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Abstract: The Remote Sensing Ecological Index (RSEI) model is widely used for large-scale, rapid
Ecological Environment Quality (EEQ) assessment. However, both the RSEI and its improved models
have limitations in explaining the EEQ with only two-dimensional (2D) factors, resulting in inaccurate
evaluation results. Incorporating more comprehensive, three-dimensional (3D) ecological information
poses challenges for maintaining stability in large-scale monitoring, using traditional weighting
methods like the Principal Component Analysis (PCA). This study introduces an Improved Remote
Sensing Ecological Index (IRSEI) model that integrates 2D (normalized difference vegetation factor,
normalized difference built-up and soil factor, heat factor, wetness, difference factor for air quality)
and 3D (comprehensive vegetation factor) ecological factors for enhanced EEQ monitoring. The
model employs a combined subjective–objective weighting approach, utilizing principal components
and hierarchical analysis under minimum entropy theory. A comparative analysis of IRSEI and RSEI
in Miyun, a representative study area, reveals a strong correlation and consistent monitoring trends.
By incorporating air quality and 3D ecological factors, IRSEI provides a more accurate and detailed
EEQ assessment, better aligning with ground truth observations from Google Earth satellite imagery.

Keywords: ecological environments; remote sensing ecological index; large-scale; 3D ecological
factors; subjective and objective weights determination

1. Introduction

The continuous development of society and increasing urbanization have greatly
impacted the ecological space in urban areas [1], and many regional and global ecological
problems are becoming more prominent, such as vegetation degradation [2], urban heat
islands [3], and air pollution [4]. Therefore, the efficient, comprehensive, and accurate
monitoring and assessment of regional ecological environments is crucial. EEQ monitor-
ing using remote sensing data (imagery) has gradually become a common and efficient
research method [5]. Studies [6–9] have primarily used a single 2D factor to evaluate
the ecological environment status. However, the ecological environment is composed of
multiple elements, and the assessment of a single ecological factor can only explain the
ecological characteristics in one direction and cannot comprehensively reflect the ecological
environment’s status [10]. In recent years, researchers have explored the EEQ assessment
by coupling several individual ecological indices, which can be divided into three main
categories: the ecological index (EI) model; the remote sensing ecological index (RSEI)
model; and other ecological environment models [11].

The EI index model, which aggregates the biological abundance, vegetation coverage,
water network density, land degradation, and environmental quality, is the most widely
used ecological environment evaluation index by the Ministry of Ecology and Environmen-
tal Protection of China [12]. It has been widely applied for regional EEQ assessment in
China [13–15]. Based on the EI model, Ouyang et al. [16] subdivided the six ecological fac-
tors into 20 sub-indicators, and the weights were calculated using the hierarchical analysis
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method, making the evaluation results more precise. Li et al. [17] selected the ecological
factors needed in the inverse EI model based on the GEE platform, such as MODIS data,
Landsat data, and night-time lighting data, and introduced a humidity factor to generate a
new ecological index (NEI) model. However, the EI model relies on annual statistical or
land use and land cover data, which are difficult to obtain, and the results must be divided
along the administrative boundaries, which goes against natural ecological laws. Moreover,
the weights and evaluation units are difficult to obtain and not universal.

The widely used RSEI model was first proposed by Xu [18] and it combined four
factors including dryness, greenness, heat, and moisture with the principal component
analysis (PCA) method. The RSEI model can reflect the pressure of human activities on
the environment, the response to climate change, and changes in environmental condi-
tions [19–22]. In recent years, research on improving RSEI has mainly been reflected in
the selection of variable factors and the stable solution of the model. For the former, the
ecological factors deriving from remote sensing imagery are usually added or substituted.
For example, the mine-specific eco-environment index model was constructed by adding
the atmospheric environment and mining scale [23]. The modified remotely sensed eco-
logical index was constructed by introducing the landscape diversity index to evaluate
oasis ecology [24], and the comprehensive salinity index and the remotely sensed water
network density estimation model were constructed to evaluate the ecological quality of
the northwest arid zone [25]. For the latter, the entropy weighting method was used instead
of PCA to construct the RSEI model that considers all ecological factors [26]. Studies have
proven that the first principal component of PCA selected for the RSEI model cannot fully
characterize ecological features; therefore, the first three principal components of PCA
are used [27]. Moreover, the nonlinear kernel principal component method has also been
used to construct nonlinear remote sensing ecological indices [28]. The RSEI model is
conducive to quantitatively evaluating EEQ changes at the regional scale, and its reliability
and credibility have been verified. Furthermore, its EEQ results can be visualized, scaled,
and compared at different spatiotemporal scales. However, the construction of an RSEI
model is complex and subjective, and the EEQ is prone to be the opposite when using
PCA. In particular, it is only suitable for a small number of calculations and is not suitable
for long-term sequence and batch operations [29]. Most importantly, in large-scale EEQ
assessment, the RSEI and its improved models only utilize two-dimensional ecological
factors and have not considered vertical three-dimensional information [30].

Other ecological models include the pressure-state-response (PSR) model [31,32], the
InVEST model [33], and so on. These ecological evaluation models have made important
contributions to EEQ evaluation [34–37]. Ashraf et al. [38] researched the development of
the Spatial Ecosystem Health Index (SEHI), including indicator weights and selection using
the remotely sensed Pressure-State-Response (PSR) framework, the Hierarchical Analysis
Method (AHP), and the Principal Component Analysis (PCA) in 1990, 2003, 2013, and
2021, respectively. Based on the land use and land cover (LULC) data in 2000, 2010, and
2020, Li et al. [39] first predicted the trends and results in 2030. Then, the habitat quality
was evaluated from 2000 to 2030 using the InVEST model, which showed that habitat
quality was highly correlated with land use change. However, most of these models rely
computationally on hard-to-access data such as LULC, and these models often focus on
specific ecological services or stressors, which may lead to the neglect of other ecosystem
functions and services. Moreover, ecosystems are multidimensional representations of
the real world, and the 2D expression of these models may not fully account for these
complex interactions.

The objectives of this study were as follows: (1) to integrate 2D and 3D ecological
factors for EEQ evaluation, enabling a transition from 2D to 3D ecological monitoring
across large regions, (2) to incorporate air quality as a factor in the proposed IRSEI model
for more comprehensive ecological environment monitoring, and (3) to employ a combined
subjective–objective weighting model to assess ecological quality, enhancing the stability
and rationality of EEQ results.
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2. Materials
2.1. Study Area

This study selects a well famous ecological support district, named Miyun (Figure 1),
located in northeast Beijing (40◦13′N–40◦48′N, 116◦40′E–117◦30′E). It is surrounded by
mountains and rolling peaks in the east, north, and west. The ancient Great Wall stretches
over the mountains. In the middle is the rippling Miyun Reservoir, and in the southwest
is the flooded alluvial plain. It falls under the warm temperate monsoon continental
semi-moist and semi-arid climate, governed by the high-pressure systems of Siberia and
Mongolia in winter and influenced by continental low pressure and Pacific Ocean high
pressure in summer. It experiences four distinct seasons with noticeable variations in
dryness, wetness, coldness, and warmth. The average temperature in January is −3.5 ◦C,
while in July it is 26.8 ◦C, with an annual precipitation of around 577 mm. As the most
important water source in Beijing, it has the largest forest, the best wetland resources, and
the richest biodiversity. In addition, the functional zoning distribution from A1 to A5 can
carry different functions [40].
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Figure 1. Overview of the study area with different ecological function zones. A1: core zone for
comprehensive development; A2: ecological connotation zone; A3: ecological conservation zone; A4:
water conservation zone; A5: green development zone.

2.2. Data and Pre-Processing

The remote sensing data used in this study are 2D multispectral remote sensing images
and 3D spaceborne laser scanning point clouds.

(1) Multispectral remote-sensing images (2D)

These used remote sensing imagery are Landsat8 OLI imagery, obtained from the
United States Geological Survey (USGS) [41]. Owing to the vegetation growth condition,
we selected the Landsat8 OLI image on 18 September 2019, with a spatial resolution of
30 m × 30 m and cloud content of 0.01%. The pre-processing is accomplished by Google
Earth Engine (GEE) including radiometric calibration, atmospheric correction, stitching,
and cropping, and these images can be further used to calculate 2D ecological factors.

(2) Laser-scanning point cloud (3D)

The three-dimensional (3D) indicators, generated from the global ecosystem dynamics
investigation (GEDI) and the Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2), can
provide more detailed and accurate results, as well as new ecological insights; therefore,
they can be effectively used to improve ecological models for large-scale ecosystem investi-
gations. The adopted 3D indices used in the proposed method are calculated from the 3D
products (Guo et al. 2021). These 3D data were combined with inverse vegetation canopy
height data using neural network-guided interpolation [42]. The resulting products have
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no saturation effect in areas with a high forest canopy and can be used to reflect vegetation
vertical structure for regional ecological assessment.

3. Methods

The proposed methodological framework (Figure 2) encompasses three key compo-
nents: ecological factor calculations (Section 3.1), model construction (Section 3.2), and
model validation (Section 3.3). The 2D and 3D ecological factors were initially calculated
from the Landsat8 OLI image, ICESat-2, and GEDI data. Subsequently, the IRSEI model
for EEQ assessment was constructed through a combined subjective–objective approach
(PCA-AHP). Finally, the performance of the newly proposed IRSEI model was evaluated.
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3.1. Ecological Factors Calculation

The IRSEI model incorporates vegetation, humidity, aridity, heat, and air quality as
ecological factors, while the original RSEI model considers vegetation, humidity, aridity,
and heat factors. When these ecological factors are calculated, a normalization process
should be performed.

(1) Vegetation factor

The vegetation factor serves as a crucial indicator in assessing the quality status of the
regional ecological environment. Here, a new Comprehensive Vegetation Index (CVI) was
introduced, which incorporated 2D planar features (NDVI) and 3D vertical distribution
information (CVHI). As the significant differences between the NDVI and CVHI, the non-
dimensional treatment is adopted, and the final formula is expressed as follows:

CVI = w1 · NDVI + w2 · CVHI (1)
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where NDVI is the normalized difference vegetation index. The CVHI [42] is the vegetation
canopy height index, which is the 3D canopy height data acquired from the GEDI and
ICESat-2. The linear model, where the coefficients w1 and w2 are set to 0.5 based on prior
experience, was used. Specifically, the three ecological factors were normalized to scale
their values between 0 and 1.

(2) Wetness factor

The land surface moisture reflects the moisture content of water bodies, soil, and
vegetation, and is closely related to ecology [22]. According to previous studies [43,44], the
wetness can be obtained by inverting the bands and can be calculated by

WET(OLI) = 0.1511 × ρblue + 0.1973 × ρGreen + 0.3283 × ρRed+
0.3407 × ρNIR − 0.7117 × ρSWIR1 − 0.4559 × ρSWIR2

(2)

where WET (OLI) is applied to Landsat OLI images. The variables ρblue, ρGreen, ρRed,
ρNIR, ρSWIR1, and ρSWIR2 are the reflectances of bands 2, 3, 4, 5, 6, and 7 of the OLI
images, respectively.

(3) Dryness factor

The dryness factor responds to the dryness of the ground surface, which influences
some ecological phenomena. The dryness factor is expressed by the bare soil index (SI),
but in the regional environment, part of the built land also causes the surface to “dry
out”. Therefore, SI and the building index (IBI) were chosen to express the dryness factor
(NDBSI) with the following formulas [22]:

NDBSI =
SI + IBI

2
(3)

SI =
(ρSWIR1 + ρRed)− (ρNIR + ρblue)

(ρSWIR1 + ρRed) + (ρNIR + ρblue)
(4)

IBI =
2ρSWIR1/(ρSWIR1 + ρNIR)− [ρNIR/(ρNIR + ρRed) + ρGreen/(ρGreen + ρSWIR1)]

2ρSWIR1/(ρSWIR1 + ρNIR) + [ρNIR/(ρNIR + ρRed) + ρGreen/(ρGreen + ρSWIR1)]
(5)

where ρblue, ρGreen, ρRed, ρNIR, and ρSWIR1 refer to the reflectance of the 1st, 2nd, 3rd, 4th,
5th, and each band of the TM image, and the reflectance of the 2nd, 3rd, 4th, 5th, and 6th
bands of the OLI image, respectively.

(4) Heat factor

Land Surface Temperature (LST) is the most direct indicator of heat and is frequently
employed in ecological quality assessments [25]. The LST, serving as the heat factor in this
study, is calculated as follows:

L = gain × DN + bias (6)

T = K2/ ln(K1/L + 1) (7)

LST = T/[1 + (λ · T/ρ) ln ε] (8)

where L is the temperature value of the thermal infrared band; gain is the gain value; DN is
the gray value of the pixel; bias is the bias value; T is the temperature value at the sensor;
K1 = 774.89 W/(m2·sr·µm); K2 = 1321.08 k; λ is the central wavelength of the thermal
infrared band; ρ is 1.438 × 10−2 K; and ε is the specific emissivity of ground objects
estimated by the Sobrino model.

(5) Difference factor for air quality

The particulate matter, a large proportion of dust, is the chief pollutant of the atmo-
sphere pollution in Beijing. According to the PM2.5 of particles, the reflectivity of the red
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band increases, and the reflectivity of the near-infrared band decreases [23]. Thus, the
difference index (DI) was constructed to characterize the air quality:

DI = ρred − ρnir (9)

where ρred and ρnir are the surface reflectance in the near-infrared and red bands, respectively.

3.2. Model Construction

Two ecological models, that are the proposed IRSEI and common RSEI model, were
constructed for EEQ evaluation with the following extracted ecological factors: NDVI, CVI,
WET, NDBSI, LST, and DI.

(1) IRSEI model

The proposed IRSEI model, which combines 2D and 3D ecological factors is organized
as follows:

IRSEI = f (CVI, WET, NDBSI, LST, DI) =
n

∑
i=1

(Wi × Ki) (10)

where n denotes the number of extracted ecological factors; W i and Ki are the weight and
index values of the i-th ecological factor, respectively.

To achieve the final IRSEI model, the PCA approach is frequently used to estimate the
weights, which can downscale the regional ecological environment with multiple factors.
However, the impact of different evaluation factors on actual environmental problems
is ignored. In the study of Xu et al. [45], it was shown that the first component of PCA
has obvious ecological benefits, while the other components do not have clear ecological
meanings. Therefore, when there is a situation where the contribution rate of the first
component is low, the single use of PCA analysis will lose a large amount of data [46].
In addition, AHP is a method used for subjectively determining weights, enabling the
quantification of expert a priori knowledge, and facilitating a comprehensive evaluation
of multiple indicators. However, the results of AHP tend to be overly subjective and may
overlook the information inherent in the data itself [47].

Therefore, a hybrid method/model (PCA-AHP) is proposed for the new IRSEI, which
can fix the weights (W i) by combining objective analysis (PCA) and subjective analysis
(hierarchical analysis; AHP).

Specifically, for the weight of each ecological factor (W i), we first assumed that W1i
and W2i are subjective and objective weights, which can be calculated using the PCA and
AHP methods, respectively. Using the minimum information entropy and Lagrange’s mean
theorem, the final weight (W i) can be expressed as:

minF =
n

∑
i=1

Wi(ln Wi − ln W1i) +
n

∑
i=1

Wi(ln Wi − ln W2i) (11)

s · t
n

∑
i=1

Wi = 1(Wi > 0, i = 1, 2, . . . n) (12)

Also, using the Lagrangian median theorem, it is known that:

Wi =

√
W1iW2i

∑n
i=1

√
W1iW2i

(i = 1, 2, . . . n) (13)

where Wi is the weight of the PCA–AHP hybrid model and i is the i-th factor.

(2) RSEI model

The common RSEI model is constructed with 2D ecological factors, which are given by

RSEI = f (NDVI, WET, NDBSI, LST) (14)
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To obtain the RSEI model, the PCA method, which can effectively remove redundant
information, is utilized, and the first component of PCA (PC1) is selected for RSEI [18,45,48].
Finally, the model can be expressed as:

RSEI = 1 − PC1(NDVI, WET, NDBSI, LST) (15)

3.3. Model Validation

To evaluate the performance of the two models, field measurements and the commonly
used average degree of correlation were used. Directly assessing model accuracy using
extensive field measurements was challenging [49]. Thus, high-resolution remote sensing
images from Google Earth (GE) were commonly used to validate EEQ accuracy [50–52].
To this end, we could randomly select checkpoints over the experimental areas, and the
EEQ values of each selected sample were then compared to corresponding ecological per-
formance as visually assessed from the GE images. Table 1, based on References [22,25,26],
outlines the EEQ and referenced performance criteria.

Table 1. The classification and description of EEQ.

Grade Values Ecological Performance

Excellent [1, 0.8) High-vegetation cover, good natural conditions, and stable ecosystems.
Good [0.8, 0.6) Good natural conditions and good vegetation cover for human life.

Moderate [0.6, 0.4) Vegetation cover is medium and more suitable for human life.
Fair [0.4, 0.2) Vegetation cover is poor and arid and there are limiting factors for human life.
Poor [0.2, 0] Low vegetation cover, harsh conditions, and restrictions on human life

The average degree of correlation, that is the internal plausibility of the selected
ecological factors, was calculated for model validation, which indicates the overall rep-
resentativeness of the IRSEI and the correlation among the various indicators [23]. The
average degree of correlation can be expressed as follows:

R =
n

∑
i=1

(
|Ri|

n

)
(16)

where n is the number of ecological factors, and Ri is the correlation coefficient between
any two ecological indicators.

4. Results
4.1. Results of Calculated Factors

The calculated factors (NDVI, WET, CVI, NDBSI, DI, and LST) are visualized in
Figure 3. Their respective maximum values are 0.863, 0.726, 0.616, 0.449, 0.563, and 0.402.

As seen in Figure 3, ecological factors (NDVI, CVI, and WET) that have a positive
impact on EEQ have smaller values in areas with greater human disturbance (e.g., urban
areas), and larger values in places with better ecology (e.g., forests), while the opposite is
true for the negative ecological factors. The recently introduced 3D ecological factor, CVI,
and the conventional 2D ecological factor, NDVI, share a similar overall trend but exhibit
distinctions in detail. CVI integrates the 3D parameters of vegetation, facilitating a more
distinct separation of vegetation compared to traditional NDVI.
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4.2. Results of the Two Constructed Models

To obtain the final models, the PCA method was used to generate the RSEI model
(4 factors), whereas both PCA and AHP methods were adopted for the IRSEI model
(5 factors). The results for each principal component calculated by PCA are listed in Table 2.
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Table 2. Contributions of the model’s ecological factors by PCA method.

Model Factors PC1 PC2 PC3 PC4 PC5

IRSEI
(Proposed)

CVI 0.703 0.609 0.257 0.260 0.019
WET 0.382 −0.616 0.152 0.212 0.638

NDBSI −0.491 0.463 0.235 −0.041 0.698
LST −0.288 0.005 −0.165 0.938 −0.096
DI −0.188 −0.188 0.910 0.071 −0.310

EV 1 0.032 0.008 0.005 0.002 0
pEV (%) 2 68.169 17.266 10.257 3.286 1.023

RSEI
(Original)

NDVI 0.337 −0.384 0.550 0.661
WET 0.572 0.575 −0.429 0.399

NDBSI −0.671 −0.057 −0.385 0.630
LST −0.330 0.721 0.604 0.083

EV 1 0.021 0.002 0.001 0
pEV (%) 2 83.25 9.56 6.00 1.150

1 EV is the eigenvalue; 2 pEV is the contribution of the eigenvalue; PCi is the i-th component of PCA.

As can be seen from Table 2 that only the first principal component (PC1) has real
ecological significance and integrates the main information (68.619%, 83.25%) for both the
RSEI and IRSEI models, regardless of whether 4 or 5 ecological factors are considered.
In PC1, the ecological factors that are beneficial to the EEQ show positive values, while
detrimental ones are negative. This illustrates its stability for the first principal component
PC1. In addition, among other principal components (PC2–5), their values are either positive
or negative, making it difficult to distinguish the actual ecological meaning. Therefore, it
is not suitable for us to adopt PC2–5 for EEQ evaluation except the PC1. Moreover, in the
PC1 component of the IRSEI model, CVI has the largest value (0.703), which indicates that
vegetation plays a decisive role in the evaluation of ecological environment quality. This
result is consistent with similar studies [11,53,54]. Furthermore, the proportion of PC1 in
the IRSEI model reached 68.169%, while other principal components showed both positive
or negative values, making it difficult to distinguish their actual ecological significance.

Thus, it is not suitable to solely use PCA to generate the IRSEI model and assess the
EEQ, as it results in the loss of 31.831% of the information. To overcome this key issue, the
AHP analysis method, incorporating expert prior knowledge, was employed to refine the
proposed IRSEI model; the details are listed in Table 3. It is generally believed that a CR
less than 0.1 indicates compliance with the consistency test, indicating that the constructed
model is reliable [55].

Table 3. The weights for the IRSEI model while using only the AHP method.

Ecological Factors
Weight CI RI CR

CVI WET NDBSI LST DI

CVI 1 3 2 4 3 0.398

0.023 1.12 0.021
WET 1/3 1 1/2 2 2 0.160

NDBSI 1/2 2 1 3 2 0.242
LST 1/4 1/2 1/3 1 1/2 0.079
DI 1/3 1/2 1/2 2 1 0.122

CI is the consistency index; RI can be obtained by looking up the table. CR is the consistency ratio.

As can be seen from Table 3, the consistency ratio (CR) was 0.021, which was less
than 0.1; thus, the results obtained have passed the consistency test, indicating that the
calculated weights are reliable. Furthermore, by combining the PCA–AHP method, the
weights (W i) for the IRSEI model can be further fixed based on the minimum entropy. In
conjunction with the five EEQ evaluation grades outlined in Table 1, the weights for the
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proposed IRSEI model can be determined using Equation (11) to Equation (13), as listed in
Table 4.

Table 4. The final weighs (Wi) of the IRSEI model using the PCA–AHP method.

Factors CVI WET NDBSI LST DI

Weights (Wi) 0.372 0.173 0.242 0.107 0.106

4.3. Results of Model Validation

As outlined in the model validation process (Section 3.3), 50 random samples were
selected. These points were evenly distributed across the study area (Figure 4).
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Figure 4. The distribution of the randomly selected field measurements using GE images. The
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The accuracy of the evaluation results was verified using Google Earth images. The
EEQ grades determined by the RSEI and IRSEI models were matched with the reference
grades, and the details are illustrated in Table 5, where the overall accuracy for the RSEI
and IRSEI models is 77.27% and 84.09%, respectively.

Table 5. Comparison of EEQ grades derived from the RSEI and IRSEI models.

Model The Number of EEQ Grades That
Matched the Reference Grades Overall Accuracy (OA)

RSEI 34/44 77.27%
IRSEI 37/44 84.09%

A visual comparison of EEQ accuracy between the RSEI and IRSEI models, based on
Google Earth imagery, is presented in Figure 5. The IRSEI model demonstrates a higher
level of detail compared to the RSEI model.
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To further evaluate the internal performance of the IRSEI model, the correlation
coefficients between the various factors, as well as the coefficients between each calculated
factor and the IRSEI model, are shown in Figures 6 and 7, respectively.

As can be seen from the figures, CVI and WET exhibit positive correlations with the
actual values, while the remaining factors display negative correlations. Moreover, the
proposed IRSEI model demonstrates a strong average correlation of 0.755, indicating its
effectiveness in integrating key ecological factor information and outperforming individual
factors in explaining EEQ.
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4.4. Results of Model Application in Miyun

To evaluate the effectiveness and reliability of the proposed IRSEI model, the Miyun
region was selected as a case study area. The model’s performance was assessed through
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EEQ evaluation (Section 4.4.1) and consistency analysis within the context of territorial
spatial planning (Section 4.4.2).

4.4.1. Evaluation of Eco-Environmental Quality (EEQ)

With the acquired RSEI and IRSEI models, the results of EEQ can be mapped into
five grades according to the criteria outlined in Section 3.3, as illustrated in Figure 8.
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Figure 8. Map of the EEQ results using IRSEI and RSEI models.

As can be seen from Figure 8, the spatial distribution of EEQ by the two models is
roughly the same. Regions with low EEQ values (poor) are concentrated in the southwest
and northeast, while areas with good EEQ are predominantly located in the mountainous
northwest and southeast. These findings align with existing knowledge of the region [56,57].
A graphical representation of the EEQ evaluation results is provided in Figure 9.

As shown in Figure 9, the general trends of urban ecological monitoring were similar,
but there were differences in ecological levels. Notably, the most significant differences
occur between the good and moderate categories. Despite identical grading standards,
the IRSEI model can offer a more distinct EEQ classification. To further examine these
model-specific EEQ discrepancies, an area transfer matrix (Table 6) was constructed.

Table 6. EEQ change the transfer matrix from RSEI to IRSEI.

EEQ Grade
IRSEI

Poor Fair Moderate Good Excellent

R
S
E
I

Poor 4.41 0.076
Fair 6.271 98.748 3.311

Moderate 121.076 319.154 63.118
Good 338.877 754.036 162.845

Excellent 0.157 73.867 132.396

It can be seen from Table 6 that 62.97% of the EEQ evaluation results (diagonal line in
the table) are the same, indicating that the evaluation results of IRSEI and RSEI are the
same. In addition, 11.04% of the IRSEI areas (above the diagonal) are better than the RSEI
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areas, while 25.99% (below the diagonal) have deteriorated ecological grades. This shows
that IRSEI is more sensitive to EEQ than RSEI. A visual map of the EEQ change transfer
matrix is illustrated in Figure 10.
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Figure 10 illustrates that regions experiencing EEQ improvement under the IRSEI
model are primarily located in the mountainous northwest (40◦30′N–40◦48′N, 116◦40′E–117◦00′E)
and southeast (40◦20′N–40◦30′N, 117◦00′E–117◦15′E), characterized by abundant vegeta-
tion and superior EEQ. Conversely, areas exhibiting EEQ deterioration are concentrated in
the urbanizing southwest and northeast, where rapid development and increased human
impact have adversely affected the ecological environment.

4.4.2. Consistency Assessment in Territorial Spatial Planning

To verify the reliability of the proposed model, areas of EEQ results acquired by the
IRSEI and RSEI models are spatially segmented and counted, as listed in Table 7.

As seen in Table 7, the EEQ grades from the IRSEI and RSEI display the same trend
in different ecological functional zones (A1–A5), aligning well with the actual situation
of the territorial spatial planning data in Miyun. The ecological function zone with the
best ecological environment quality (EEQ) is A2 because it has high-vegetation coverage
and the richest biomass, while the poorest EEQ is the comprehensive development core
zone (A1) due to the most serious human interference. In addition, the zones A3, A4, and
A5, designated as ecological protection areas by the government, demonstrate relatively
good EEQ. Furthermore, the EEQ statistical results obtained by IRSEI and RSEI models
are visualized in Figure 11.

As can be seen from Figure 11, the statistical results across different ecological func-
tional zones reveal significant differences in EEQ. In the ecological function zone A2, the
mean value of EEQ acquired from the proposed IRSEI model is 0.739, while RSEI is 0.713.
In the poorest zone, A1, the mean values of EEQ calculated by the IRSEI and RSEI are
0.473 and 0.558, respectively. These results indicate that the EEQ achieved by the IRSEI is
more effective and accurate than the RSEI model.
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Table 7. Area of EEQ grade in different ecological functional zones.

Zones Models Poor Fair Moderate Good Excellent

A1
IRSEI 6.651 113.56 171.783 69.435 3.071
RSEI 2.941 59.13 145.638 142.868 13.924

A2
IRSEI 0.345 10.203 61.789 264.264 185.36
RSEI 0.147 4.921 48.485 394.54 73.868

A3
IRSEI 0.059 3.852 26.536 26.337 6.107
RSEI 0.024 0.964 13.511 41.489 6.899

A4
IRSEI 2.624 65.119 203.305 240.184 32.975
RSEI 1.061 31.507 160.15 316.071 35.422

A5
IRSEI 0.695 25.348 196.223 288.886 72.348
RSEI 0.23 10.706 131.989 360.203 80.373

A1–A5 are the five functional zones from the Territorial Spatial Planning (2017–2035) of Miyun.
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5. Discussion
5.1. Advantages of 3D Factors

In previous studies, 2D greenness indices are always created for the RSEI models [54].
These indices are the Normalized Difference Vegetation Index (NDVI) [58], Enhanced Vege-
tation Index (EVI) [23], Leaf Area Index (LAI) [59], Fractional Vegetation Cover (FVC) [60],
and others. Different from these existing EEQ evaluation models that only use 2D eco-
logical factors, the proposed IRSEI model introduces a new 3D ecological factor (CVI) in
addition to 2D factors. The CVI factor can obtain vertical structural parameters of veg-
etation. Compared to the 2D NDVI factor, the 3D CVI factor that integrates vegetation
canopy can more clearly distinguish between meadow and forest by values. Thus, higher
CVI values were observed in forested areas, while lower values were found in urban and
low-vegetation areas, as shown in Figure 3a,b. This is consistent with studies that tested
in small areas [30]. Liu et al. [54] employed the method of multiplying the height of the
vegetation canopy by the vegetation cover to calculate the three-dimensional greenness rate.
Nonetheless, the three-dimensional greenness index is exclusively applicable to forested
areas and lacks applicability to non-forested areas. Its contribution to evaluating the quality
of the ecological environment is rather limited. Other 3D factors predominantly concentrate
on small-area studies [30,61], utilizing methods such as airborne radar or ground-based
scanners to acquire three-dimensional parameters of vegetation.
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To intuitively understand the advantage of 3D ecological factors, three key areas
(A1–A3) are selected and scaled to compare between 2D and 3D ecological factors, as
illustrated in Figure 12.
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As can be seen from Figure 12, the 3D CVI factor in the scaled areas (A1–A3) has a good
discrimination ability for vegetation with different canopy heights and can distinguish
woodlands, urban green spaces, and cultivated land with high-vegetation canopies to a
large extent. The incorporation of 3D data into CVI effectively addresses the issue of satu-
ration of remote sensing information when ecological factors are inverted through the sole
use of optical remote sensing data [62]. This is consistent with the real-world observations,
indicating that vegetation canopy height can effectively address the shortcomings of 2D
EEQ factors, offering a more comprehensive representation of surface vegetation conditions.
Therefore, the IRSEI model can transform EEQ evaluation from 2D to 3D and improve
EEQ accuracy by introducing 3D factors.

5.2. Comparison of RSEI and IRSEI Models

The PCA has been widely used to determine the weights of EEQ models [63]. It is an
adaptive method that may extract noise as a principal component [64], leading to unreliable
results for some of the principal components. As listed in Table 2, the contributions of PC1
to the RSEI model was 83.25%, while it was 68.169% to the proposed IRSEI model. In
addition, the positive and negative values from PC2 to PC5 cannot explain EEQ. Therefore,
it is difficult to accurately characterize the regional EEQ using only PC1, which contributes
less [65–67].

To address this issue, a PCA–AHP hybrid weighting method was introduced, which
can couple the weights of each factor based on the minimum entropy theory [68]. It
avoids the subjective results inherent to the AHP-only approach and the instability of
PC1 contribution caused by only the PCA method [46], as listed in Table 4. Therefore, the
PCA–AHP method emerges as a reliable approach for EEQ assessment.

Furthermore, to compare these two models, we have visualized the relationships
between each EEQ model and its factors, as illustrated in Figure 13.
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As illustrated in Figure 13, the IRSEI and RSEI models exhibit consistent patterns
in the influence of key ecological factors on EEQ. Specifically, NDVI and WET positively
contribute to RSEI, while NDBSI and LST negatively impact it. These findings align with
previous studies [22,24,69]. Furthermore, the effect of CVI on the new IRSEI model was
found to be greater than that of NDVI on the RSEI model, indicating that the vegetation
factor (CVI), with the inclusion of 3D data, had a stronger explanatory power on the
ecological environment [54]. The distribution of each ecological factor under different EEQ
models was calculated (Figure 14).

It can be seen from Figure 14 that there is a significant difference in distribution
between the two models. NDVI is mainly concentrated in the region of high values (0.6–1).
The main reason is that NDVI exhibits low sensitivity in high-vegetation areas is low, which
leads to saturation. This saturation effect makes it challenging to accurately differentiate
between various vegetation types or conditions within these areas [54,62]. In contrast, CVI
demonstrates a more balanced distribution with aggregations at both extremes. The reason
for this is mainly that, after adding 3D data, CVI is more sensitive to vegetation compared
to NDVI [30,54].
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Figure 14. A visual summary of ecological factor distribution.

As seen in Figure 15, EEQ quantitatively reflected by the IRSEI model and remote
sensing images is more consistent. For the monitoring of high-density contiguous built-up
areas and high-vegetation coverage areas, the IRSEI model is more consistent with actual
ecological environment conditions than RSEI. In Figure 15(B1), for contiguous built-up
areas, RSEI indicates that the ecological quality of these urban green spaces is too high.
Contrastingly, IRSEI, by adding 3D factors and increasing air quality factors, can more
accurately monitor the ecological environment and avoid a higher EEQ setting. Consistent
with the findings of Mao and Wang [70], who conducted a dynamic change analysis of
ecological vulnerability in Miyun, the EEQ in the northwest forested area is significantly
higher than in built-up areas. As seen in Figure 15(B2,B3), the integration of the 3D factor
accentuates the disparity between RSEI and IRSEI in forest areas with high-vegetation
cover. As expected, forest areas with high-vegetation cover exhibit superior EEQ compared
to those with lower cover [71]. The IRSEI model effectively captures this relationship,
demonstrating its ability to accurately represent ecological phenomena.
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6. Conclusions

In this research, a novel IRSEI model for large-scale EEQ assessment is proposed. It
introduces air quality and 3D vegetation factors into the IRSEI framework and utilizes the
PCA–AHP approach to determine optimal factor weights. Comprehensive experiments
were conducted in an ecological support district. The results indicated that the proposed
IRSEI model outperformed the existing RSEI model, and can achieve results that are more
consistent with real-world EEQ conditions. The following conclusions were obtained from
the experiment: (1) The difference index for the air quality factor can capture the changes
in particle concentration, which is the chief pollutant of atmosphere pollution in Miyun,
while the 3D vegetation factor can express the 3D canopy height. Consequently, the IRSEI
model delivers more detailed EEQ assessments. (2) The PCA–AHP approach successfully
balances objective and subjective information among the input ecological factors, thereby
enhancing model stability and weight reliability.

In the future, more 3D ecological factors (e.g., building heights, and DEM), natural
and human factors (e.g., population density, road network density), and time series data
need to be taken into consideration.
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