A High-Resolution and Robust Microwave Correlation Imaging Method Based on URRF Using MC-AAMPE Algorithm
Abstract
:1. Introduction
- (1)
- Firstly, we analyze the array antenna far-field patterns and their spatiotemporal characteristics under phase modulation, amplitude modulation, and frequency modulation. Based on this, we propose a novel URRF that integrates phase, amplitude, and frequency modulation. This URRF model enhances the flexibility and adaptability of the random radiation field.
- (2)
- Secondly, we consider the impact of the URRF on imaging performance and establish a parametric model for microwave correlation imaging based on the URRF, including both a 2D imaging model and a three-dimensional (3D) imaging model.
- (3)
- Finally, we transform the high-resolution image reconstruction into a multi-parameter optimization problem of sparse representation. This optimization incorporates prior information by considering scene noise and image distribution characteristics. Based on this, we propose the MC-AAMPE algorithm. Under the parametric model for microwave correlation imaging, the high-dimensional multivariate optimization problem is decomposed into several sub-optimization problems. In each iteration of the alternating estimation process, we fix the non-estimated parameters and optimize the current estimated parameter. By gradually estimating noise variance, Laplace scale coefficient, and the reconstructed image, we approach the optimal solution of the overall optimization problem. The continuous estimating of scene noise and image statistical distribution parameters gradually enhances the sparsity of the reconstructed images, effectively distinguishing the effects of signal and noise when solving the optimization problem. The parameters do not need to be set manually, which enhances adaptability. The proposed method can reconstruct high-resolution images and achieve high-performance imaging results while reducing the impact of noise, showing good robustness under noise conditions.
2. Methods
2.1. Imaging Mechanism and URRF Model
2.1.1. Imaging Mechanism Based on the Random Radiation Field
2.1.2. URRF Integrating Multiple Modulations
- Random Radiation Field Based on Phase Modulation
- Random Radiation Field Based on Amplitude Modulation
- Random Radiation Field Based on Frequency Modulation
- URRF Model
2.2. High-Resolution and Robust Microwave Correlation Imaging
2.2.1. 2D Imaging Model Based on the URRF
2.2.2. 3D Imaging Model Based on the URRF
2.2.3. MC-AAMPE Algorithm
- Prior Model
- Statistical Modeling and Solution of the Optimization Problem
3. Results and Discussion
3.1. Performance Analysis of URRF
3.2. Performance Analysis of 2D Imaging Results
3.3. Performance Analysis of 3D Imaging Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gatti, A.; Brambilla, E.; Bache, M.; Lugiato, L. Ghost imaging with thermal light: Comparing entanglement and classical correlation. Phys. Rev. Lett. 2004, 93, 093602. [Google Scholar] [CrossRef] [PubMed]
- Bromberg, Y.; Katz, O.; Silberberg, Y. Ghost imaging with a single detector. Phys. Rev. A 2009, 79, 053840. [Google Scholar] [CrossRef]
- Diebold, A.V.; Imani, M.F.; Sleasman, T.; Smith, D.R. Phaseless coherent and incoherent microwave ghost imaging with dynamic metasurface apertures. Optica 2018, 5, 1529–1541. [Google Scholar] [CrossRef]
- Quan, Y.; Zhang, R.; Li, Y.; Zhu, S.; Xing, M. Microwave Correlation Forward-Looking Super-Resolution Imaging Based on Compressed Sensing. IEEE Trans. Geosci. Remote Sens. 2021, 59, 8326–8337. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, D.; He, X. A novel super-resolution imaging method based on stochastic radiation radar array. Meas. Sci. Technol. 2013, 24, 070413. [Google Scholar] [CrossRef]
- Malik, M.; Magaña-Loaiza, O.S.; Boyd, R.W. Quantum-secured imaging. Appl. Phys. Lett. 2012, 101, 241103. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Q.; Li, C.; Zhang, Y.; Huang, Y.; Yang, J. Sea-surface target angular superresolution in forward-looking radar imaging based on maximum a posteriori algorithm. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 2019, 12, 2822–2834. [Google Scholar] [CrossRef]
- Guo, Y.; Liang, Y.; Chen, D.; Suo, Z.; Li, S.; Xing, M. Superresolution Forward-Looking Imaging with Greedy Pursuit for High-Speed Dynamic Platform Under Optimized Doppler Convolution Model. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5108514. [Google Scholar] [CrossRef]
- Ruan, F.; Guo, L.; Li, Y.; Xu, R. Phased array radar forward-looking imaging based on correlated imaging. J. Syst. Eng. Electron. 2021, 9, 2457–2462. [Google Scholar]
- Zhao, T.; Liu, P. A New Method of Distributed Space-Borne Satellite Staring Imaging. Radar Sci. Tech. 2016, 14, 59–64. [Google Scholar]
- Zhu, S.; Zhao, M.; Dong, X. Differential coincidence imaging with frequency diverse aperture. IEEE Antenn. Wirel. Propag. Lett. 2018, 17, 964–968. [Google Scholar] [CrossRef]
- Chen, J.; Li, M.; Yu, H.; Xing, M. Full-Aperture Processing of Airborne Microwave Photonic SAR Raw Data. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5218812. [Google Scholar] [CrossRef]
- Moreira, A.; Prats-Iraola, P.; Younis, M.; Krieger, G.; Hajnsek, I.; Papathanassiou, K.P. A tutorial on synthetic aperture radar, in IEEE Geoscience and Remote Sensing Magazine. IEEE Geosci. Remote Sens. Mag. 2013, 1, 6–43. [Google Scholar] [CrossRef]
- Chen, J.; Xiong, R.; Yu, H.; Xu, G.; Xing, M. Nonparametric Full-Aperture Autofocus Imaging for Microwave Photonic SAR. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5214815. [Google Scholar] [CrossRef]
- Zhang, R.; Quan, Y.; Zhu, S.; Li, Y.; Xing, M. Microwave correlation imaging method based on improved OMP algorithm for sparse targets. Syst. Eng. Electron. 2021, 43, 1756–1765. [Google Scholar]
- Ferri, F.; Magatti, D.; Gatti, A.; Brambilla, E.; Lugiato, L. High-resolution ghost image and ghost diffraction experiments with thermal light. Phys. Rev. Lett. 2005, 94, 183602. [Google Scholar] [CrossRef]
- He, Y.; Zhu, S.; Dong, G.; Zhang, S.; Zhang, A.; Xu, Z. Resolution Analysis of Spatial Modulation Coincidence Imaging Based on Reflective Surface. IEEE Trans. Geosci. Remote Sens. 2018, 56, 3762–3771. [Google Scholar] [CrossRef]
- Diebold, A.V.; Imani, M.F.; Smith, D.R. Phaseless radar coincidence imaging with a mimo sar platform. Remote Sens. 2019, 11, 533. [Google Scholar] [CrossRef]
- Hunt, J.; Driscoll, T.; Mrozack, A.; Lipworth, G.; Reynolds, M.; Brady, D.; Smith, D. Metamaterial apertures for computational imaging. Science 2013, 339, 310–313. [Google Scholar] [CrossRef]
- Li, D.; Li, X.; Qin, Y.; Chen, Y.; Wang, H. Radar Coincidence Imaging: An Instantaneous Imaging Technique with Stochastic Signals. IEEE Trans. Geosci. Remote Sens. 2014, 52, 2261–2277. [Google Scholar]
- Tian, C.; Jiang, Z.; Chen, W.; Wang, D. Adaptive Microwave Staring Correlated Imaging for Targets Appearing in Discrete Clusters. Sensors 2017, 17, 2409. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Zhang, Z.; Dong, X. Radar Coincidence Imaging with Random Microwave Source. IEEE Antennas Wirel. Propag. Lett. 2015, 14, 1239–1242. [Google Scholar] [CrossRef]
- Shao, P.; Xu, R.; Li, H.; Li, Y.; Xing, M. The Research on Bjorck-Schmidt Orthogonalization for Microwave Staring Imaging. J. Signal Process. 2014, 30, 450–456. [Google Scholar]
- Donoho, D.L. Compressed sensing. IEEE Trans. Inf. Theory. 2006, 52, 1289–1306. [Google Scholar] [CrossRef]
- Ender, J.H. On compressive sensing applied to radar. Signal Process. 2010, 90, 1402–1414. [Google Scholar] [CrossRef]
- Zhang, R.; Xu, K.; Quan, Y.; Zhu, S.; Xing, M. Signal Subspace Reconstruction for DOA Detection Using Quantum-Behaved Particle Swarm Optimization. Remote Sens. 2021, 13, 2560. [Google Scholar] [CrossRef]
- Zhang, L.; Qiao, Z.-J.; Xing, M.-D.; Sheng, J.-L.; Guo, R.; Bao, Z. High-resolution ISAR imaging by exploiting sparse apertures. IEEE Trans. Antennas Propag. 2012, 60, 997–1008. [Google Scholar] [CrossRef]
- Xu, G.; Zhang, B.; Chen, J.; Wu, F.; Sheng, J.; Hong, W. Sparse Inverse Synthetic Aperture Radar Imaging Using Structured Low-Rank Method. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5213712. [Google Scholar] [CrossRef]
- Huang, D.-R.; Zhang, L.; Xing, M.-D.; Xu, G.; Duan, J.; Bao, Z. Sparse aperture inverse synthetic aperture radar imaging of manoeuvring targets with compensation of migration through range cells. IET Radar Sonar Navig. 2014, 8, 1164–1176. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, J.; Yu, H.; Yang, D.; Liang, B.; Xing, M. Polarization Image Demosaicking via Nonlocal Sparse Tensor Factorization. IEEE Trans. Geosci. Remote Sens. 2021, 60, 5607210. [Google Scholar] [CrossRef]
- Yu, H.; Lan, Y.; Yuan, Z.; Xu, J.; Lee, H. Phase unwrapping in InSAR: A review. IEEE Geosci. Remote Sens. Mag. 2019, 7, 40–58. [Google Scholar] [CrossRef]
- Tello Alonso, M.; Lopez-Dekker, P.; Mallorqui, J.J. A Novel Strategy for Radar Imaging Based on Compressive Sensing. IEEE Trans. Geosci. Remote Sens. 2010, 48, 4285–4295. [Google Scholar] [CrossRef]
- Brady, D.; Choi, K.; Marks, D.; Horisaki, R.; Lim, S. Compressive Holography. Opt. Express. 2009, 17, 13040–13049. [Google Scholar] [CrossRef]
- Xia, Z.; Luomei, Y.; Zhou, C.; Xu, F. Multidimensional feature representation and learning for robust hand-gesture recognition on commercial millimeter-wave radar. IEEE Trans. Geosci. Remote Sens. 2021, 59, 4749–4764. [Google Scholar] [CrossRef]
- Chen, J.; Xu, X.; Zhang, J.; Xu, G.; Zhu, Y.; Liang, B.; Yang, D. Ship Target Detection Algorithm Based on Decision-Level Fusion of Visible and SAR Images. IEEE J. Miniaturiz. Air Space Syst. 2023, 4, 242–249. [Google Scholar] [CrossRef]
- Zhou, L.; Yu, H.; Lan, Y. Deep Convolutional Neural Network-Based Robust Phase Gradient Estimation for Two-Dimensional Phase Unwrapping Using SAR Interferograms. IEEE Trans. Geosci. Remote Sens. 2020, 58, 4653–4665. [Google Scholar] [CrossRef]
- He, C.; Zhang, L.; Wei, S.; Fang, Y. Multifunction Radar Working Mode Recognition with Unsupervised Hierarchical Modeling and Functional Semantics Embedding Based LSTM. IEEE Sens. J. 2024, 24, 22698–22710. [Google Scholar] [CrossRef]
- Sinha, A.; Lee, J.; Li, S.; Barbastathis, G. Lensless computational imaging through deep learning. Optica 2017, 4, 1117–1125. [Google Scholar] [CrossRef]
- Cheng, Y.; Zhou, X.; Xu, X.; Qin, Y.; Wang, H. Radar Coincidence Imaging with Stochastic Frequency Modulated Array. IEEE J. Sel. Top. Signal Process. 2017, 11, 414–427. [Google Scholar] [CrossRef]
- Chen, H.; Lu, Y.; Mu, H.; Yi, X.; Liu, J.; Wang, Z.; Li, M.; Wu, Y. Efficient forward-looking imaging via synthetic bandwidth azimuth modulation imaging radar for high-speed platform. Signal Process. 2017, 138, 63–70. [Google Scholar] [CrossRef]
- Mao, D.; Zhang, Y.; Zhang, Y.C.; Huang, Y.; Yang, J. Stochastic radiation radar imaging based on the 2-D amplitude-phase orthogonal distribution array. In Proceedings of the 2018 IEEE Radar Conference, Oklahoma City, OK, USA, 23–27 April 2018; pp. 0235–0239. [Google Scholar]
- Mao, D.; Yang, J.; Zhang, Y.; Huo, W.; Xu, F.; Pei, J.; Zhang, Y.; Huang, Y. Angular Superresolution of Real Aperture Radar with High-Dimensional Data: Normalized Projection Array Model and Adaptive Reconstruction. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5117216. [Google Scholar] [CrossRef]
- Li, W.; Li, M.; Zuo, L.; Sun, H.; Chen, H.; Li, Y. Forward-Looking Super-Resolution Imaging for Sea-Surface Target with Multi-Prior Bayesian Method. Remote Sens. 2021, 14, 26. [Google Scholar] [CrossRef]
- Zhang, Y.; Qin, Q.; Liu, M.; Mao, D.; Huang, Y.; Yang, J. Stochastic Radiation Radar High-Resolution Reconstruction Based on Interpulse Frequency Hopping Accumulation Method. IEEE Geosci. Remote Sens. Lett. 2022, 19, 4027605. [Google Scholar] [CrossRef]
- Xu, R.; Li, Y.; Xing, M.; Shao, P. 3-D ghost imaging with microwave radar. In Proceedings of the IEEE International Conference on Imaging Systems and Techniques (IST) Proceedings, Santorini, Greece, 14–17 October 2014; pp. 190–194. [Google Scholar]
- He, Y.; Wang, G.; Dong, G.; Zhu, S.; Chen, H.; Zhang, A.; Xu, Z. Ghost Imaging Based on Deep Learning. Sci. Rep. 2018, 8, 6469. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Wang, H.; Bian, Y.; Situ, G. Applications of Deep Learning in Computational Imaging. Acta Opt. Sin. 2020, 40, 31–44. [Google Scholar]
- Li, H.; Miao, Q.; Zhao, L. A Microwave Correlation Imaging Reconstruction Method Based on Residual Block. J. Air Force Eng. Univ. 2021, 22, 43–48. [Google Scholar]
- Wang, Y.; Zhang, L.; Yu, R.; Xing, Y.; Duan, Z.; Fu, H.; Wang, Z.; Yu, K.; Du, B.; Zhang, J.; et al. Coupling Modeling for Ripple of Array Power Supply and Electromagnetic Performance of Active Phased Array Antennas. IEEE Aero El. Sys. Mag. 2024, 39, 6–19. [Google Scholar] [CrossRef]
- Xu, G.; Zhang, B.; Yu, H.; Chen, J.; Xing, M.; Hong, W. Sparse synthetic aperture radar imaging from compressed sensing and machine learning: Theories applications and trends. IEEE Geosci. Remote Sens. Mag. 2022, 10, 32–69. [Google Scholar] [CrossRef]
- Zhang, L.; Wei, W.; Tian, C.; Li, F.; Zhang, Y. Exploring Structured Sparsity by a Reweighted Laplace Prior for Hyperspectral Compressive Sensing. IEEE Trans. Image Process. 2016, 25, 4974–4988. [Google Scholar] [CrossRef]
- Xu, G.; Xing, M.-D.; Xia, X.-G.; Zhang, L.; Liu, Y.-Y.; Bao, Z. Sparse regularization of interferometric phase and amplitude for InSAR image formation based on Bayesian representation. IEEE Trans. Geosci. Remote Sens. 2015, 53, 2123–2136. [Google Scholar] [CrossRef]
- Argenti, F.; Lapini, A.; Alparone, L. Fast MAP Despeckling Based on Laplacian–Gaussian Modeling of Wavelet Coefficients. IEEE Geosci. Remote Sens. Lett. 2012, 9, 13–17. [Google Scholar] [CrossRef]
- Cheng, Y.; Wang, H.; Cao, K.; Liu, K.; Luo, C. Progress and prospect of microwave coincidence imaging. Infrared Laser Eng. 2021, 50, 20210790(1)–20210790(21). [Google Scholar]
- Lam, J.C.; Singer, A.C. Bayesian Beamforming for DOA Uncertainty: Theory and Implementation. IEEE Trans. Signal Process. 2006, 54, 4435–4445. [Google Scholar] [CrossRef]
- Wang, Z.; Bovik, A.C. Mean squared error: Love it or leave it? A new look at Signal Fidelity Measures. IEEE Signal Process. Mag. 2009, 26, 98–117. [Google Scholar] [CrossRef]
Parameter | Value | Parameter | Value |
---|---|---|---|
Center frequency | 17 GHz | Sampling frequency | 900 MHz |
Wavelength | 0.0176 m | Slant range of scene center | 500 m |
Pulse width | 5 µs | Antenna aperture | 0.42 m × 0.42 m |
Bandwidth | 3 GHz | Angle resolution | Pitch resolution: 2.4° |
Azimuth resolution: 2.4° |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xue, M.; Xing, M.; Gao, Y.; Wu, Z.; Tang, W.; Wang, Y. A High-Resolution and Robust Microwave Correlation Imaging Method Based on URRF Using MC-AAMPE Algorithm. Remote Sens. 2024, 16, 3481. https://doi.org/10.3390/rs16183481
Xue M, Xing M, Gao Y, Wu Z, Tang W, Wang Y. A High-Resolution and Robust Microwave Correlation Imaging Method Based on URRF Using MC-AAMPE Algorithm. Remote Sensing. 2024; 16(18):3481. https://doi.org/10.3390/rs16183481
Chicago/Turabian StyleXue, Min, Mengdao Xing, Yuexin Gao, Zhixin Wu, Wangshuo Tang, and Yidi Wang. 2024. "A High-Resolution and Robust Microwave Correlation Imaging Method Based on URRF Using MC-AAMPE Algorithm" Remote Sensing 16, no. 18: 3481. https://doi.org/10.3390/rs16183481
APA StyleXue, M., Xing, M., Gao, Y., Wu, Z., Tang, W., & Wang, Y. (2024). A High-Resolution and Robust Microwave Correlation Imaging Method Based on URRF Using MC-AAMPE Algorithm. Remote Sensing, 16(18), 3481. https://doi.org/10.3390/rs16183481