., DSIFN [13], MSGFNet [43], and
USSFC-Net [22]. These two attention strategies are shown in Figure 1. In this paper, we
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proposed DFA to leverage a self-attention feature extractor on a multi-scale differential
feature map specifically. Therefore, subtle local changes are supposed not to be eliminated
in multi-scale feature fusion.

3. Methods

Building change detection (BCD) identifies urban landscape changes to support urban
planning and monitoring. We introduce the MDFA-Net to perform this task efficiently.
Given a pre-change remote sensing image Ia and a post-change remote sensing image
Ib, our model is designed to output a detailed map highlighting the precise areas of
transformation Iout.

3.1. Overview

This section presents the architecture of our proposed MDFA-Net, which is based on
a non-weighted-sharing Siamese U-Net framework. As shown in Figure 2, MDFA-Net
comprises three components: Encoder, DFA module, and Decoder.
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Figure 2. The overall architecture of the proposed MDFA-Net: a pair of images are input into a
non-weight-sharing Encoder with N + HMDConv; then, the extracted feature maps are passed to the
DFA module, and the difference images from each stage are forwarded to the Decoder.

The Encoder utilizes Native Feature Module and HMDConv (N + HMDConv) to
accurately extract salient features from dual-temporal remote sensing images. Subsequently,
a differential compensation module, DFA, is implemented to enhance feature representation
through self-attention mechanisms. In the Decoder, a deconvolution upsampling layer is
coupled with a feature recovery layer within an N + HMDConv module, ensuring robust
feature restoration. We adopt the skip connection strategy from U-Net, aligning the Encoder
and DFA outputs with the Decoder’s corresponding layers to preserve spatial coherence.
The Decoder culminates with a 1 × 1 convolution and normalization process, delivering
the final building change detection (BCD) results with precision and clarity.

The MDFA-Net is distinguished by its multi-scale feature extraction through the
N + HMDConv module and the differential compensation via the DFA module. Subsequent
sections will detail these core components and elaborate on further aspects of the MDFA-
Net framework.
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3.2. N + HMDConv Module

As shown in Figure 3, the N + HMDConv module mainly consists of a native feature
branch and an HMDConv branch.
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3.2.1. Native Feature Branch

The N + HMDConv module is developed to extract multi-scale features in the Encoder.
Similar to USSFC-Net [21], an N + HMDConv module consists of a native feature (N)
branch and an HMDConv branch. As shown in Figure 3, the input was first processed in
the N branch, then processed in the HMDConv branch, which has an HMDConv module
and a spatial attention (SA) module, and finally concatenated with the output from the
N branch.

3.2.2. HMDConv Branch

In the native feature branch, standard convolutions were employed, followed by batch
normalization and ReLU activation to capture primary features from the input tensor.
The extracted native feature map Xnative was used for the input of HMDConv and the
concatenation of the final output.

(1) HM Convolution

In convolution operations, larger convolution nuclei acquire global information but
lose details, while smaller convolution nuclei capture local information more carefully [44].
Therefore, we used a combination of kernel sizes, such as (1, 3, 5), in HM convolutions.
Specifically, the input feature map is denoted as X ∈ RCin×H×W , where Cin is the number
of input channels and H and W represent the height and width of the feature map. HM
convolution is represented in Equation (1):

XHM = Concat(Convk(Xnative)), k ∈ [1, 3, 5] (1)

Small convolution kernels, such as 1 × 1 and 3 × 3, are proficient in extracting detailed
local features, thereby minimizing the model’s parameters and computational complexity.
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Conversely, larger kernels, such as 5 × 5, are crucial for capturing extensive contextual
information. The strategic integration of these multi-scale kernels within HM convolutions
achieves a balanced feature representation, adeptly blending the precision of local feature
extraction with the breadth of contextual understanding. This approach is corroborated
by recent studies [45] which endorse the use of a diverse kernel size array in the HM
convolution module, enhancing the model’s ability to process complex datasets effectively.

(2) Dilated Convolution (DConv)

After the extraction of multi-scale features by the N module, the HMDConv module
employs dilated convolutions to broaden the receptive field, which is a technique that
maintains the parameter count. Lei et al. have researched the optimal combination of
dilation rates within the context of CD network feature extraction, identifying the dilation
rates of (1, 3, 6) as yielding the highest accuracy [21,46]. This method involves applying
different dilation convolutions by channel grouping, as depicted in Equations (2)–(5). Given
an input feature map with chin channels and an output feature map with y channels, the
process is conducted across G groups:

chin,g =
chin
G

(2)

chout,g =
chout

G
(3)

Yg =

chin,g

∑
ch=1

Kg,ch × XHMg,ch (4)

XHMDConv = concat(y0, y1 . . . . . . yG−1) (5)

As shown in Figure 3, in the DConv, groups are obtained by the number of channels,
and each group independently uses a different expansion rate for expansion convolution.
Convolution with expansion rates of 1 can focus on local features, while expansion rates
of 3 and 6 can capture contextual information farther away. In the context of expanded
convolutions, we employ grouped convolutions to mitigate computational complexity.
Specifically, this approach leverages the structural properties of the input channels to
determine the number of groups. This research paradigm is analogous to techniques
utilized in image detection, which have consistently demonstrated remarkable performance
across various studies. By adopting this strategy, we effectively reduce the computational
burden of the model while maintaining robust feature extraction capabilities, thereby
enhancing overall performance.

(3) Spatial Attention Module (SA)

Following the HMDConv, we multiplied with the SA matrix and concatenated with
X to complete the convolution processing of the whole N + HMDConv. We introduced
an SA module following the feature extraction layers, facilitating the dynamic emphasis
on significant spatial regions in the feature. SA aims to magnify the distances between
altered and unaltered pixels across the spatial dimension, thereby enhancing the model’s
ability to detect changes. The design of the SA module is inspired by the Spatial Attention
Mechanism (SAM) in the Convolutional Block Attention Module (CBAM) [35].

3.3. DFA Module

As shown in Figure 2, the DFA module serves as a critical interface between the
Encoder and the Decoder. To effectively leverage the dual multi-scale feature maps ex-
tracted by the Encoder, the DFA module was designed to enhance the model’s capacity to
discern subtle changes within feature maps. The components of DFA, including absolute
differential feature calculation, multi-head self-attention (MHSA), channel attention (CA),
and Transformer blocks, are introduced in this section.
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3.3.1. Absolute Differential Feature Calculation

The input of DFA is each multi-scale feature extracted from two temporally adjacent
images Ia and Ib by the Encoder:

Fa = Encoder(Ia) (6)

Fb = Encoder(Ib) (7)

Simple subtraction operations may diminish the strength of certain change signals due
to positive and negative cancellation. To address this issue, we compute the differential
feature map Fab through pixel-wise subtraction, followed by taking the absolute value of
the result, as shown in Equation (8):

Fab = |Fa − Fb| (8)

Employing the absolute value can enhance the robustness of the differential feature
map and improve the clarity of the variation regions, which may facilitate accurate subtle
change detection.

3.3.2. Multi-Head Self Attention

MHSA was employed in the DFA module to capture complex interdependencies
among different regions of the feature map. As shown in Figure 4a, the attention scores
across multiple heads are computed using the formulation:

Attention(Q, K, V) = so f tmax
(

Q × KT
√

dk

)
× V (9)
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In Equation (9), Q, K, and V are the query, key, and value matrices derived from the
feature maps, with dk indicating the dimension of the key vectors. This approach allows the
model to learn both local and global contextual information, thereby enhancing its ability
to detect changes in the input images.
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In practice, a multi-head attention module with multiple heads is often used instead
of the single attention function shown in the above equation [17]. As shown in Figure 4,
the MHSA module attention results are concatenated as Equation (10):

MHSA(Q, K, V) = WpConcat([Att1, Att2, . . . , Atth]) (10)

where the information from different heads is connected. Then, the connected outputs
are fused together using the projection matrix Wp, which allows the model to effectively
incorporate information from multiple attention heads. In our MHSA, we take 8 heads of
multiple parallel attention operations.

3.3.3. Channel Attention

The CA mechanism highlights the most informative channels in differential feature
maps, enabling the model to focus on significant variations. As shown in Figure 4b, the
CA mechanism generates two key channel representations by calculating attention scores
based on the average and maximum values across the spatial dimensions of the feature
map, where H and W denote its height and width, respectively.

avg_scoresc =
1

H × W

H

∑
i=1

W

∑
j=1

Fab,c,i,j (11)

max_scoresc = max
i,j

(
Fab,c,i,j

)
(12)

The attention weights for each channel are derived as follows:

att_weightc = σ(avg_scoresc + max_scoresc) (13)

In Equation (13), σ denotes the sigmoid activation function. The purpose of CA is to
reduce the background noise and enhance the signal-to-noise ratio by emphasizing relevant
channels. This selective amplification is supported by the theoretical foundation of CA,
which aggregates both average and maximum pooled features to create robust channel
representations. The employment of selective amplification in CA has been demonstrated
to be effective in improving the performance of CD by a recent study [47].

3.3.4. Transformer Blocks

To be specific, stacked Transformer blocks were utilized to build the DFA module.
Transformer blocks are fundamental components designed to enhance feature extraction
through self-attention mechanisms, which can preserve the integrity of the context and
improve its feature extraction process. As shown in Figure 5, each block consists of the
following main components: MHSA layer, CA layer, feedforward neural network, and
residual connection normalization.

MHSA and CA have been introduced above. MHSA converts the input feature
maps into query, key, and value vectors and then feeds the MHSA-processed results
into the CA layer. This combined attention processing is essential to effectively cap-
ture spatial and channel information. Following that, the output is combined with the
original input via a residual connection, which helps preserve vital information and ad-
dresses gradient vanishing issues. Layer normalization is applied to stabilize training. The
attention-enhanced features are then processed through a feedforward neural network
comprising two linear transformations separated by a ReLU activation, further refining the
feature representation.
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3.4. The Other Compositions of the MDFA-Net Architecture
3.4.1. Other Compositions of the Encoder

The Encoder employs an unweighted shared Siamese backbone to extract bi-temporal
image features. The architecture integrated five consecutive down-sampling modules to en-
hance the depth of the feature maps, allowing for sufficient representation of spatial informa-
tion. Besides the N + HMDConv module, the Encoder comprises four crucial components:

(1) Multi-Stage Convolutional Layers

The Encoder architecture incorporates multi-stage convolutional layers that system-
atically apply learned filters to extract spatial features from input images. This structure
is vital for recognizing intricate patterns and textures in remote sensing imagery, thus
enabling effective differentiation of diverse land cover types. The hierarchical design of
the model allows it to capture both local and global features, which is essential for robust
change detection.

(2) Activation Functions

Post-convolution, non-linear activation functions, primarily the ReLU, are employed to
enable the model to learn complex, non-linearly separable representations. ReLU enhances
representational capacity and mitigates vanishing gradient issues.

(3) Batch Normalization

Batch normalization is applied after each convolutional layer to stabilize learning
by normalizing outputs. This technique reduces internal covariate shifts and ensures
consistent feature distributions, which accelerates convergence and improves overall
model performance.

(4) Max Pooling

Max pooling is applied after each convolutional block using a 2 × 2 pooling window
with a stride of 2, which reduces the spatial dimensions of feature maps by half. By selecting
the maximum value in each pooling window, it retains key features while discarding less
critical information and helps reduce computational complexity.
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3.4.2. Other Compositions of the Decoder

The Decoder is designed to reconstruct high-resolution change detection maps from
the refined features outputted by the Encoder. This reconstruction plays a crucial role in
accurately delineating areas of change. The architecture of the Decoder comprises four
components, as follows:

(1) Upsampling Layers

The Decoder begins with a series of upsampling operations that incrementally increase
the spatial dimensions of the feature maps. Each upsampling layer is denoted as Upn,
where n corresponds to the respective level in the network.

(2) Feature Concatenation

At each step of the up-sampling process, we concatenate the up-sampled feature map
with the feature map of the corresponding layer in the Encoder. It better leverages both
high-resolution spatial information and the refined semantic features from the earlier and
deeper layers. It can be expressed mathematically as:

dn = cat(xn−1, Upsample(dn+1), dim = 1) (14)

where dn represents the feature map at level n, dim = 1 indicates concatenating feature
maps along the channel dimension, and xn−1 denotes the features from the Encoder. This
setup maintains spatial dimensions, preserving the U-Net architecture’s structural integrity
and multi-scale feature capture and enhancing representational capacity by enabling ef-
fective feature fusion through combining high-resolution spatial information with deep
semantic data.

(3) Convolutional Refinement

Following concatenation, a series of convolutional layers, termed Up Convolutions,
are set to refine the combined feature maps. This can enhance the model’s expressiveness
and improve change of boundary detection results.

(4) Final Output Layer

Final Output Layer: The final step includes a 1 × 1 convolution that reduces the
feature maps to the desired output channels. A Sigmoid activation function is applied
to produce pixel-wise probabilities, enabling the identification of change areas in remote
sensing imagery. This transformation empowers us to discern the minute details of change
within the vast canvas of remote sensing imagery, with each pixel’s value now representing
its likelihood of being part of an area undergoing change. As a result, we obtain the
final Iout.

3.5. Loss Function

To optimize MDFA-Net, we employ a Binary Cross–Entropy Loss (BCELoss) as our
objective function, designed to quantify the divergence between the model’s predicted
outputs and the actual binary labels indicative of change. This choice is grounded in its
proven effectiveness in binary classification tasks, especially in minimizing false positives
and negatives, which is critical for accurate change detection in remote sensing imagery.
The BCELoss is formulated as follows:

BCELoss = − 1
N

N

∑
i=1

[yilog (p i) + (1 − yi)log(1 − pi)] (15)

where N is the total number of samples (or pixels), yi is the ground-truth label for the i-th
sample, and pi denotes the predicted probability of change. In other applications, BCELoss
can effectively measure the discrepancy between predicted and actual values, guiding the
training process to enhance the model’s accuracy in distinguishing between altered and
unaltered areas.
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4. Results
4.1. Experimental Setup
4.1.1. Datasets

In this study, we employ three distinct datasets to rigorously evaluate the performance
of our proposed MDFA-Net in remote sensing image change detection. They are the WHU-
CD dataset [48], CDD dataset [49], and LEVIR-CD dataset [50]. Detailed information about
these datasets is shown in Table 1.

Table 1. Detailed information of three datasets.

Datasets Space
Resolution Coverage Training

Dataset Size
Validation

Dataset Size
Test

Dataset Size
Changed
Objects

WHU-CD 0.2 m/pixel Christchurch, New Zealand. 5947 pairs 743 pairs 744 pairs building
CDD-CD 0.03~1 m/pixel Multiple regions around the world 10,000 pairs 3000 pairs 3000 pairs building, road

LEVIR-CD 0.5 m/pixel Twenty cities in Texas, USA. 7120 pairs 1024 pairs 2048 pairs building

WHU-CD Dataset: WHU-CD was developed by Wuhan University, documenting
post-earthquake construction activities in a specific region of New Zealand following a
6.3 magnitude earthquake in 2011. This dataset consists of pairs of high-resolution remote
sensing images, captured in 2012 and 2016, with spatial dimensions of 32,507 × 15,354 pixels.
To facilitate efficient GPU memory usage and mitigate the risk of overfitting, the large-scale
image pairs are segmented into smaller patches of 256 × 256 pixels. The resulting dataset
is randomly divided into three subsets: 6096 pairs allocated for training, 762 pairs for
validation, and 762 pairs for testing. Each subset includes images from the two different
temporal phases (T1 and T2), alongside the respective change labels.

CDD Dataset: The CDD dataset is a publicly available change detection resource that
captures pronounced seasonal variations within a specific geographic area, sourced from
Google Earth imagery. CDD Dataset is a combination of various change types, primarily
including buildings, roads, and vehicles. To enhance the usability of the dataset, the original
images underwent systematic cropping and rotation, resulting in 16,000 patches with sizes
of 256 × 256 pixels. The dataset is organized into three distinct subsets: 10,000 pairs
designated for training, 3000 pairs for validation, and 3000 pairs for testing. Each subset
contains images captured at two different temporal instances (T1 and T2), accompanied by
the requisite change labels for comprehensive evaluation.

LEVIR-CD Dataset: The LEVIR-CD dataset is a comprehensive public change detec-
tion dataset meticulously curated from Google Earth. This dataset includes 637 pairs of
bi-temporal remote sensing images, each exhibiting complex change features captured
over temporal spans ranging from 5 to 14 years. The images possess dimensions of
1024 × 1024 pixels. To optimize GPU memory utilization and mitigate the risk of over-
fitting, the original images are processed into 13,072 non-overlapping patches of size
256 × 256 pixels. Subsequently, the dataset is organized into three subsets: 10,000 pairs
for training, 1024 pairs for validation, and 2048 pairs for testing. Each subset contains
images captured at two distinct temporal instances (T1 and T2), with corresponding change
labels provided.

4.1.2. Implementation Details

We implemented the proposed MDFA-Net model using the PyTorch library (version
1.10.0). The training and inference were conducted on a single A40 GPU (48 GB of memory)
provided by AutoDL, a cloud service provider. The experiments were carried out in a
computing environment that included Python 3.8, Ubuntu 20.04, and CUDA 11.3. The
system was also equipped with a CPU featuring 15 vCPUs based on the AMD EPYC
7543 32-Core Processor. Furthermore, the network parameters were optimized using
the Adam optimizer (form PyTorch version 1.10.0), with a momentum value set to 0.9
and a weight decay of 0.0001. The loss function was BCELoss, which is suitable for the
binary classification nature of change detection. The initial learning rate was configured at
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0.0001, and a batch size of 16 was chosen to balance memory efficiency and computational
performance. During training, we employed a poly-scheduling strategy to gradually
adjust the learning rate to zero over the course of 200 epochs. At the end of each training
epoch, inference on the validation was performed to evaluate the model’s change detection
performance. Subsequently, the model with the highest F1 score for evaluation on the test
set was selected as the optimal model to ensure comparability in quantitative results.

4.1.3. Evaluation Metrics

The primary objective of CD is to accurately identify changed and non-changed pixels,
which fundamentally constitutes a binary classification problem. To assess the performance
of the proposed MDFA-Net, we utilized a comprehensive set of evaluation metrics that are
pivotal in reflecting the model’s efficacy in distinguishing between altered and unaltered
regions in remote sensing images. The evaluation metrics employed in this study include
precision (Pre), recall (Rec), F1 score (F1), Intersection over Union (IoU), and Overall
Accuracy (OA). Each metric serves a distinct purpose and provides insight into different
facets of model performance.

Precision (Pre) quantifies the proportion of true positive predictions among all in-
stances classified as positive by the model. It is mathematically represented as:

Pre =
TP

TP + FP
(16)

where TP denotes true positives and FP signifies false positives. A higher precision value
indicates a higher correctness rate in the model’s positive predictions, thus minimizing the
occurrence of false alarms.

Recall (Rec) evaluates the model’s ability to identify all relevant instances, reflecting the
ratio of true positive predictions to the total number of positive samples. It is formulated as:

Rec =
TP

TP + FN
(17)

Here, FN represents false negatives. A higher recall score signifies that a greater pro-
portion of actual positives have been successfully detected, which is critical in applications
where missing changes can have significant consequences.

F1 score (F1) is the harmonic mean of precision and recall, providing a single measure
that balances both metrics. It is particularly useful in cases where there is an uneven class
distribution. The F1 score is articulated as:

F1 = 2 × Pre × Rec
Pre + Rec

(18)

An elevated F1 score indicates enhanced detection accuracy, reflecting the model’s
robustness in correctly identifying changes while maintaining a low false positive rate.

Intersection over Union (IoU) is a critical metric for evaluating change detection
accuracy. It quantifies the overlap between the predicted and actual regions, thereby
providing a measure of how well the model identifies changing areas. Mathematically, IoU
is defined as:

IoU =
TP

TP + FN + FP
(19)

where TP denotes true positives, FP signifies false positives, and FN represents false
negatives. The value of IoU ranges from 0 to 1, with a higher score indicating better
performance in accurately identifying changes. In many practical applications, a threshold
for IoU is often established to determine the validity of the model’s predictions.

Overall Accuracy (OA) serves as a general metric to evaluate the model’s performance
across all classifications, encapsulating both correct and incorrect predictions. It is defined as:
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OA =
TP + TN

TP + TN + FP + FN
(20)

where TN signifies true negatives. A higher OA percentage denotes an overall effective
classification performance, ensuring that the model not only detects changes but also
accurately identifies stable regions.

In summary, integrating precision, recall, F1 score, and Overall Accuracy into the
evaluation framework provided a comprehensive assessment of MDFA-Net performance
in the BCD task.

4.2. Comparative Studies of State-of-the-Art Methods
4.2.1. Overview of Baseline Models and State-of-the-Art Approaches

Nine state-of-the-art BCD methods using remote sensing images are compared with
our method, including the fully convolutional early fusion network (FC-EF) [24], the
fully convolutional early fusion network (FC-Siam-Diff) [24], the fully convolutional
Siamese-concatenation network (FC-Siam-Conc) [24], the spatial–temporal attention-based
network (STANet) [51], Change Former [39], the deeply supervised image fusion net-
work (DSIFN) [13], BIT [42], the densely connected Siamese nested U-shape network
(SNUNet) [27], and the USSFC-Net [21]. As previously mentioned, USSFC-Net has achieved
state-of-the-art performance across several datasets in 2023. In addition, some thoughts
from USSFC-Net were applied and modified in our work. Therefore, we selected USSFC-
Net as our primary reference for the comparison.

4.2.2. Accuracy Performance Comparison

We compared the accuracy performance of MDFA-Net with those of the other models
using three datasets, as shown in Tables 2–4.

Table 2. Accuracy performance comparison on WHU-CD test set.

Network F1 (%) Pre (%) Rec (%) IoU (%) OA (%)

FC-EF 76.88 79.33 74.58 62.45 97.10
FC-Siam-Diff 86.31 89.61 83.22 75.91 95.90

FC-Siam-Conc 65.31 68.93 62.06 48.54 89.89
STANet 87.11 86.11 88.14 77.17 96.52

Change Former 90.25 91.23 85.46 84.98 98.17
DSIFN 88.52 85.89 91.31 79.40 98.49

BIT 85.71 82.04 89.74 74.96 98.00
SNUNet 87.76 87.84 87.68 78.19 98.16

USSFC-Net 92.68 93.37 94.04 86.37 99.25
Our Model (MDFA-Net) 93.81 92.79 94.84 88.34 99.36

The highest values in each indicator are highlighted in red, and the second highest values in each indicator are
marked in blue.

Table 3. Accuracy performance comparison on CDD test set.

Network F1 (%) Pre (%) Rec (%) IoU (%) OA (%)

FC-EF 68.67 79.79 61.28 53.05 89.90
FC-Siam-Diff 72.67 74.83 70.64 57.08 92.17

FC-Siam-Conc 70.98 89.71 58.73 55.02 92.57
STANet 83.34 76.97 92.91 73.00 96.02

Change Former 92.47 94.69 90.86 88.97 97.98
DSIFN 93.39 92.33 94.48 87.60 98.11

BIT 93.54 92.79 94.56 87.94 98.56
SNUNet 92.31 93.41 91.24 85.73 98.38

USSFC-Net 94.26 93.05 95.50 89.14 98.51
Our Model (MDFA-Net) 95.32 95.23 95.42 91.06 98.85

The highest values in each indicator are highlighted in red, and the second highest values in each indicator are
marked in blue.
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Table 4. Accuracy performance comparison on LEVIR-CD test set.

Network F1 (%) Pre (%) Rec (%) IoU (%) OA (%)

FC-EF 72.91 81.38 66.07 58.82 97.48
FC-Siam-Diff 86.84 89.45 84.66 76.83 98.01

FC-Siam-Conc 83.96 90.48 78.60 72.45 98.37
STANet 87.33 90.53 84.71 77.79 98.81

Change Former 90.50 90.83 90.18 82.66 99.00
DSIFN 87.58 87.30 88.27 77.82 99.01

BIT 90.11 91.67 87.38 80.67 98.97
SNUNet 89.71 90.62 89.47 81.77 98.96

USSFC-Net 91.04 89.70 92.42 - -
Our Model (MDFA-Net) 91.21 91.04 91.39 84.10 99.07

The highest values in each indicator are highlighted in red, and the second highest values in each indicator are
marked in blue.

(1) Comparison on WHU-CD

The experimental results on the WHU-CD dataset are presented in Table 2. The
proposed MDFA-Net was demonstrated to have superior performance to other methods,
while USSFC-Net achieved second place. Specifically, when comparing our model to
USSFC-Net, a higher F1 score, Rec, and IoU could be observed, showing 1.13%, 0.80%, and
1.94% improvement, respectively. Although Pre was slightly lower in MDFA-Net than in
USSFC-Net, the notable increase in F1 score indicates a better balance between precision
and recall in our model than in USSFC-Net. The effectiveness of MDFA-Net on WHU-CD
was verified, as it achieved a state-of-the-art accuracy performance.

(2) Comparison on CDD

The experimental results on the CDD dataset are presented in Table 3. In particular, the
experimental results of each model in Table 3 were obtained using CDD datasets containing
various types of changes. Our MDFA-Net model demonstrated superior performance
compared to existing methods, indicating significant improvements. In the F1 score, Pre,
IoU, and OA, MDFA-Net achieved the best performances among all models and were
ahead of the second by 1.06%, 2.18%, 1.92%, and 0.31%, respectively. Regarding recall, our
MDFA-Net achieved second place, only behind USSFC-Net by 0.08%. Therefore, these
two models have comparable performances in recall on the CDD dataset. But MDFA-Net
outperformed in terms of overall performance, which demonstrates the effectiveness of
MDFA-Net in promoting CD accuracy on the CDD dataset.

(3) Comparison on LEVIR-CD

The experimental results on the LEVIR-CD dataset are listed in Table 4. The proposed
model had the highest values in F1-score, IoU, and OA, all of which are overall performance
evaluations. Also, the proposed method had the second highest accuracy in Pre and Rec,
which indicates that the proposed method can balance precision and recall to achieve
state-of-the-art overall performance on the LEVIR-CD dataset. It is noteworthy that the
original paper that proposed USSFC-Net did not provide IoU or OA [21]. Nevertheless,
our model achieved superior performance in both of these metrics when compared to other
models. Again, the proposed model was effective on the LEVIR-CD dataset.

4.3. Comparative Analysis

To evaluate the effectiveness of the proposed modules, i.e., HMDConv and DFA, we
conducted separate ablation experiments. The non-weighted shared Siamese U-Net was
utilized as a baseline, as modules were added to this baseline to systematically evaluate
their functionality. Regarding to its data size, we employed the LEVIR-CD dataset in this
evaluation. F1 score, Pre, Rec, IoU, and OA are presented in Table 5.
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Table 5. Accuracy comparison with baseline models on LEVIR-CD.

Network F1 (%) Pre (%) Rec (%) IoU (%) OA (%)

Baseline 88.46 86.29 90.75 79.32 98.85
Baseline + HMDConv 89.75 86.53 93.23 81.41 98.99

Baseline + DFA 90.45 90.57 90.34 82.57 99.03
Baseline + HMDConv + DFA 91.21 91.04 91.39 84.10 99.07

According to the experimental results, the introduction of HMDConv improved F1
by 1.29% on top of the baseline. Furthermore, the introduction of DFA greatly improved
the detection accuracy, as Pre and F1 score were 4.28% and 1.99% higher than the baseline,
respectively. The combination of HMDConv and DFA showed the best performance in
the experiment. Therefore, HMDConv and DFA are both valid in terms of improving the
model’s performance.

5. Discussion

In this section, the advantages and limitations of the proposed model are discussed
based on the experimental results and comparative analysis.

5.1. Advantages

In Section 4.2, MDFA-Net outperformed all other models in overall performance, i.e.,
F1 score and OA, in all three open datasets. In addition, MDFA-Net achieved top 2 in all
precision and recall tests. These results indicate state-of-the-art performance in the BCD
task. To better understand its performance, examples in LEVIR-CD by MDFA-Net, BIT,
Change Former, SNUNet, and USSFC-Net were selected for manual checking. We randomly
selected nine scenarios in each figure to present the detection results comprehensively
(Figures 6–8). In Figure 6, different colors are used to represent the detection effect. TP
is represented by the white ratio, TN by black, FP by red, and FN by green. As shown
in Figure 6, MDFA-Net achieved better results than other models in the following two
aspects: 1. Small and sparse building changes were falsely detected in other models as
the FN (green) areas were larger and more frequent than MDFA-Net. Notably, MDFA-Net
had fewer FP (red) results, which conforms to its highest precision among all models.
2. MDFA-Net performed better in dealing with irregular building boundary detection
of changing regions than other models because its change map had smoother and more
complete boundaries. To this end, MDFA-Net achieved a balance in precision and recall
and likely showed an outstanding performance in subtle change detection.

Effective subtle change detection is an ever-present challenge in CD. In BCD, existing
methods have problems in terms of missing detailed information in feature extraction of
small target buildings, which is prone to false and missed detection. To verify the advantage
of MDFA-Net in subtle change detection, examples whose building areas were less than
32 × 32 pixels were selected from the LEVIR dataset. In Figure 7, the red areas indicate
multiple detection areas that did not change, but were incorrectly detected as changing (FP).
The green areas are missed change areas that actually changed but were not recognized
by the model (FN). As shown in Figure 7f,g, we can tell that there were many FN areas in
results from other models. In contrast, the proposed MDFA-Net had much less FN in small
building change detection and showed more accurate edge detection results. To this end,
MDFA-Net was demonstrated to have more effective subtle (small-sized building) change
detection among other models.

We believe the outstanding performance of MDFA-Net is mainly owing to the pro-
posed DFA and HMDConv modules. As previously mentioned in Section 4.3, the results
demonstrated that either or both DFA and HMDConv can improve model performance.
Furthermore, the results presented a remarkable improvement in accuracy when DFA was
employed, highlighting its contribution to the proposed framework.
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DFA was proposed to address the problem identified by Shen et al., where direct
fusion of native and auxiliary feature maps can lead to significant feature redundancy [11].
DFA is supposed to refine the saliency of change regions, empowering the network to
dynamically modulate attention weights across diverse areas in the feature maps. To
further verify the effectiveness of DFA, we examined the attention activation map of
Figure 8 below for the final differential feature output in the model on the LEVIR-CD
dataset. In Figure 8, feature attentions from the MDFA-Net are better activated in building
areas, where less false detection and clearer building boundaries exist compared to other
results. Theoretically, DFA mitigates the potential for redundancy present in the auxiliary
feature maps while simultaneously preserving vital features that contribute to subtle
change detection. The innovative approach of leveraging maximum aggregated differential
features as key parameters for generating attention scores markedly enhances the model’s
sensitivity and precision in identifying subtle changes.
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On the other hand, HMDConv complements the strengths of DFA significantly. Abun-
dant building features generated by HMDConv provide a robust foundation upon which
the advantages of DFA can be further realized. This synergistic relationship not only im-
proves the framework’s overall efficacy, but also ensures a comprehensive representation
of both broad and subtle changes in images.

Moreover, the inclusion of various change targets in the CDD dataset provides a
broader scope of test scenarios. As our research is primarily focused on building change
detection, the promising results on the CDD dataset indicate its great potential in detecting
other types of changes as well. The robustness and generalization capability of MDFA-Net
have been explored across different types of changes.



Remote Sens. 2024, 16, 3466 20 of 23

Remote Sens. 2024, 16, x FOR PEER REVIEW 19 of 22 
 

 

 

Figure 7. The small target buildings’ change visualization map: (a) T1 image. (b) T2 image. (c) 

Ground truth. (d) Our MDFA-Net. (e) BIT. (f) Change Former. (g) SNUNet. (h) USSFC-Net. Red 

indicates incorrectly identified pixels, while green indicates missed pixels. 

 

Figure 8. The attention mechanisms of the DFA: (a) T1 image. (b) T2 image. (c) Ground truth.
(d) MDFA-Net result. (e) Our MDFA-Net. (f) BIT. (g) Change Former. (h) SNUNet. (i) USSFC-Net.

5.2. Limitations and Further Directions

The proposed model has the following limitations: (1) Sensitivity to hyper-parameters.
The proposed model could be sensitive to hyper-parameters in training, e.g., batch size and
learning rate, and parameters in model structure, e.g., dilation convolution size. Current
parameter settings mainly rely on previous settings. More tests could be implemented in
further studies to explore better hyper-parameter settings and more combinations of mixed
convolutions. (2) Questionable generalizability in other datasets or applications. Although
the proposed MDFA-Net has been validated in three open-access datasets, its performance
in a larger range of high-resolution image datasets or real applications remains unknown.
Further methodological improvements may be needed for building change mapping in
a specific region. (3) Real-time detection limitation. The complexity introduced by the
Transformer-based DFA mechanism and multi-scale HMDConv fusion may lead to an
increase in computational requirements. Therefore, the capability of real-time BCD and
the deployment in other environments is limited [52]. In future studies, the computational
efficiency of MDFA-Net needs further improvement.

6. Conclusions

In this paper, we introduced MDFA-Net to effectively integrate CNN and Transformer
in BCD. To overcome the subtle change detection challenge in current studies, we developed
two novel modules, HMDConv and DFA. The HMDConv module can extract local features
with hybrid dilation convolutions to alleviate the local bias effect in traditional CNN. The
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DFA module implements the self-attention mechanism at multi-scale difference feature
maps to overcome the problem that local details may be lost in the global receptive field in
the traditional self-attention mechanism. Experimental results in three remote sensing BCD
datasets demonstrated that MDFA-Net has the best overall performance compared to other
models, especially outperforming the state-of-the-art USSFC-Net. Visual interpretation
established that its outstanding performance mainly relied on better subtle change detection
results. Thanks to two novel modules, MDFA-Net achieved a balance between precision
and recall in three open-access BCD datasets and showed a great performance in handling
the subtle change challenge. In future studies, the robustness of the proposed model could
be explored by optimizing hyper-parameters and applying it in various applications.
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