Enhancing Significant Wave Height Retrieval with FY-3E GNSS-R Data: A Comparative Analysis of Deep Learning Models
Abstract
:1. Introduction
- Application of FY-3E GNOS Data in SWH Retrieval: This study is the first to utilize FY-3E GNOS payload data for SWH retrieval, achieving promising accuracy.
- Proposal of the ViT-Wave Model: Combining the latest transformer models with ViT models tailored for the task, we propose a specialized model, ViT-Wave, for SWH retrieval.
- Global Ocean Analysis: The global ocean analysis demonstrates that the model significantly improves the retrieval accuracy of high wave heights and enhances the overall precision distribution across different sea states.
2. Date Description
2.1. FY-3E Data
2.2. ERA5 SWH
3. Methodology
3.1. ANN-Wave
3.2. CNN-Wave
3.3. Hybrid-Wave
3.4. Trans-Wave
3.5. ViT-Wave
4. Experiment
4.1. Data Preprocessing
4.2. Experimental Procedure
4.3. Evaluation Metrics
- -
- : Observed SWH value (ERA5 data)
- -
- : Predicted SWH value (model output)
- -
- n: Number of observations
- -
- : Mean of observed SWH values
- -
- : Mean of predicted SWH values
5. Result
6. Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
# | Abbreviation | Full Name | Explanation |
---|---|---|---|
1 | Ddm_effective_area | Effective Scattering Area | The effective scattering area of the 9 × 20 region of the DDM used to calculate DDM_NBRCS |
2 | sp_lat | Specular Point Latitude | Latitude of the specular reflection point |
3 | sp_lon | Specular Point Longitude | Longitude of the specular reflection point |
4 | Ddm_brcs_factor | BRCS Factor | Factor used to compute DDM BRCS (power/BRCS) |
5 | Ddm_doppler_refer | Doppler Reference | The central doppler (at column 10) of the DDM |
6 | Ddm_kurtosis | Kurtosis | Kurtosis of raw counts in the whole DDM |
7 | Ddm_noise_m | Noise M-value | The ratio of the square of the mean of the noise floor and the variance of the noise floor |
8 | Ddm_noise_raw | Noise Raw | The mean noise floor of the raw DDM |
9 | Ddm_noise_source | Noise Source | DDM noise floor source to calculate the mean noise |
10 | Ddm_peak_column | Peak Bin Column | The zero-based Doppler column of the peak value in the DDM |
11 | Ddm_peak_delay | Peak Bin Delay | Delay of the DDM peak bin, in corresponding GNSS system chip |
12 | Ddm_peak_doppler | Peak Bin Doppler | Doppler of the DDM peak bin |
13 | Ddm_peak_power_ratio | Peak Power Ratio | Sum of centered 5 × 3 DDM power bin values around the specular point divided by the sum of the all DDM power bin values |
14 | Ddm_peak_raw | Peak Raw | Peak value in DDM raw counts |
15 | Ddm_peak_row | Peak Bin Row | The zero-based delay row of the peak value in the DDM |
16 | Ddm_peak_snr | Peak SNR | 10lg(S_max/N_avg-1), where S_max is the maximum value (in raw counts) in a single DDM bin and N_avg is the average per-bin raw noise counts |
17 | Ddm_power_factor | Power Factor | Factor used to compute DDM power (dBW) from DDM counts (counts/power) |
18 | Ddm_quality_flag | Quality Flag | The L1 DDM quality flag of processing, indicating various quality checks and conditions |
19 | Ddm_range_refer | Range Reference | The central range (at column 10) of the DDM |
20 | Ddm_raw_data | Raw Data | 122 × 20 array of DDM bin raw counts |
21 | Ddm_skewness | Skewness | Skewness of raw counts in the whole DDM |
22 | Ddm_sp_column | Specular Point Column | The zero-based Doppler column of the specular point doppler in the DDM |
23 | Ddm_sp_delay | Specular Point Delay | Specular point delay in the DDM |
24 | Ddm_sp_dles | Specular Point DLES | The slope of the second derivative of the DDM’s leading edge slope |
25 | Ddm_sp_doppler | Specular Point Doppler | Specular point Doppler in the DDM |
26 | Ddm_sp_les | Specular Point LES | Leading edge slope of a 3 delay × 5 Doppler bin box centered at the specular point bin |
27 | Ddm_sp_nbrcs | Specular Point NBRCS | Normalized BRCS of a 3 delay × 5 Doppler bin box centered at the specular point bin |
28 | Ddm_sp_normalized_snr | Normalized SNR at Specular Point | SNR at specular point normalized by bistatic radar equation |
29 | Ddm_sp_raw | Specular Point Raw | Value of the specular point in the DDM raw counts |
30 | Ddm_sp_reflectivity | Specular Point Reflectivity | Signal reflectivity at the specular point assuming coherent scattering |
31 | Ddm_sp_row | Specular Point Row | The zero-based delay row of the specular point delay in the DDM |
32 | Sp_delay_doppler_flag | Delay-Doppler Flag | The method and quality flag to find specular position in DDM |
References
- Young, I.R. Wind Generated Ocean Waves; Elsevier: Amsterdam, The Netherlands, 1999. [Google Scholar]
- Janssen, P.A.E.M. The Interaction of Ocean Waves and Wind; Cambridge University Press: Cambridge, MA, USA, 2004. [Google Scholar]
- Queffeulou, P. Long-term validation of wave height measurements from altimeters. Mar. Geod. 2004, 27, 495–510. [Google Scholar] [CrossRef]
- Ardhuin, F.; Chapron, B.; Collard, F. Observation of swell dissipation across oceans. Geophys. Res. Lett. 2009, 36. [Google Scholar] [CrossRef]
- Komar, P.D. Beach processes and erosion—An introduction. In Handbook of Coastal Processes and Erosion; CRC Press: Boca Raton, FL, USA, 2018; pp. 1–20. [Google Scholar]
- Chelton, D.B.; Wentz, F.J. Further development of an improved altimeter wind speed algorithm. J. Geophys. Res. Ocean. 1986, 91, 14250–14256. [Google Scholar] [CrossRef]
- Stopa, J.E.; Cheung, K.F. Intercomparison of Wind and Wave Data from the ECMWF Reanalysis Interim and the NCEP Climate Forecast System Reanalysis. Ocean Model. 2014, 75, 65–83. [Google Scholar] [CrossRef]
- Jiang, H. Evaluation of altimeter undersampling in estimating global wind and wave climate using virtual observation. Remote Sens. Environ. 2020, 245, 111840. [Google Scholar] [CrossRef]
- Gommenginger, C.P.; Srokosz, M.A.; Challenor, P.G.; Cotton, P.D. Measuring ocean wave period with satellite altimeters: A simple empirical model. Geophys. Res. Lett. 2003, 30. [Google Scholar] [CrossRef]
- Durrant, T.H.; Greenslade, D.J.; Simmonds, I. Validation of Jason-1 and Envisat Remotely Sensed Wave Heights. J. Atmos. Ocean. Technol. 2009, 26, 123–134. [Google Scholar] [CrossRef]
- Gemmrich, J.; Thomas, B.; Bouchard, R. Observational Changes and Trends in Northeast Pacific Wave Records. Geophys. Res. Lett. 2011, 38, L22601. [Google Scholar] [CrossRef]
- Ribal, A.; Young, I.R. 33 Years of Globally Calibrated Wave Height and Wind Speed Data Based on Altimeter Observations. Sci. Data 2019, 6, 77. [Google Scholar] [CrossRef]
- Yan, Q.; Huang, W.; Jin, S.; Jia, Y. Pan-tropical soil moisture mapping based on a three-layer model from CYGNSS GNSS-R data. Remote Sens. Environ. 2020, 247, 111944. [Google Scholar] [CrossRef]
- Li, W.; Cardellach, E.; Fabra, F.; Ribó, S.; Rius, A. Assessment of spaceborne GNSS-R ocean altimetry performance using CYGNSS mission raw data. IEEE Trans. Geosci. Remote Sens. 2019, 58, 238–250. [Google Scholar] [CrossRef]
- Zribi, M.; Motte, E.; Baghdadi, N.; Baup, F.; Dayau, S.; Fanise, P.; Guyon, D.; Huc, M.; Wigneron, J.P. Potential applications of GNSS-R observations over agricultural areas: Results from the GLORI airborne campaign. Remote Sens. 2018, 10, 1245. [Google Scholar] [CrossRef]
- Strandberg, J.; Hobiger, T.; Haas, R. Real-time sea-level monitoring using Kalman filtering of GNSS-R data. GPS Solut. 2019, 23, 61. [Google Scholar] [CrossRef]
- Cardellach, E.; Fabra, F.; Nogués-Correig, O.; Oliveras, S.; Ribó, S.; Rius, A. GNSS-R ground-based and airborne campaigns for ocean, land, ice, and snow techniques: Application to the GOLD-RTR data sets. Radio Sci. 2011, 46, 1–16. [Google Scholar] [CrossRef]
- Wang, W.; Ren, K.; Duan, B.; Zhu, J.; Li, X.; Ni, W.; Lu, J.; Yuan, T. A four-dimensional variational constrained neural network-based data assimilation method. J. Adv. Model. Earth Syst. 2024, 16, e2023MS003687. [Google Scholar] [CrossRef]
- Yuan, T.; Zhu, J.; Ren, K.; Wang, W.; Wang, X.; Li, X. Neural network driven by space-time partial differential equation for predicting sea surface temperature. In Proceedings of the 2022 IEEE International Conference on Data Mining (ICDM), Orlando, FL, USA, 28 November–1 December 2022; pp. 656–665. [Google Scholar]
- Ruf, C.; Lyons, A.; Unwin, M.; Dickinson, J. CYGNSS: Enabling the Future of Hurricane Forecasting. IEEE Geosci. Remote Sens. Mag. 2019, 7, 52–67. [Google Scholar]
- Clarizia, M.P.; Gommenginger, C.P.; Gleason, S.T.; Srokosz, M.A.; Galdi, C.; Bisceglie, M.D. Analysis of GNSS-R Delay-Doppler Maps from the UK-DMC Satellite Over the Ocean. Geophys. Res. Lett. 2014, 41, 5276–5283. [Google Scholar] [CrossRef]
- Quach, B.; Glaser, Y.; Stopa, J.E.; Mouche, A.A.; Sadowski, P. Deep learning for predicting significant wave height from synthetic aperture radar. IEEE Trans. Geosci. Remote Sens. 2020, 59, 1859–1867. [Google Scholar] [CrossRef]
- Li, Z.; Guo, F.; Zhang, X.; Guo, Y.; Zhang, Z. Analysis of factors influencing significant wave height retrieval and performance improvement in spaceborne GNSS-R. GPS Solut. 2024, 28, 64. [Google Scholar] [CrossRef]
- Yu, K.; Han, S.; Bu, J.; An, Y.; Zhou, Z.; Wang, C.; Tabibi, S.; Cheong, J.W. Spaceborne GNSS reflectometry. Remote Sens. 2022, 14, 1605. [Google Scholar] [CrossRef]
- Wang, F.; Yang, D.; Yang, L. Retrieval and assessment of significant wave height from CYGNSS mission using neural network. Remote Sens. 2022, 14, 3666. [Google Scholar] [CrossRef]
- Patanè, L.; Iuppa, C.; Faraci, C.; Xibilia, M.G. A deep hybrid network for significant wave height estimation. Ocean Model. 2024, 189, 102363. [Google Scholar] [CrossRef]
- Bu, J.; Yu, K.; Ni, J.; Huang, W. Combining ERA5 data and CYGNSS observations for the joint retrieval of global significant wave height of ocean swell and wind wave: A deep convolutional neural network approach. J. Geod. 2023, 97, 81. [Google Scholar] [CrossRef]
- Bu, J.; Yu, K. Significant wave height retrieval method based on spaceborne GNSS reflectometry. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Zhao, D.; Heidler, K.; Asgarimehr, M.; Arnold, C.; Xiao, T.; Wickert, J.; Zhu, X.X.; Mou, L. DDM-Former: Transformer networks for GNSS reflectometry global ocean wind speed estimation. Remote Sens. Environ. 2023, 294, 113629. [Google Scholar] [CrossRef]
- Madhiarasan, D.M.; Roy, P.; Pratim, P. Hybrid Transformer Network for Different Horizons-based Enriched Wind Speed Forecasting. arXiv 2022, arXiv:2204.09019. [Google Scholar]
- Li, X.; Xu, Y.; Liu, B.; Lin, W.; He, Y.; Liu, J. Validation and calibration of nadir SWH products from CFOSAT and HY-2B with satellites and in situ observations. J. Geophys. Res. Ocean. 2021, 126, e2020JC016689. [Google Scholar] [CrossRef]
- Hauser, D.; Xiaolong, D.; Aouf, L.; Tison, C.; Castillan, P. Overview of the CFOSAT mission. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 5789–5792. [Google Scholar]
- Li, Z.; Guo, F.; Chen, F.; Zhang, Z.; Zhang, X. Wind speed retrieval using GNSS-R technique with geographic partitioning. Satell. Navig. 2023, 4, 4. [Google Scholar] [CrossRef]
- Eroglu, O.; Kurum, M.; Boyd, D.; Gurbuz, A.C. High spatio-temporal resolution CYGNSS soil moisture estimates using artificial neural networks. Remote Sens. 2019, 11, 2272. [Google Scholar] [CrossRef]
- Gleason, S.; Ruf, C.S.; O’Brien, A.J.; McKague, D.S. The CYGNSS level 1 calibration algorithm and error analysis based on on-orbit measurements. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 12, 37–49. [Google Scholar] [CrossRef]
- Zhao, R.; Wang, K.; Xu, X. Global precipitation from FY-3 polar orbit satellites. Sci. Bull. 2024, 69, 2688–2692. [Google Scholar] [CrossRef] [PubMed]
- Shao, W.; Sheng, Y.; Sun, J. Preliminary assessment of wind and wave retrieval from Chinese Gaofen-3 SAR imagery. Sensors 2017, 17, 1705. [Google Scholar] [CrossRef]
- Li, Z.; Verhoef, A.; Stoffelen, A.; Shang, J.; Dou, F. First Results from the WindRAD Scatterometer on Board FY-3E: Data Analysis, Calibration and Wind Retrieval Evaluation. Remote Sens. 2023, 15, 2087. [Google Scholar] [CrossRef]
- Yan, Q.; Chen, Y.; Jin, S.; Liu, S.; Jia, Y.; Zhen, Y.; Chen, T.; Huang, W. Inland water mapping based on GA-LinkNet from CYGNSS data. IEEE Geosci. Remote Sens. Lett. 2023, 20, 1500305. [Google Scholar] [CrossRef]
- Chen, Y.; Yan, Q. Unlocking the Potential of CYGNSS for Pan-tropical Inland Water Mapping through Multi-Source Data and Transformer. Int. J. Appl. Earth Obs. Geoinf. 2024, 113, 104122. [Google Scholar] [CrossRef]
- Huang, F.; Xia, J.; Yin, C.; Zhai, X.; Xu, N.; Yang, G.; Bai, W.; Sun, Y.; Du, Q.; Liao, M.; et al. Assessment of FY-3E GNOS-II GNSS-R Global Wind Product. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 7899–7912. [Google Scholar] [CrossRef]
- Zhou, Z.; Duan, B.; Ren, K. Improving GNSS-R Sea Surface Wind Speed Retrieval from FY-3E Satellite Using Multi-task Learning and Physical Information. In Proceedings of the International Conference on Neural Information Processing, Changsha, China, 20–23 November 2023; Springer Nature: Singapore, 2023; pp. 357–369. [Google Scholar]
- Yuan, T.; Zhu, J.; Wang, W.; Lu, J.; Wang, X.; Li, X.; Ren, K. A Space-Time Partial Differential Equation Based Physics-Guided Neural Network for Sea Surface Temperature Prediction. Remote Sens. 2023, 15, 3498. [Google Scholar] [CrossRef]
- Yang, G.; Du, X.; Huang, L.; Wu, X.; Sun, L.; Qi, C.; Zhang, X.; Wang, J.; Song, S. An Illustration of FY-3E GNOS-R for Global Soil Moisture Monitoring. Sensors 2023, 23, 5825. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Bai, W.; Wang, J.; Hu, X.; Zhang, P.; Sun, Y.; Xu, N.; Zhai, X.; Xiao, X.; Xia, J.; et al. FY-3E GNOS II GNSS Reflectometry: Mission Review and First Results. Remote Sens. 2022, 14, 988. [Google Scholar] [CrossRef]
- Huang, F.; Xia, J.; Yin, C.; Zhai, X.; Yang, G.; Bai, W.; Sun, Y.; Du, Q.; Wang, X.; Qiu, T.; et al. Spaceborne GNSS Reflectometry with Galileo Signals on FY-3E/GNOS-II: Measurements, Calibration, and Wind Speed Retrieval. IEEE Geosci. Remote Sens. Lett. 2023, 20, 3501505. [Google Scholar] [CrossRef]
- Xie, Y.; Yan, Q. Stand-alone retrieval of sea ice thickness from FY-3E GNOS-R data. IEEE Geosci. Remote Sens. Lett. 2024, 21, 2000305. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, X.; Du, Q.; Bai, W.; Xia, J.; Cai, Y.; Wang, D.; Wu, C.; Meng, X.; Tian, Y.; et al. The status and progress of Fengyun-3E GNOS II mission for GNSS remote sensing. In Proceedings of the IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; IEEE: New York, NY, USA, 2019; pp. 5181–5184. [Google Scholar]
- Ruf, C. CYGNSS Handbook; Michigan Publishing Services: Ann Arbor, MI, USA, 2022. [Google Scholar]
- Wolf, J.; Woolf, D.K. Waves and climate change in the north-east Atlantic. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef]
- Martinez, P.; Lopez, M.; Wang, S. Comparative Study of Significant Wave Height Datasets for Coastal Management. Mar. Data Sci. 2023, 10, 45–58. [Google Scholar]
- Zhang, W.; Sun, Y.; Wu, Y.; Dong, J.; Song, X.; Gao, Z.; Pang, R.; Guoan, B. A deep-learning real-time bias correction method for significant wave height forecasts in the Western North Pacific. Ocean Model. 2023, 187, 102289. [Google Scholar] [CrossRef]
Variables | ||||
---|---|---|---|---|
sp_lat | sp_lon | Ddm_brcs_factor | Ddm_effective_area | Ddm_doppler_refer |
Ddm_kurtosis | Ddm_noise_m | Ddm_noise_raw | Ddm_noise_source | Ddm_peak_column |
Ddm_peak_delay | Ddm_peak_doppler | Ddm_peak_power_ratio | Ddm_peak_raw | Ddm_peak_row |
Ddm_peak_snr | Ddm_power_factor | Ddm_quality_flag | Ddm_range_refer | Ddm_skewness |
Ddm_sp_column | Ddm_sp_delay | Ddm_sp_dles | Ddm_sp_doppler | Ddm_sp_les |
Ddm_sp_nbrcs | Ddm_sp_normalized_snr | Ddm_sp_raw | Ddm_sp_reflectivity | Ddm_sp_row |
Ddm_sp_snr |
Layer | ANN-Wave | CNN-Wave | Hybrid-Wave | Trans-Wave | ViT-Wave |
---|---|---|---|---|---|
Convolutional Layers | |||||
Conv2d | - | [128, 1, 5, 5] | [128, 1, 5, 5] | - | - |
Conv2d | - | [32, 128, 4, 4] | [32, 128, 4, 4] | - | - |
Conv2d | - | [1, 32, 2, 2] | [1, 32, 2, 2] | - | - |
Transformer Layers | |||||
Embedding | - | - | - | [20, 64] | [4 * 4, 64] |
TransformerEncoder | - | - | - | [64, 8, 3, 256] | [64, 8, 3, 256] |
Linear Layer | |||||
Linear | [31, 1000] | [12, 1000] | [43, 1000] | [(9 * 64) + 31, 1000] | [(45 * 64) + 31, 1000] |
SWH Retrieval Layers | Weight Dimensions | ||||
Linear | [1000, 2000] | ||||
Linear | [2000, 1500] | ||||
Linear | [1500, 500] | ||||
Linear | [500, 200] | ||||
Linear | [200, 100] | ||||
Linear | [100, 10] | ||||
Linear | [10, 1] |
Model | Train Loss ± Std | Validation Loss ± Std |
---|---|---|
ANN-Wave | 0.2135 ± 0.0146 | 0.2177 ± 0.0044 |
CNN-Wave | 1.1400 ± 0.0191 | 1.9116 ± 0.6267 |
Hybrid-Wave | 0.2065 ± 0.0165 | 0.1938 ± 0.0109 |
Trans-Wave | 0.2034 ± 0.0148 | 0.1955 ± 0.0086 |
ViT-Wave | 0.1816 ± 0.0040 | 0.1735 ± 0.0042 |
RMSE | MAE | Bias | MAPE | R2 | |
---|---|---|---|---|---|
ANN-Wave | 0.4546 | 0.3048 | 0.0040 | 18.6814 | 0.8889 |
CNN-Wave | 1.2337 | 0.9447 | 0.2715 | 74.6440 | 0.1819 |
Hybrid-Wave | 0.4225 | 0.2799 | 0.0144 | 17.7126 | 0.9040 |
Trans-Wave | 0.4344 | 0.2931 | −0.0012 | 23.2238 | 0.8986 |
SNR [28] | 0.534 | 0.421 | - | 21.52 | - |
NCDW LES [28] | 0.503 | 0.390 | - | 20.02 | - |
ANN [25] | 0.59 | - | - | - | - |
BT [25] | 0.48 | - | - | - | - |
DCNN [27] | 0.422 | - | - | - | 0.89 |
ViT-Wave | 0.4052 | 0.2700 | −0.0015 | 18.0200 | 0.9117 |
RMSE | MAE | Bias | MAPE | R2 | |
---|---|---|---|---|---|
ANN-Wave | 10.85% | 11.45% | 137.50% | 3.54% | 2.57% |
CNN-Wave | 67.15% | 71.42% | 100.55% | 75.86% | 401.10% |
Hybrid-Wave | 4.10% | 3.53% | 110.42% | −1.74% | 0.83% |
Trans-Wave | 6.72% | 7.88% | −20.00% | 28.28% | 1.46% |
SNR [28] | 24.07% | 35.87% | - | 16.26% | - |
NCDW LES [28] | 19.43% | 30.77% | - | 10.00% | - |
ANN [25] | 31.36% | - | - | - | - |
BT [25] | 15.62% | - | - | - | - |
DCNN [27] | 4.00% | - | - | - | 2.44% |
ViT-Wave | - | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Z.; Duan, B.; Ren, K.; Ni, W.; Cao, R. Enhancing Significant Wave Height Retrieval with FY-3E GNSS-R Data: A Comparative Analysis of Deep Learning Models. Remote Sens. 2024, 16, 3468. https://doi.org/10.3390/rs16183468
Zhou Z, Duan B, Ren K, Ni W, Cao R. Enhancing Significant Wave Height Retrieval with FY-3E GNSS-R Data: A Comparative Analysis of Deep Learning Models. Remote Sensing. 2024; 16(18):3468. https://doi.org/10.3390/rs16183468
Chicago/Turabian StyleZhou, Zhenxiong, Boheng Duan, Kaijun Ren, Weicheng Ni, and Ruixin Cao. 2024. "Enhancing Significant Wave Height Retrieval with FY-3E GNSS-R Data: A Comparative Analysis of Deep Learning Models" Remote Sensing 16, no. 18: 3468. https://doi.org/10.3390/rs16183468
APA StyleZhou, Z., Duan, B., Ren, K., Ni, W., & Cao, R. (2024). Enhancing Significant Wave Height Retrieval with FY-3E GNSS-R Data: A Comparative Analysis of Deep Learning Models. Remote Sensing, 16(18), 3468. https://doi.org/10.3390/rs16183468