Sparsity-Enhanced Constrained Least-Squares Spectral Analysis with Greedy-FISTA
Abstract
:1. Introduction
2. Methods
2.1. Least-Squares Spectral Analysis
2.2. The Greedy Fast Iterative Shrinkage-Threshold Algorithm
- Set and , and m−1 = m0, j = 1; the parameter L is the Lipschitz constant. The parameter j counts the number of iterations.
- Update the model mj+1 byThe proximity operator of R(m) is defined as
- If , then . This is the step called “restarting” that helps to speed up.
- , then . This is the “safeguard” that helps to avoid numerical divergence.
- The algorithm stops when the maximum iterations or the tolerance is reached.
3. Examples
3.1. Synthetic Tests
3.2. Field Data Test
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Taner, M.T.; Koehler, F.; Sheriff, R.E. Complex seismic trace analysis. Geophysics 1979, 44, 1041–1063. [Google Scholar] [CrossRef]
- Partyka, G.; Gridley, J.; Lopez, J. Interpretational applications of spectral decomposition in reservoir characterization. Geophysics 1999, 18, 353–360. [Google Scholar] [CrossRef]
- Castagna, J.P.; Sun, S.; Siegfried, R.W. Instantaneous spectral analysis: Detection of low-frequency shadows associated with hydrocarbons. Lead. Edge 2003, 22, 120–127. [Google Scholar] [CrossRef]
- Grossmann, A.; Kronland-Martinet, R.; Morlet, J. Reading and understanding continuous wavelet transforms. In Wavelets; Springer: Berlin/Heidelberg, Germany, 1990; pp. 2–20. [Google Scholar]
- Mallat, S. A Wavelet Tour of Signal Processing, 2nd ed.; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- Castagna, J.P.; Sun, S. Comparison of spectral decomposition methods. First Break 2006, 24. [Google Scholar] [CrossRef]
- Tary, J.B.; Herrera, R.H.; Han, J.; van der Baan, M. Spectral estimation-What is new? What is next? Rev. Geophys. 2014, 52, 723–749. [Google Scholar] [CrossRef]
- Liu, N.; Gao, J.; Zhang, B.; Wang, Q.; Jiang, X. Self-adaptive generalized S-transform and its application in seismic time–frequency analysis. IEEE Trans. Geosci. Remote Sens. 2019, 57, 7849–7859. [Google Scholar] [CrossRef]
- Zhao, J.; Peng, S.; Du, W. Seismic small-scale discontinuity sparsity-constraint inversion method using a penalty de-composition algorithm. J. Geophys. Eng. 2016, 13, 109–115. [Google Scholar] [CrossRef]
- Lyu, B.; Qi, J.; Li, F.; Hu, Y.; Zhao, T.; Verma, S.; Marfurt, K.J. Multispectral coherence: Which decomposition should we use? Interpretation 2020, 8, T115–T129. [Google Scholar] [CrossRef]
- Flandrin, P.; Borgnat, P. Time-Frequency Energy Distributions Meet Compressed Sensing. IEEE Trans. Signal Process. 2010, 58, 2974–2982. [Google Scholar] [CrossRef]
- Sejdić, E.; Orović, I.; Stanković, S. Compressive sensing meets time–frequency: An overview of recent advances in time–frequency processing of sparse signals. Digit. Signal Process. 2017, 77, 22–35. [Google Scholar] [CrossRef] [PubMed]
- Vaníček, P. Approximate spectral analysis by least-squares fit. Astrophys. Space Sci. 1969, 4, 387–391. [Google Scholar] [CrossRef]
- Puryear, C.I.; Portniaguine, O.N.; Cobos, C.M.; Castagna, J.P. Constrained least-squares spectral analysis: Application to seismic data. Geophysics 2012, 77, V143–V167. [Google Scholar] [CrossRef]
- Li, D.; Castagna, J.; Goloshubin, G. Investigation of generalized S-transform analysis windows for time-frequency analysis of seismic reflection data. Geophysics 2016, 81, V235–V247. [Google Scholar] [CrossRef]
- Liang, J.; Luo, T.; Schönlieb, C.B. Improving “Fast Iterative Shrinkage-Thresholding Algorithm”: Faster, Smarter, and Greedier. SIAM J. Sci. Comput. 2022, 44, A1069–A1091. [Google Scholar] [CrossRef]
- Portniaguine, O.; Zhdanov, M.S. Focusing geophysical inversion images. Geophysics 1999, 64, 874–887. [Google Scholar] [CrossRef]
- Zhu, D.; Hu, X.; Liu, S.; Cai, H.; Xu, S.; Meng, L.; Zhang, H. Gravity inversion using L0 norm for sparse constraints. Geophys. J. Int. 2023, 236, 904–923. [Google Scholar] [CrossRef]
- Vignoli, G.; Guillemoteau, J.; Barreto, J.; Rossi, M. Reconstruction, with tunable sparsity levels, of shear wave velocity profiles from surface wave data. Geophys. J. Int. 2021, 225, 1935–1951. [Google Scholar] [CrossRef]
- Daubechies, I.; Defrise, M.; De Mol, C. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Commun. Pure Appl. Math. 2004, 57, 1413–1457. [Google Scholar] [CrossRef]
- Beck, A.; Teboulle, M. A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems. SIAM J. Imaging Sci. 2009, 2, 183–202. [Google Scholar] [CrossRef]
Ni | λ | Conventional (ms) | Greedy-FISTA (ms) |
---|---|---|---|
2 | 5 | 97.3 | 3.6 |
2 | 15 | 96.8 | 3.3 |
4 | 5 | 166.7 | 10.1 |
4 | 15 | 149.2 | 9.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, G.; Deng, W.; Li, Z.; Fu, L.-Y. Sparsity-Enhanced Constrained Least-Squares Spectral Analysis with Greedy-FISTA. Remote Sens. 2024, 16, 3486. https://doi.org/10.3390/rs16183486
Wei G, Deng W, Li Z, Fu L-Y. Sparsity-Enhanced Constrained Least-Squares Spectral Analysis with Greedy-FISTA. Remote Sensing. 2024; 16(18):3486. https://doi.org/10.3390/rs16183486
Chicago/Turabian StyleWei, Guohua, Wubing Deng, Zhenchun Li, and Li-Yun Fu. 2024. "Sparsity-Enhanced Constrained Least-Squares Spectral Analysis with Greedy-FISTA" Remote Sensing 16, no. 18: 3486. https://doi.org/10.3390/rs16183486
APA StyleWei, G., Deng, W., Li, Z., & Fu, L. -Y. (2024). Sparsity-Enhanced Constrained Least-Squares Spectral Analysis with Greedy-FISTA. Remote Sensing, 16(18), 3486. https://doi.org/10.3390/rs16183486