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Abstract: An accurate assessment of frost damage in coffee plantations can help develop effective
agronomic practices to cope with extreme weather events. Remotely piloted aircrafts (RPA) have
emerged as promising tools to evaluate the impacts caused by frost on coffee production. The
objective was to evaluate the impact of frost on coffee plants, using vegetation indices, in plantations
of different ages and areas of climatic risks. We evaluated two coffee plantations located in Brazil,
aged one and two years on the date of frost occurrence. Multispectral images were collected by a
remotely piloted aircraft, three days after the occurrence of frost in July 2021. The relationship between
frost damage and these vegetation indices was estimated by Pearson’s correlation using simple and
multiple linear regression. The results showed that variations in frost damage were observed based
on planting age and topography conditions. The use of PRA was efficient in evaluating frost damage
in both young and adult plants, indicating its potential and application in different situations. The
vegetation index MSR and MCARI2 indices were effective in assessing damage in one-year-old coffee
plantations, whereas the SAVI, MCARI1, and MCARI2 indices were more suitable for visualizing
frost damage in two-year-old coffee plantations.

Keywords: Coffea arabica L.; precision coffee; agrometeorology; remote sensing; index vegetation;
frost damage

1. Introduction

Brazil stands out as the largest coffee producer in the world [1]. Coffee ranks second in
the country’s agricultural exports and is one of the most important sources of revenue for
the Brazilian economy [2]. The state of Minas Gerais is the main coffee-producing region
in the country, contributing approximately 70% of its area to Arabica coffee [3]. However,
weather-related problems in some producing areas, such as below-average rainfall and
severe frosts in June/July 2021, affected the first flowering and fruiting of Arabica coffee,
reducing the production potential for the next Arabica crop for 2022/23, which is expected
to drop 19.3% compared to the 2020/21 crop [4].

Coffee production is subject to adverse weather conditions and extreme events, such
as frosts, which have been affecting farmers’ ability to plan for the coffee harvest [5]. In
Brazil, frost is a concern for farmers in the south-central region of the country, where
the vast majority of coffee producers are located [6]. In these regions, frost events are
mainly associated with climatic factors such as latitude, altitude, distance of the sea and
topography [7]. Most coffee-growing areas in the Minas Gerais region are located in a
predominantly undulating relief class and at high altitudes between 900 and 1100 m [8,9],
where frost is more likely to occur [10].
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Frost in coffee-growing areas is a microclimatic phenomenon. In sloping terrain, when
the temperature drops below the freezing point of water, the cold air that accumulates
at the surface tends to flow downwards to the bottom of slopes and accumulate into
depressions or valleys [10,11]. The exposure of plants to low temperatures can lead to
water freezing in the cell tissues, rupturing the cell walls and causing damage, which gives
a burnt appearance to the plant [5]. As a result, plant growth and flowering are affected,
coffee beans turn black, and their quality deteriorates in direct proportion to the severity
of frost damage [12]. Damage to the plant causes decreased photosynthesis, leaf death or
stem damage [13], and a reduction in coffee yield.

After frost occurrence, coffee crops need to be assessed in terms of their conditions
through monitoring and detection of damage. This is crucial to quantify the stress and
damage caused by this event, providing essential information to support decision making,
such as whether there is a need to prune damaged plants and apply fertilizer to preserve the
leaves that were not affected [14]. Currently, coffee growers and researchers manually inves-
tigate damage in affected areas, making it a great challenge to obtain accurate crop damage
data. However, recent implementations of systems based on thermal and spectral imag-
ing offer a non-destructive method to detect frost damage in plants, and are increasingly
functional and essential for early detection which allows frost risk management [12].

There are a few studies that have used spectral response data of coffee plants to
assess frost damage. [14] studied the potential use of multispectral images obtained by
remotely piloted aircraft (RPA) to analyze and identify the damage caused by frost in
six-year-old coffee plants under different frost risk and demonstrated that the vegetation
indices showed a strong relationship with frost damage in coffee plants. The use of RPA has
shown a differentiated view of crop fields, facilitating the dissemination of this technology
in the field [2].

The remotely piloted aircraft system represents a typical application of a suborbital
platform equipped with onboard sensors, which enables the acquisition of products at
various resolutions. This makes it possible to obtain information capable of anticipating
and predicting trends in plant behavior in response to the influences of various agronomic
and environmental factors [15]. Applying this knowledge in coffee farming may allow
farmers to practice practical field management, such as assessing damage to coffee trees
caused by frost and it will also provide timely agricultural information for farmers [14].

There is limited detailed information in the scientific literature regarding the impact
of frost on coffee plants at different ages and the correlation between plant responses and
topographical variations. These findings may facilitate the implementation of effective
strategies that enhance decision-making processes and intervention practices among coffee
producers. The presence of agricultural risk management tools is necessary to guarantee
the farmer’s income and being able to continue their activities when extreme weather
events occur [5].

The hypothesis of this study is that the use of vegetation indices obtained through
images captured by a multispectral camera onboard a remotely piloted aircraft is an
effective and feasible approach to identify and monitor frost damage to coffee plantations,
regardless of the age of the plant and the topographic characteristics of the terrain. In
this context, the purpose of this study was to evaluate the impact of frost on coffee plants
using vegetation indices for plantations with different ages and in different topographic
conditions.

2. Materials and Methods
2.1. Description of the Area

This study was conducted at Fazenda Bom Jardim, located in Santo Antônio do
Amparo, in the western region of Minas Gerais, Brazil, at the geographical coordinates
21◦00′58.9′′S and 44◦55′24.9′′W, altitude of 950 m (Figure 1).
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Figure 1. Geographical location of the study area. The sampling points are highlighted in black, and
the climate suitability zones are separated by yellow lines as follows: A: high risk and B: low risk.

Santo Antônio do Amparo has the majority of its territory at altitudes between 900
and 1050 m, holding the largest coffee production area in the region, with 58% of the region
consisting of undulating terrain creating a relief that rises and falls continuously, followed
by gently undulating terrain with more gradual variations in height at 36.5%.This means
that most coffee plantations are located in areas with less than a 20% slope [8]. Of the
total area of the municipality with altitudes higher than 1050 m, approximately 46% of it is
occupied by coffee farming. Coffee-growing areas predominantly occupy altitudes higher
than 950 m [16]. The two areas evaluated have the following characteristics: The two-year-
old crop area has an altitude of 937 m, a slope of 60◦, and covers 19,959 m2; the one-year-old
crop area spans 24,475 m2, with an altitude of 950 m and a slope of 62◦. The region’s climatic
classification is Cwa, humid subtropical according to the Köppen-Geiser classification, with
hot and humid summers and cold and dry winters, with average, minimum, and maximum
temperatures of 20 ◦C, 14 ◦C, and 26 ◦C, respectively. The average total precipitation is
1400 mm.

2.2. Experimental Design

This study was conducted in two experimental areas, with different characteristics.
Two planting areas, with two study factors, were used for evaluation: plant age and climate
risk area associated with topography. Two plant ages were evaluated: coffee plants aged
one year and two years; and two climate risk areas associated with topography were
evaluated: low-risk area (coffee plants located on the slope of the terrain) and high-risk
area (plants located in the valley area). To evaluate the damage levels in coffee plants, three
blocks were delimited within each climatic risk area, and each block corresponded to ten
plants.

For this study, two experimental coffee planting areas (Coffea arabica L.) were used.
Two coffee cultivars were employed: the one-year area was cultivated with Catuaí Amarelo,
and the two-year area was cultivated with Arara. Catuaí Amarelo is a hybrid developed
in Brazil, specifically in Minas Gerais, resulting from the combination of the Caturra and
Mundo Novo cultivar. Arara coffee is a cultivar originating from Brazil, arising from the
natural crossbreeding between the Obatã and Catuaí Amarelo cultivar. In all planting areas,
the spacing was 0.5 m between plants and 3.5 m between rows, totaling 5700 plants per
hectare. The age of the plants was determined based on the time between the planting date
and the frost occurrence, categorizing them as 1-year area and 2-year area.

The areas were divided based on the plant positions on the terrain according to the
topography and climate risk, following the methodology proposed by [14], where the risk
of plant damage is classified into low-risk (B) and high-risk (A) zones. The evaluated plants
were georeferenced using GPS.

Before data analysis, the study area was classified with the objective of understanding
the impacts of frost on coffee cultivation and recommending measures to minimize possible
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damage caused by this phenomenon. Following the methodology proposed by [14], the
study area was subdivided into two distinct regions, each characterized by different levels
of frost-related climate risk. These regions were classified as having “high” (A) and “low”
(B) climate risk for the occurrence of frost, as illustrated in Figure 1.

This classification was established based on criteria that considered the variability
of altitude and topography of the terrain, including variations in the slope of the terrain.
Altitude variability refers to the difference in elevations found within a specific area. Terrain
with different altitudes may have different microclimates and, consequently, be subject to
different climatic risks, such as lower temperatures. In this context, the climate risk zones
are described as follows: high risk: covers the lower third of the terrain, characterized by
lower altitudes and a geographical configuration that makes the area more susceptible
to adverse weather events, such as extremely low temperatures; low risk: comprises the
upper third of the terrain, where altitudes are greater and the geographical configuration
tends to reduce susceptibility to adverse weather events. Consequently, this area can be
considered less vulnerable and therefore has a lower climate risk associated with frost.

2.3. Frost Damage Assessment and Plant Response

The frost occurred on 20 July 2021, with the minimum temperature recorded on a
thermometer located in the study area being −1.7 ◦C. The assessment of frost damage
in coffee trees was conducted following the methodology described by [14,17,18]. In this
evaluation system, three independent expert researchers assess the three portions of each
plant (upper, middle, and lower thirds), considering leaves and branches, assign scores from
0 to 10, and obtain an average score for each plant, which is then converted to a percentage.
Parts of the plant exhibiting brown coloration and necrosis, physical characteristics caused
by cell death due to freezing, were considered as damage.

The average values obtained by each researcher are grouped into damage classes; the
scores from one to ten correspond to percentages of damage from 0 to 100%, as described
in [14].

The coffee plants were evaluated by measuring: number of nodes per branch and
number of damaged leaves. A measuring tape and a clipboard were used for the evalua-
tions. Two branches (upper and lower) of the middle third of the plant were used for each
evaluated plant to measure the variables.

2.4. Aerial Imaging and Image Processing

The first step was to generate the database containing images in digital format. The
images were obtained using a remotely piloted aircraft (RPA) with a multispectral camera
attached. The RPA used was the 3DR Solo commercial drone [19], equipped with four
motors (quadcopter).

The images were captured by a Parrot Sequoia multispectral camera, which features
an RGB sensor with a resolution of 16 megapixels (4608 × 3456) and four additional sensors
with a resolution of 1.5 megapixels (1280 × 960) in the spectral bands of green at 550 nm
and a Band Pass (BP) of 40, red (660 nm BP 40), red edge (735 nm BP 10), and near-infrared
(790 nm BP 40). To eliminate atmospheric interference effects, radiometric correction plates
were used during the flights.

The images were processed using Pix4Dmapper software version 4.5.6, student ver-
sion [20], with parameter settings at the highest level, where the images were merged to
generate orthomosaics for calculating vegetation indices. Pix4D software version 4.5.6
automatically calculates the positions and orientations of the original images through
Bundle Block Adjustment (BBA). The images were georeferenced using control points pre-
viously collected in the field area near each evaluated plant by a differential GNSS (Trimble
Navigation Limited, Sunnyvale, CA, USA) to improve orthomosaic precision. Based on
the 3D point cloud obtained during BBA, a Digital Surface Model (DSM) is generated by
interpolates to create gridded data. The orthomosaic corrects photography for tip and tilt
and projects pixels to a map projection using elevation model [20]. The “Ag Multispectral”
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default model was used to generate the orthomosaic from individual spectral bands (green,
red, red edge, and near-infrared). The calibrated reflectance panel corrected the image
reflectance. The vegetation indices were calculated in QGIS. Image overlap was set at 80%,
with a flight 90 m Above Ground Level and speed of 5 m/s, featured a pixel size of 3.75 µm,
and a focal length of 3.98 mm. Image overlap is the link between the various sequential
photos taken by the camera when producing the map.

2.5. Vegetation Indices

The vegetation indices were chosen based on the research of [14]. The vegetation
indices of the images were computed using the Raster Calculator tool available in the
Raster menu of QGIS 3.4.14-Madeira software [21]. After generating the vegetation indices,
buffers were created around the georeferenced sample points from the field-collected data.
The mean pixel values corresponding to each individual plant were extracted using the
Zonal Statistics tool, with the mean value extracted from pixels within a 0.20 m radius
from the center of each sampled plant to mathematically compare image values with field-
collected damage data. Pixel values were exported in XLSX format, and the performance of
vegetation indices in estimating frost damage in coffee plants was analyzed.

Each vegetation index is derived from different combinations of spectral bands, result-
ing in distinct values for each index. Therefore, to characterize leaf damage due to frost in
coffee plants, several general approaches were adopted. These include identifying areas
with significantly lower values in post-frost vegetation indices, comparing these values
with established normal patterns for coffee crops, and validating through field inspections
to confirm the extent of damage.

The vegetation indices were presented in Table 1. After processing the orthomosaics,
the images were cropped only in the area of interest for the application of vegetation indices.

Table 1. Index vegetation calculated from the reflectance of multispectral bands of images.

Index Vegetation Formulas References

NDVI (normalized difference vegetation index) (Nir − Red)/(Nir + Red) [22]

NDRE (normalized difference red edge) (Nir − RedEdge)/(Nir + RedEdge) [23]

MTCI (meris terrestrial chlorophyll index) (Nir − RedEdge)/(RedEdge − Red) [24]

MSR (modified simple ratio) ((Nir/Red) − 1)/(
√

((Nir/Red)) + 1) [25]

GNDVI (green normalized difference vegetation index) (Nir − Green)/(NIR + Green) [26]

GCI (green coverage index) (Nir/Green) − 1 [27]

NDWI (normalized difference water index) (Green − Nir)/(Green + Nir) [28]

MCARI1 (first modified chlorophyll
absorption ratio index) 1.2 (2.5 (Nir − Red) − 1.3 (Nir − Green)) [29]

MCARI2 (modified chlorophyll absorption in reflectance
index 2)

1.5 (2.5 (Nir − Red) − 1.3 (Nir − Green))
(Nir/Red)/

√
(2Nir + 1) 2 − (6Nir −

5
√

Red) − 0.5
[29]

SAVI (soil adjusted difference
vegetation index) (1 + 0.5) ∗ ((Nir − Red)/(Nir + Red + 0.5)) [30]

OSAVI (optmized SAVI) (Nir − Red)/(Nir + Red + 0.16) [31]

CIrededge (Chlorophyll IndexRedEdge) (Nir/RedEdge) − 1 [32]

Reflectance in the bands: (Nir) near infrared; (RedEd) between red and infrared (borderline red); (Red) red; (Green)
green. Source: From the Author (2023).

2.6. Statistical Analyses

Data on frost damage, vegetative response, and the vegetation indices under study
were compiled and exported to a Microsoft Excel spreadsheet. To analyze the relationship
between damage and vegetation indices, the data were subjected to Pearson’s correlation
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analysis (r) with a significance level of p < 0.05. The interpretation of Pearson’s correlation
values is categorized as follows: zero correlation for values equal to 0; weak correlation
from 0 to 0.3; moderate correlation from 0.3 to 0.6; strong correlation from 0.6 to 0.9; and a
very strong correlation of 0.9 to 1.0 [33]. The average values of the vegetation indices were
calculated based on the average of the pixels located within a 0.20 m radius from the center
of each plant.

Predictive linear regression models were used to evaluate the performance of vegeta-
tion indices in estimating frost damage to coffee plants in different climate risk zones. In
these models, the vegetation indices were considered as independent variables, while the
values representative of the damage in the different areas of climatic risk were dependent
variables. The formula of simple linear regression is:

Y = β0 + β1X ∗ x (1)

where

Y = dependent variable;
X = independent variable;
β0 = intercept;
β1 = angular coefficient;

Simple linear regressions were fit considering each vegetation index as the inde-
pendent variable. However, using the 5% significance parameter, it was found this the
adjustments did not satisfactorily estimate the damage, and in many cases, non-significant
parameters were obtained for these models. Thus, it was necessary to apply multiple linear
regression, which generalizes the simple linear regression model, allowing many terms in
the model instead of just one intercept and one slope [34].

For the analysis of the data via the multiple linear regression model, all the vegetation
indices presented in this study were included (NDVI, NDRE, MTCI, MSR, GNDVI, GCI,
NDWI, MCARI1, MCARI2, SAVI, OSAVI, CIRededge). The multiple regression model
was adjusted to explain the damage, verifying which variables were significant at the 5%
significance level and estimating the values for the parameters. The formula of multiple
linear regression is:

Y = β0 + β1 ∗ x + β2 ∗ x2 (2)

where

Y = dependent variable;
X = independent variables;
β0 = intercept;
β1, β2 = coefficients of each independent variable;

The stepwise computational method was used for the selection of variables, which
is a procedure for selecting or excluding variables based on an algorithm that checks
the importance of the variables, including or excluding them from the model based on
a decision rule. The model was also tested for multicollinearity between the variables,
i.e., if two or more variables provide the same information, using the variance inflation
factor (VIF). Residual analysis was performed to verify if any assumption of the model was
violated. It was found that since the VIF is less than 10 for all explanatory variables in both
models, the multicollinearity problem was not observed.

Residual analysis was performed to evaluate the suitability of the model and the
homoscedasticity of the model, ensuring that the variance was constant. The symmetry
of the data distribution was assessed. Finally, an analysis of the normality of the residual
distribution was performed. These analyses provide valuable insights into the quality of
the model and the reliability of the inferences derived from it. In addition to the graphical
analysis, normality was confirmed by the Shapiro-Wilk test at the 5% significance level.
The entire computational work was performed using the open-access software R, version
4.4.1 [35].
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It was found that the assumption of random errors follows a normal distribution.
This hypothesis was confirmed by the Shapiro-Wilk normality test, indicating that the
errors indeed follow a normal distribution. Additionally, it was observed that the studied
residuals have constant variances Var(ri) = 1. Through these analyses, it was confirmed
that the residuals exhibit a normal distribution and do not violate any assumptions of
the model.

3. Results
3.1. Frost Damage in Climate Risk Zones

The results from the analysis of variance and mean test for the number of damaged
leaves and nodes per branch of coffee plants are shown in Tables 2 and 3. Comparing
different planting ages, the coffee plants exhibited higher damaged leaves values in high-
risk zones (Tables 2 and 3). Regarding the number of nodes per branch, no significant
differences were observed, regardless of the climate risk zone and the age of the plant.

Table 2. Number of damaged leaves (DL) and number of nodes per branch (NN) in one-year-old
coffee plants in different climatic risk areas.

Climatic Risk Zones
Age of Plantation

DL NN

One year
High risk 9 a 6 a
Low risk 4 b 6 a
Value (F) 0.05 0.66 NS

DMS 0.99 0.64
CV% 21.68 15.87

NS: not significant. Different letters in the same column indicate significant differences (p < 0.05) according to
Tukey’s test between climate suitability zones for each coffee plantation area. CV: coefficient of variation; LSD:
least significant difference.

Table 3. Number of damaged leaves (DL) and number of nodes per branch (NN) in two-year-old
coffee plants in different climatic risk areas.

Climatic Risk Zones
Age of Plantation

DL NN

Two year
High risk 11 a 11 a
Low risk 5 b 12 a
Value (F) 3.88 0.45 NS

DMS 1.27 1.05
CV% 22.91 13.61

NS: not significant. Different letters in the same column indicate significant differences (p < 0.05) according to
Tukey’s test between climate suitability zones for each coffee plantation area. CV: coefficient of variation; LSD:
least significant difference.

Specifically, for one-year-old coffee plants (Table 2), the average damaged leaves in
high-risk zones was 9, compared to 4 in low-risk zones. For two-year-old plants (Table 3),
those in high-risk zones showed an average of 11 damaged leaves, while those in low-risk
zones maintained an average of 4 damaged leaves.

The results of the analysis of variance conducted on frost damage data across two
climatic risk areas and different planting times were shown in Table 4. Coffee plants
showed significantly higher frost damage in high-risk areas compared to low-risk areas.
In the two-year-old coffee plants, high-risk and low-risk zones showed 50% and 12%
frost damage, respectively. For the one-year-old coffee plants, high and low climate
risk zones showed 88% and 6% damage, respectively. The high-risk area showed over
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80% damage in one-year-old crops. When examining data dispersion using standard
deviation, values remained below 10%.

Table 4. Frost damage (FD) and standard deviation (SD) of one-year-old and two-year-old coffee
plants in different climatic risk areas.

Climatic Risk Zones

Age of Planting Low Risk High Risk

FD (%) SD FD (%) SD
One year 6 Bb 2.3 88 Aa 7.7
Two years 12 Ab 4.85 50 Ba 8.66

Means followed by the same capital letter in the column and the same lowercase letter in the row did not
significantly differ from each other according to Tukey’s test (p < 0.05).

3.2. Maps of Vegetation Indices as a Function of Frost Occurrence

Maps of vegetation indices were generated to visualize the damage caused by frost
in the study areas (Figures 2 and 3). The locations where the vegetation indices have
the lowest values are represented by red and orange shades. This value characterizes
the regions with the lowest vegetative vigor and, consequently, greater frost-damage
thereby resulting in a reduction in the leaf area and productive capacity of the plant.
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Figure 2. Maps of vegetative indexes in an area with one-year-old coffee plantations after the
occurrence of frost. A: high-risk zone, B: Low-risk zone.

In the one-year-old coffee plants, the vegetation indices that most accurately reflect
frost damage effects were NDVI, MSR, OSAVI, SAVI, MCARI1, and MCARI2 (Figure 2).
These indices exhibited higher values in the low-risk zone compared to the high-risk zone.
However, the NDRE, MTCI, GNDVI, CGI, and NDWI index maps did not clearly delineate
the climate risk zones.

The maps of the spatial distribution of vegetation indices at two-years-old coffee plants
can be seen in Figure 3. Vegetative indices NDVI, MSR, SAVI, OSAVI, and MCARI2 showed
considerable spatial variations in values between the high-risk and low-risk zones.
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3.3. Modelling of Frost Damage Generated by Vegetation Indices
3.3.1. Simple Linear Regression and Pearson’s Analysis

Table 5 shows the estimates of the parameters for each vegetation index in one-year-old
coffee plants, considering simple linear regression to describe frost damage and Pearson’s
correlation coefficient for each of them in different climate risk zones. The vegetation
indices were related to the damage caused by frost; in some cases, this relationship was
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strong, while in others, the relationship was weak. The correlation analysis (r) showed that
only the vegetation indices MCARI1, CIrededge, SAVI and OSAVI have a strong positive
correlation (r > 0.60) with frost damage in the low-risk zone. The NDVI vegetation index
has a moderate positive correlation (r > 0.50) with frost damage in the low-risk zone. In the
high-risk zone, the NDRE and MTCI obtained a moderate negative correlation (r = −0.56).

Table 5. Estimates of the parameters of the simple linear regression model for the description of frost
damage (FD) considering vegetation indices (VIs) in one-year-old coffee plants in different climatic
risk zones and their respective correlation coefficients.

IsV Risk β0 β1 r R2

NDVI
Low −5.38 23.20 * 0.53 0.28
High 76.56 * 34.79 0.26 0.07

NDRE
Low 2.67 21.99 0.24 0.06
High 120.01 * −253.72 * −0.57 0.33

MTCI
Low 6.78 * −1.25 −0.04 0
High 111.96 * −142.39 * −0.56 0.32

MSR
Low −5.75 23.03 0.38 0.14
High 104.18 * −59.25 −0.38 0.14

GNDVI
Low 10.84 * −46.49 −0.31 0.09
High 75.60 * 88.02 0.25 0.06

CGI
Low −1.19 2.818 0.37 0.14
High 90.53 * −1.94 −0.06 0

NDWI
Low −7.66 −20.26 −0.31 0.09
High 95.31 * 19.06 0.09 0.01

CIrededge Low −2.46 3.38 * 0.64 0.41
High 83.71 * 5.15 0.14 0.02

SAVI
Low −9.57 38.57 * 0.61 0.37
High 86.49 * 6.48 0.03 0

OSAVI
Low −11.21 * 42.08 * 0.64 0.41
High 89.18 * −2.44 −0.01 0

MACARI1
Low −6.51 * 26.07 * 0.77 0.60
High 86.51 * 6.04 0.04 0

MACARI2
Low 6.32 * −4.08 −0.17 0.03
High 94.59 * 21.87 0.41 0.16

* significant up to 5%.

Furthermore, the metric R2 (coefficient of determination) was used to facilitate the
interpretation of the model results. The closer the R2 values are to 1, the greater the confidence
in the interpretation of the relationship between the vegetation indices and frost damage.
Among all the vegetation indices listed in Table 5, only MCARI1 showed a strong correlation
(r = 0.77) and a coefficient of determination closer to 1 (R 2 = 0.60) in the low-risk zone.

Regarding data of the parameters for each vegetation index in two-year-old coffee
plants, can be seen in Tables 6 and 7. Furthermore, it was observed that in the models
(Tables 5 and 6) with the parameter β1 set to the 5% significance level, performance was
best when the correlation between the vegetation index and the damage was strongest.

Table 6. Estimates of the parameters of the simple linear regression model for the description of frost
damage (FD) considering vegetation indices (VIs) in two-year-old coffee plants in different climatic
risk zones and their respective correlation coefficients.

IsV Risk β0 β1 r R2

NDVI
Low 2.72 11.32 0.08 0.01
High 99.39 * −70.43 −0.34 0.11

NDRE
Low 29.97 −51.2 −0.14 0.02
High 26.6 76.48 0.17 0.02

MTCI
Low 6.7 7.16 0.08 0.01
High 47.14 4.01 0.03 0
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Table 6. Cont.

IsV Risk β0 β1 r R2

MSR
Low −9.41 15.13 0.27 0.07
High 66.66 * −14.37 −0.20 0.04

GNDVI
Low 4.64 10.08 0.08 0.01
High 60.93 −16.78 −0.07 0.01

CGI
Low 12.78 −0.19 −0.04 0
High 37.20 2.47 0.14 0.02

NDWI
Low 17.60 8.07 0.07 0.01
High 19.03 −42.91 −0.09 0.01

CIrededge Low 11.40 0,03 0.01 0
High 89.57 * −7.78 −0.33 0.11

SAVI
Low −12.83 30.99 0.21 0.05
High 197.07 −205.66 −0.36 0.13

OSAVI
Low 16.56 −8.05 −0.09 0.01
High 4.503 78.87 0.26 0.07

MACARI1
Low 13.70 * −2.57 −0.09 0.01
High 34.28 * 18.27 0.39 0.15

MACARI2
Low 15.71 * 6.25 0.30 0.09
High 38.36 * −21.22 −0.40 0.16

* significant up to 5%.

Table 7. Pearson’s correlation coefficient (r) for the frost damage (FD) and each vegetation index, for
1-year and 2-year plants.

Isv 1-Year-Old Plants 2-Year-Old Plants

NDVI −0.83 −0.75
NDRE −0.74 0.13 NS

MTCI −0.83 −0.39
MSR −0.95 −0.70

GNDVI 0.79 −0.43
CGI −0.93 −0.37

NDWI 0.93 0.42
CIrededge −0.92 −0.74

SAVI −0.91 −0.79
OSAVI −0.93 −0.33

MCARI1 −0.87 0.21 NS

MCARI2 −0.73 0.23 NS

NS: not significant.

3.3.2. Multiple Regression Analysis

The MSR, CGI, NDWI, CIrededge, SAVI and OSAVI indices showed a strong negative
correlation (0.9 < r < 1.0) with frost damage in the one-year-old coffee plants (Table 7). In
the two-year-old coffee plants, there was a strong negative correlation (0.6 < r < 0.9) for the
NDVI, MSR, CIrededge and SAVI indices (Table 7).

To obtain estimates of frost damage considering the vegetation indices as explanatory
(independent) variables, a multiple linear regression model was fitted considering all the
indices. Then, the stepwise computational method was used, and the selected models were
as follows:

For 1-year-old coffee plants:

Frost damage = 138.835 − 248.459 ∗ MSR − 48.580 ∗ MCARI2 (3)

R2 = 92.89%

For 2-year-old coffee plants:

Frost damage = 265.29 − 341.29 ∗ SAVI + 50.79 ∗ MCARI1 + 32.11 ∗ MCARI2 (4)
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R2 = 76.44%

In the fitted model (1) for 1-year-old plants, the MSR and MCARI2 were found to be
the most adequate vegetation indices to describe frost damage, with a coefficient of deter-
mination of 92.89%. For the adjusted model (2) that was developed for 2-year-old plants,
the most appropriate vegetation indices to describe frost damage were SAVI, MCARI1 and
MCARI2, with a coefficient of determination that explains 76.44% of variability in the data.

4. Discussion
4.1. Frost Damage and Relationship between Plant Age and Topography

The results obtained in this study showed that there was variation in the effect of
frost on the plant’s response depending on age and topography. Among the differences
observed, the most impactful is related to the climate risk zone, indicating the importance
of topography on coffee crops. This is justified by the impact observed in two-year-old
plants in high-risk zones that had a 175% higher average of damaged leaves than those in
low-risk zones. Similarly, one-year-old plants in high-risk zones had 125% higher values
compared to those in low-risk zones.

The findings highlight the critical influence of topographical features in delineating
areas susceptible to frost damage. This susceptibility is intricately linked to site-specific
variables such as minimum temperature thresholds, plant phenology, and elevation [36].
This insight is vital for coffee producers, providing essential guidance for decision making
and agricultural planning [14]. This study emphasizes the importance of avoiding low-
land areas or regions with high frost risk for cultivation, as frost events can induce leaf
necrosis and senescence, resulting in a diminished leaf area and reduced capacity for light
interception. Consequently, this decline in photosynthetic efficiency leads to decreased
productivity, culminating in lower yields during the coffee harvest season [37].

Significant differences in frost damage were observed between high and low climate
risk zones, as well as across different planting times. In a related study, [14] reported
increased frost damage in six-year-old coffee plants located in high climatic risk zones,
with 45% of the leaf area being affected. These findings suggest that high-risk climate
zones, determined by the topography, cause more substantial damage to coffee plantations,
irrespective of planting time. The curvature of the land surface (convexity and concavity)
is a critical factor in the formation of frost-prone areas [38]. On sloped terrains, dense cold
air masses tend to flow and accumulate in the lowest areas [39]. Consequently, low temper-
atures and frost-prone zones often develop in valleys and low-lying regions [40,41]. Plants
situated in these valley bottoms are exposed to prolonged periods of low temperatures,
leading to more severe frost damage.

According to [38], the severity of frost damage is directly correlated with the extent
of plant damage. Frost induces the formation of ice crystals within plant cells, leading to
intracellular and extracellular freezing, the severity of which is influenced by the rate and
extent of plant dehydration. Therefore, it is essential for producers to identify and classify
areas based on topographical and climatic risks to implement appropriate management
practices.

It is also important to consider obstacles such as trees, which can obstruct the flow of
cold air, causing it to settle and further reduce temperatures, thus increasing the risk of
frost [38]. In this study, due to the coffee plants’ planting time, the plants were relatively
short, allowing cold air to move easily toward the lower regions of the landscape, where
temperature inversion is more pronounced, leaving a layer of cold air near the surface. As
a result, shorter plants are more exposed to this cold air layer.

This information is crucial for crop management strategies, including pruning and
fertilization, to preserve undamaged leaves [14]. Frost events have a direct impact on
production costs, as higher mortality rates in coffee plantations necessitate increased
replanting expenses. According to [42,43], decisions regarding replanting are based on the
extent of tissue damage to the leaves and stem.
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In such cases, the decision is not merely about pruning or fertilization but rather about
plant survival and the potential need for replanting. If some plants perish, producers must
decide whether to replant or retain surviving plants and wait for regrowth. The threshold
for leaf damage that necessitates replanting after frost varies, influenced by factors such
as the plant’s recovery capacity, coffee variety, local conditions, and available resources.
In some cases, if the majority of leaves are damaged but the roots and main stem remain
healthy, the plants may recover over time. However, if the damage is extensive and plants
show no signs of recovery after an adequate period, replanting may be necessary. This
study identified the need to replant part of the one-year-old crop in high-climatic-risk areas.

The results emphasize that selecting planting sites that avoid low-lying areas prone to
cold air accumulation has emerged as an effective strategy for mitigating risks. Addition-
ally, implementing protective measures such as covering plants during frost periods can
safeguard reproductive buds. This research provides a valuable foundation for informed
decision making and the adoption of practices aimed at minimizing frost damage, thereby
enhancing coffee production efficiency.

4.2. Maps of Vegetation in Relation to Frost Leaf Damage

The information generated through the maps allowed for the observation of spatial
variability in frost damage. Additionally, the vegetation indices exhibited differential
responses in plant monitoring. According to [14], the modified simple ratio (MSR) index
effectively estimates frost damage in coffee plants, indicating that the visible spectral region
is directly associated with frost damage, likely due to color changes in the leaves caused
by freezing.

As noted by [28], the normalized difference vegetation index (NDVI) utilizes re-
flectance from the red and near-infrared (NIR) bands, with the red band located in the
chlorophyll absorption region and the NIR band positioned in the high reflectance zone of
the vegetation canopy. Consequently, NDVI tends to saturate when the leaf area index (LAI)
is high. In this study, NDVI was effective in detecting frost damage in the two planting
areas, likely due to the lower LAI of the young plantings. According to [44], evaluating the
capacity of vegetation indices to spatially identify frost damage in cover crops, the authors
achieved satisfactory results using indices based on the red, red-edge, and NIR regions of
the reflectance spectrum; among these, NDVI proved successful. Similarly, [36] reported
positive outcomes with NDVI in detecting canopy damage caused by frost in European
beech (Fagus sylvatica L.) plantations. In the literature, NDVI is considered more sensitive
to frost damage than other indices. For instance, [45] demonstrated that NDVI is capable
of detecting frost damage in sugarcane. Despite these promising results, it is important to
note that the developmental stage and type of crop in this study differ from those in the
referenced studies.

The spectral variations depicted on the maps may aid in identifying areas with greater
frost stress and guide planting management toward preventive and treatment practices in
different climate risk zones. Studies utilizing suborbital remote sensing to monitor frost
damage in coffee crops are limited. According to [46,47] detected frost damage in vegetation
using satellite data; however, the use of satellite imagery is still constrained by spatial and
temporal resolution as well as cloud interference. From a practical perspective, assessing
frost damage in localized regions requires more precise indicators at finer temporal scales
and refined data with higher spatial resolution [47]. The tool developed in this study is
highly relevant and could significantly contribute to agricultural planning, particularly in
rural financing and insurance applications.

Suborbital remote sensing has great potential as a tool to be incorporated into preven-
tive and treatment management practices in coffee plantations located in frost-associated
climate risk zones. The maps showed the variability of damage and highlighted the differ-
ent climate risk zones. Therefore, the results of this study are encouraging in the detection
of damage caused by frost. New evaluations should be performed combining vegetation
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indices involving additional analyses to improve the quality of regressions between the
vegetation indices and the measured damage.

4.3. Modelling of Frost Damage Generated by Vegetation Indices

Before proceeding with the regression model, Pearson’s correlation coefficient (r)
between the frost damage variables and each vegetation index was calculated. For this
adjustment, the indices were considered globally, disregarding the climate risk zones. This
approach allows for a broad evaluation of the relationship between vegetation indices and
frost damage, without the influence of segmentation by specific areas.

These results indicate a robust and inversely proportional association between these
vegetation indices and the occurrence of frost damage, providing valuable information for
understanding the response patterns of plantations to the frost phenomenon at different
coffee plantation ages.

Analyzing the data as a whole, the vegetation indices performed better in the two-year-
old planting in the high-risk zone, highlighting the sensitivity of the indices in identifying
damage across different planting times and risk areas. Moreover, it was found that the
simple regression model does not satisfactorily describe the damage. Therefore, multiple
regression analysis was conducted to better estimate the damage using vegetation indices.

Based on the results, a very good estimate was observed using multiple regression,
with an R2 value of 92.89% for the model obtained for 1-year-old coffee plants. This
highlights the importance of analyzing the data in an integrated manner and considering
more than one vegetation index.

MCARI1 and MCARI2 are indices that capture variations in chlorophyll content in
plants. The photosynthetically active green leaf area index is used to estimate biophysical
traits [48]. In the case of MCARI2, a soil interference smoothing factor was inserted and
developed to optimize the sensitivity of the index [29]. This explains why the MCARI2
index had better performance. In the one-year-old coffee, the plants are smaller and have
smaller leaf area so the soil is more exposed.

The effectiveness of vegetation indices varied depending on their sensitivity in detect-
ing damage across different planting ages. The data indicate that MSR and MCARI2 can
support decision making in younger plantations, whereas SAVI, MCARI1, and MCARI2
indices are more suitable for older plantations.

5. Conclusions

The utilization of PRA proved to be an important tool for evaluating spatial variability
and frost damage in coffee crops using vegetation indices. Furthermore, it is possible to
highlight that the use of PRA was efficient in evaluating frost damage in both young and
adult plants, indicating its potential and application in different situations. The MSR and
MCARI2 indices were effective in assessing damage in one-year-old coffee plantations,
whereas the SAVI, MCARI1, and MCARI2 indices were more suitable for visualizing frost
damage in two-year-old coffee plantations. The vegetation index-based model allowed for
the estimation of frost damage in high- and low-climate-risk areas.

Variations in frost damage were observed based on planting age and topography
conditions. Coffee plantations with one-year and two-year-old exhibited the highest
percentage of frost damage in high-risk climate zones. For one-year-old plants with damage
exceeding 80%, replanting the area is recommended. In contrast, for the two-year-old area,
pruning affected plants and fertilizing the area are recommended measures to enhance
plant recovery. As a preventive measure, producers should avoid cultivating coffee in areas
with high climate risk, particularly those at the bottom of slopes in depressions or valleys
(lowland areas).
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