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Abstract: Ship wake detection stands as a pivotal task in marine environment monitoring. The main
challenge in ship wake detection is to improve detection accuracy and mitigate false alarms. To
address this challenge, a novel procedure for ship wake detection in a single SAR image is proposed
in this study. Initially, an entropy distance similarity criterion is designed to measure nonlocal
image patch similarity. Based on the proposed criterion, a low-rank and sparse decomposition
method is modified using nonlocal similar patch matrix construction to separate the sparse wake.
Subsequently, a field-of-experts (FOE) model is introduced to generate a series of multi-view wake
feature maps, which are fused to construct an enhanced feature map. The sparse wake is further
enhanced in the Radon domain with the enhanced feature map. The experimental results demonstrate
the effectiveness of the proposed method on real SAR ship wake images.
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1. Introduction

As an active Earth observation system, synthetic aperture radar (SAR) facilitates
all-weather and all-day surveillance with extensive coverage [1,2]. The acquisition of high-
resolution SAR images has attracted significant attention for target detection, particularly
in oceanic applications, where it serves as an effective tool [3]. When a moving ship sails on
a rough sea surface, the generated wake patterns appear on the surface in large sizes. The
visible appearances of the wake patterns are mainly associated with the ship’s parameters,
such as the speed, the ship hull size, and so on [4–6]. These moving-ship parameters can
also be inverted through analysis of the ship wake captured in an SAR image [3]. Thus,
detecting ship wake patterns in SAR images plays a crucial role in marine environment
monitoring [7,8].

Ship wake patterns are generally modeled as linear structures [9,10], given that they
have typical linear characteristics and appear as bright or dark lines in SAR images. As a
result, the detection of a ship’s wake is formulated using lines identified against the sea
clutter background in SAR images in the existing literature [7–13]. There is significant
utilization of the Radon transform (RT) and Hough transform (HT) for detecting these
linear wake structures, benefiting from their superior line recognition abilities [9,13]. The
RT is used to calculate the image pixel accumulation in various directions and then map
lines in image domains into peak points in the Radon domain. Compared with the HT,
the RT has the capability of canceling out the impact of noise fluctuations by integrating
image pixels in specific directions [14]. This principle makes the RT more prevalent in
wake detection in SAR images [15,16]. When employing the RT for wake detection, the
bright (dark) lines in the SAR image domain are transformed into bright (dark) peak points
in the Radon domain. These distinctive peak points of wake signatures can be identified
and extracted against an appropriate threshold [17]. Murphy adopted the RT to detect the
linear characteristics of wakes in SAR images for the first time and demonstrated that the
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linear features of wakes are enhanced during the process of image pixel integration. The
enhanced features produced good detection results [18]. Meanwhile, the study also pointed
out that more investigations are required for wake patterns in complex environments. Wake
patterns are disturbances of the sea surface that generate interactions with sea gravity and
capillary waves. Then, the roughness of the sea surface is changed, and wakes can appear
in SAR images based on the mechanism of wake pattern SAR imaging. Wake patterns can
be considered a superposition above the sea’s surface. The observability of wake patterns
is flexibly influenced by complex image backgrounds. Heavy sea clutter at a high sea
wave height can cause high false-alarm probability and even conceal wake patterns [10].
It is a challenge to obtain great performance against these complex backgrounds in ship
wake detection in SAR images. Thus, these RT-based wake detection methods are mainly
promoted by improving the wake’s signal-to-noise ratio (SNR), which aims to reduce the
influence of these backgrounds.

Combining image preprocessing techniques with the Radon transform is a common
strategy [9,10]. High-pass filters and Wiener filters are used in the image and Radon
domains, respectively, in order to suppress sea clutter and reduce the appearance rate of
false ship wakes [18]. The localized Radon transform proposed by Copeland et al. uses a
series of local windows to isolate and locate peak points to reduce some false alarms [12].
The wavelet transform based on an orthogonal basis was developed to generate multi-scale
high-pass images [19], and the edges of wakes can be enhanced by correlating the high-pass
image modulus, thus reducing false points in the Radon domain. Stochastic matched
filtering was combined with the RT to enhance wake shapes in the frequency domain; the
wake showed X-shaped features, and the RT was still used to detect the lines of X-shaped
features [20]. In addition, a few ship wake detection methods have been developed based
on deep learning [10]. However, most of them are data-driven and have a high dependence
on large-scale wake datasets, which are difficult to obtain [10,21]. The idea of compressed
sensing has recently been introduced to tackle the wake detection problem. The key is to
separate wake patterns from the image background, following which the separated wake
patterns are still detected using the RT. A sparse dictionary for ship wake textures and a
sparse dictionary for sea clutter textures were designed by Yang et al. [22], which adopted
morphological component analysis to extract the wake components, and RT was adopted to
identify the wake. The generalized minimax concave (GMC) [15] function was introduced
as another sparse regularization approach to enhance the linear features of the wake and
reduce false alarms in the Radon domain.

Inspired by sparse regularization, approaches based on low-rank plus sparse decom-
position (LRSD) have been successfully utilized for the task of wake detection in a single
SAR image [23,24]. Low rank is a prior characteristic of SAR images and represents a high
correlation among images [25]. Based on this, an observed SAR image can be naturally
decomposed into an approximately low-rank structure and a sparse structure through
performing LRSD. Then, the ship’s wake patterns are restored in the sparse structure and
detected using the RT. Biondi introduced LRSD for the first time to separate wakes and
image backgrounds. LRSD is utilized both in the image and Radon domains to reduce
the false alarms of the background, and then the RT is used to identify wakes [23]. In
addition, there has been an extension of using LRSD in processing polarized SAR images
for wake detection by using polarization information to enhance the wake features and
mitigate false ship wakes [24]. On this basis, random sampling consensus was further
exploited on wakes separated using LRSD to finely characterize their linear structure [25].
These existing methods have obtained success in ship detection. It has been demonstrated
that the effectiveness of LRSD depends on the assumption of the high correlation of the
background [26].

However, these methods mainly depend on local spatial correlations between adjacent
pixels to indicate correlations, which may be corrupted by noise and significant amounts
of sea clutter [26]. In fact, there are often many repetitive local patches across a whole
image, which are present as nonlocal similarities [27,28]. Unlike local similarities, these



Remote Sens. 2024, 16, 3487 3 of 18

repetitive patches can be grouped together in a nonlocal matrix with high correlation to
serve a low-rank structure. On the basis of this, the usage of nonlocal similarity makes
a breakthrough in the application of SAR image detection and denoising. However, the
existing LRSD-based ship wake methods rarely consider nonlocal similarities. On the
other hand, there are also other line-shaped sea waves on the sea surface, including those
induced by strong speckle noise accumulation [3,11]. These line-shaped objects are also
represented as bright (dark) peak points in the Radon domain. It is difficult to distinguish
between the differences in peak points between wakes and other linear structures during
the threshold-based identification process [15]. As a result, the precision of wake detection
is limited, and the rate of false alarms is high, especially in complex scenarios.

To address the above problems, a novel ship wake detection method based on nonlocal
LRSD and an enhanced feature map for a single SAR image is proposed. First, an SAR
image is divided into a grid of many image patches. To enhance the correlation, a nonlocal
similarity criterion based on image entropy is employed. For each patch, a group of patches
are collected based on the nonlocal entropy similarity to construct a matrix of nonlocally
similar image patches, and a decomposition function is set up to modify the LRSD. Then,
the FOE model is introduced to establish an enhanced feature map in order to improve the
reliability of wake decisions in the nonlocal LRSD detection procedure. Finally, connected
region clustering (CRC) is further executed in the Radon domain to extract the peak points
of the potential wake and filter out the false points with prior knowledge of the wake
breadth. Real SAR images are adopted to illustrate the effectiveness of the proposed
method. The main contributions of the proposed method are as follows:

(1) Nonlocal low-rank and sparse decomposition is proposed to separate a wake from
the sea background in a single SAR image. The nonlocal entropy similarity criterion
is employed to measure the similarity of nonlocal image patches in a search window,
and then these similar image patches are constructed as an image patch matrix to set
up an objective function for LRSD.

(2) An FOE model is further introduced to improve the decision reliability of the nonlocal
LRSD ship wake detection procedure. The enhanced feature map is obtained by
fusing a series of multi-view feature maps, which are generated by convolution with
the FOE model filters. The sparse wake obtained through nonlocal LRSD is enhanced
by performing a logical “and” operation on the center points of the Radon transform
results for both the sparse wake and the enhanced feature map after applying CRC to
Radon images to extract central points.

The rest of this article is organized as follows. In Section 2, the principles of LRSD
are overviewed, while the proposed wake detection method is presented in Section 3. The
experimental results are provided in Section 4. The last section discusses the results and
concludes the article.

2. LRSD for Ship Wake Detection

The redundancy and correlation in SAR images inherently stem from the repetitive
nature of their internal elements. This indicates that SAR images have the properties
of a low-rank structure, which is a priori knowledge in SAR images [27]. The combina-
tion of low-rank a priori knowledge of SAR images and low-rank decomposition tech-
niques has been successfully developed in the fields of SAR image denoising and target
detection [27–31]. Specifically, low-rank decomposition can be used to effectively separate
low-rank background components with persistent features and sparse components rep-
resenting local variations, which may correspond to targets or other objects of interest in
an image, from SAR images [32]. Methods based on low-rank priors of SAR images have
recently been investigated for the problem of ship detection. They assume that the stable
background of SAR images exhibits a low-rank structure and approximately consider ship
wake patterns, strong sea clutter, and noise as sparse components [23]. Using low-rank
decomposition, the background interference can be reduced from ship wake patterns [24].
In the process, ship wake separation is formulated as an optimization problem that is
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subject to the condition of sparsity [23]. The LRSD-based technique for ship wake detec-
tion unfolds in a two-step procedure: the separation of ship wake components from the
background through LRSD and the detection of the wake’s linear structure with the RT.
The following is a brief introduction to the procedure.

A given SAR image, denoted as a two-dimensional matrix O, can be mathematically
modeled as O = L + S, where L represents the low-rank component corresponding to the
sea background, and S denotes the sparse component corresponding to the ship wake [23].
The issue of wake detection, which involves separating the ship wake from the background,
is reformulated as a rank minimization optimization problem and can be approximately
expressed as:

min
L,S

∥L∥∗ + λ∥S∥1 s.t.O = L + S (1)

where ∥·∥∗ is the nuclear norm, and ∥·∥1 is the l1 norm. The regularization parameter λ is
used to control the balance between the two terms. The nuclear norm represents the sum
of all singular values of L. The norm l1 is the sum of the absolute values of the non-zero
elements in S. Equation (1) is a convex optimization problem and is often solved using the
augmented Lagrange multiplier with alternating-direction minimization [29]. The objective
function is rewritten as:

f (L, S, Y, µ) = ∥L∥∗ + λ∥S∥1 + ⟨Y, O − L − S⟩+ µ

2
∥O − L − S∥2

F (2)

where Y ∈ Rw×w×n is the Lagrangian operator, µ is a positive penalty scalar, ⟨·⟩ denotes
the inner product of the matrix, and ∥·∥F is the Frobenius norm. Then, Equation (2) is
iteratively solved for one variable by fixing the others. Taking iteration t + 1 as an example,
we update L by fixing St, Yt, and µt:

Lt+1 = argmin f
(

L, St, Yt, µt)
= ∥L∥∗ + λ

∥∥St
∥∥

1 +
〈
Y, O − L − St〉+ µt

2

∥∥O − L − St
∥∥2

F
= US 1

µt
VT

(3)

where S(·) is a positive scale that represents a singular value-shrinkage function. Its
definition is Sε(a) = sgn(a)max(a − ε, 0), which is a kind of soft threshold operator, and
sgn(·) denotes the sign function. S is updated by fixing the others:

St+1 = argmin f
(

Lt+1, S, Yt, µt)
=

∥∥Lt+1
∥∥
∗ + λ∥S∥1 + ⟨Y, O − L − S⟩+ µt

2

∥∥O − Lt+1 − S
∥∥2

F

= S λ
µt

(
O − Lt+1 + Yt/

µt

) (4)

where S λ
µt
(·) is a singular value-shrinkage function with the parameter λ

µt . Y is updated:

Yt+1 = Y + µ
(

O − Lt+1 − St+1
)

(5)

The loop procedure terminates when the maximum number of iterations is reached or
the loss satisfies

∥∥O − Lt − St
∥∥2

F ≤ τ with the error tolerance τ.
After the decomposition, the ship wake patterns are obtained in S and then detected

with the RT method. The RT is applied to S to provide a Radon image R. The mean value
µR and the standard deviation σR of the Radon image are estimated. A decision threshold
value interval is utilized to extract the potential wake peak points, and it is expressed as
[−µR − K1 × σR, µR + K2 × σR]. The parameters of K1 and K2 are empirically determined
and conventionally set within the range of 2 to 4. These points outside the threshold
interval are retained to be identified as potential wake peak points.
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As shown in Equation (2), the core of analyzing low-rank priors is exploring low-rank
components. For example, the background of continuous video frames involves low-rank
components, since they are linearly correlated in the temporal domain [25]. The efficacy of
LRSD fundamentally depends on images having low-rank properties. The more obvious
the low-rank structure, the more effective the separation between the background and
target, i.e., the ship wake [31]. The current LRSD-based methods for ship wake detection
assume that the low-rank structure is characterized by a high correlation among adjacent
pixels in an SAR image [29]. However, the correlations between neighboring pixels can
be corrupted by the complexity of a scene and speckle noise [27,28]. Consequently, the
performance of LRSD is confronted with this limitation, which may reduce accuracy in
separating a wake from the background.

On the other hand, the success of a threshold application in the Radon domain de-
pends on the assumption that there are distinct differences in brightness between wake
components and the residual background. However, wake components are often character-
ized by their faint signals [33], which makes them less observable and causes differences in
brightness with respect to the background to be less prominent. As a result, it is difficult
to determine an appropriate threshold interval. Moreover, other linear structures, such as
swell waves, also exhibit similar peak values to those of wakes in the Radon domain. Thus,
this will lead to high rates of false detection alarms in the extraction of wake peak points
when using a threshold decision.

3. The Proposed Method

To tackle the above problems, a novel ship wake detection method based on nonlocal
LRSD and an enhanced feature map for a single SAR image is proposed. Unlike the existing
LRSD method, which relies on similarity between neighboring pixels, the proposed method
leverages non-local similarity in SAR images, where image patches at different spatial
locations may have similar structural features [27]. Based on a predefined measurement
criterion, similar image patches can be collected, and patch matrixes with a high correlation
can be formed [30,31]. These nonlocal image patch matrices (NPMs) are employed to
replace the original SAR images in LRSD. The entropy-based measurement criterion is also
proposed to find similar image patches. As a result, the low-rank structure of an NPM is
more obvious than that of the original SAR image. The separation between the wake and
the background is improved by the proposed nonlocal LRSD.

In order to improve the reliability of wake decision making, it is particularly crucial to
characterize the features of wake patterns. The FOE model, which has a series of high-order
filters, has demonstrated its powerful ability to depict images with complex textures or
structures, including edges, textures, and other high-frequency information. This model
demonstrates its performance in image enhancement tasks by revealing richer and more-
detailed visual details in different directions. Motivated by its characterization ability,
the filters of the FOE model are introduced to generate multi-view feature maps. These
maps are integrated as enhanced feature maps to support subsequent wake judgments
related to sparse wakes in the Radon domain, thereby improving the reliability of decisions.
Subsequently, the wake breadth is used as a filtering criterion, and CRC is performed on
Radon images to extract the cluster center points of sparse wakes and enhanced feature
maps. Through logical operations on the center points of their Radon images, false wakes
are further removed, and the potential wake peak points are identified.

The proposed wake detection framework is overviewed in Figure 1. Initially, the SAR
image is cut into a series of image patches. For each reference patch, its image entropy
is calculated, and a group of patches with entropy values that are approximately the
same as that of the reference patch are selected. Then, an NPM is constructed by stacking
and vectorizing similar patches, and sparse wakes are separated by performing LRSD
on the NPM. Secondly, the SAR image is convolved with the filters of the FOE model to
obtain multi-view wake feature maps. An enhanced feature map is produced through
the integration of the multi-view maps, and then low-rank matrix recovery is adopted to
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reduce the noise. Finally, the RT is executed on both the sparse wake and the enhanced
feature map. CRC is employed, the center points of clusters are extracted from the Radon
images, and a logical “and” operation is applied on the center points to extract the peak
points of the sparse wake. The wake decision results are provided by the inverse RT.

The three main steps are illustrated in detail as follows.
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Figure 1. The outline of the proposed wake detection framework.

3.1. Modified Nonlocal LRSD

In reality, some image patches are located in different positions with similar structures.
This is a typical property of SAR images and is called nonlocal similarity. Nonlocal-
similarity-based methods have been investigated in SAR image denoising, restoration, and
detection. These studies have demonstrated that grouped nonlocal similarity image patches
can be considered as low-rank matrices. As stated previously, the successful application of
LRSD depends on the low-rank structure of the SAR image. In this section, the low-rank
structure of a matrix of nonlocally similar patches is exploited with similar structures, and
this is incorporated into LRSD as a core concept.

Given a reference image patch, each patch can be matched with other patches according
to their similarity, which is called patch matching. The key to patch matching is defining
the similarity criterion. Some measurements have been adopted to evaluate the similarity
of image patches, among which the most commonly adopted measurement is based on
the grayscale Euclidean distance [30]. However, the large variation in the gray absolute
intensity caused by noise in SAR images makes the grayscale Euclidean distance less
effective. The SAR wake imaging mechanism indicates that the textural roughness of the
sea surface is changed by the wake’s modulation of gravity–capillary waves on the sea
surface. This textural difference enables wakes to become visible in SAR images [10]. A
recent study also demonstrated that wakes and the sea surface are significantly different
in texture [13]. Inspired by this, texture information was utilized to assess the similarity
between patches. As a classical texture feature, entropy was introduced to quantify this
similarity in this study.
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An SAR image with a size of M × N can be partitioned into numerous patches with a
fixed size w and fixed step s. There are ((M − w + 1)/s)× ((N − w + 1)/s) image patches.
For one image patch yi with a size of w × w, the entropy is calculated as follows:

Hyi = −
w

∑
m=1

w

∑
n=1

Pm,n log(Pm,n) (6)

where Pm,n = yi(m, n)
/

w
∑

m=1

w
∑

n=1
yi(m, n) . yi(m, n) refers to the gray intensity of yi at (m, n).

To eliminate the influence of the patch size, the entropy value is normalized as follows:

Hi =
Hyi

log(w × w)
(7)

As entropy is the joint contribution of all pixels in the patch, and it is not sensitive to
noise in the gray intensity [32]. The similarity criterion between the two patches can be
defined using the entropy distance as follows:

Si,j =
∣∣Hi − Hj

∣∣2 (8)

where Hj is the entropy of patch yj. Then, according to the criterion in Equation (8), an NPM
can be constructed for the referenced patch yi. For each patch, the entropy of the candidate
patches in a searching window is computed using Equations (7) and (8) for yi. These
candidate patches are ranked in ascending order of similarity distance. The n smallest
distances are selected, and they represent the n most similar patches to the referenced
patch. All of the similar patches are stretched as columns with vec(·) and stacked to form a
low-rank NPM Φi, where the first column denotes the referenced patch yi. Φi is defined as

Φi = [vec(yi_1), vec(yi_2), . . . , vec(yi_n)] (9)

where the matrix Φi has dimensions of w × w rows by n columns. Since the correlation
between the adjacent columns in Φi is higher than that in the original SAR image, there
are fewer sea clutter residuals in the sparse wake components. The observed image matrix
O in Equation (1) is replaced by the NPM Φi. Similarly, a Lagrangian operator with an
augmented Lagrange multiplier and alternating-direction minimization is applied to solve
for each Φi.

An illustration of the construction of the NPM is depicted in Figure 2. The similar-
ities among patches of ship hulls labeled with a purple box are higher than those of the
surrounding sea background. The n most similar candidate patches based on the entropy
similarity distance are selected, as shown in the middle of Figure 2, while the construction
of Φi is shown on the right. The Lagrangian operator with augmented Lagrange multiplier
and alternating-direction minimization is applied to solve for each Φi, and the whole
process is summarized in Algorithm 1.
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Algorithm 1: Modified nonlocal LRSD based on entropy similarity

1: Input: An SAR image O, the maximum number of iterations Tita, the tolerance τ, the size of the
square patch w, and the step s between the neighboring patches.
2: Divide O into patches, find the n most similar patches, and stack the similar patch matrix Φi
based on Equation (9); the NPM number is set to Np

{
Φ1, . . . , Φi, . . . ΦNp

}
.

3: For each Φi in
{

Φ1, . . . , Φi, . . . ΦNp
}

:
4: For t = 1 : Tita, do the following:
5: Update Lϕ using US 1

µt
VT

6: Update Sϕ using S λ
µt

(
Φ − Lt+1

ϕ + Yt

µt

)
7: Update Y using Yt+1 = Y + µ

(
Φ − Lt+1

ϕ − St+1
ϕ

)
8: Update µt+1 = ρ ∗ µt

9: End
10: End
11: Aggregate Lϕ and Sϕ

12: Output

3.2. The Generation of an Enhanced Wake Feature Map

In terms of a sparse wake, it is important to enhance the linear structure characteris-
tics, since the enhanced structure can provide supplementary information for peak point
detection and improve the reliability of detection. In traditional research, regularization
methods based on the weighted kernel norm and total variation (TV) are widely used to
enhance the features of wakes [28]. They maintain image details by adjusting the weights
of singular values or constraining the gradient information in an image. However, these
methods often rely on local image priors or low-order derivative analysis factors, such
as first-order derivatives, which limits their potential for describing image features. To
overcome this limitation, Markov random fields (MRFs) are introduced into the detection
framework, as they have shown the ability to capture image details and model spatial
priors in SAR images [34]. In particular, a high-order MRF model (e.g., the FOE model) can
capture global image priors through the application of a series of high-order filters [35].
These filters generate multi-view feature maps by convolving with the image and providing
rich directional texture information, which is difficult to achieve with traditional methods.

Here, the high-order filters in [36] are directly employed to generate multi-view feature
maps via convolution with the original SAR image, and they are written as follows:

f1 = JT
1 ∗ O, fk = JT

k ∗ O, . . . , fK = JT
K ∗ O (10)

where Jk denotes the k − th filter, which is trained with numerous natural images. fk is the
k − th feature map. K is related to the number of filters, and further details can be found by
referring to [36,37]. For instance, 8 filters have a size of 3 × 3, and 24 filters have a size of
5 × 5. The intricate edges and details of the images in diverse orientations are enhanced
through these multi-view feature maps.

Then, an average-weighting strategy is adopted to integrate the generated feature
maps into an enhanced feature map as follows:

F(O) =
K

∑
k=1

JT
k ∗ O (11)

where each feature map is assigned the same weight, since the contributions made to the
feature description are the same but in different directions. The fusion process preserves
the multi-view features inherent in SAR images.

Next, noise reduction is performed on the enhanced feature map by using low-rank
matrix recovery.

Ô′ = argmin
1
2

∥∥F(O)− O′∥∥2
2 + τ

∥∥O′∥∥
∗ (12)
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where Ô′ is the estimated enhanced wake feature map. A singular value-shrinkage func-
tion [23] is used to solve the optimization problem in Equation (12).

To demonstrate the effectiveness of the enhanced wake feature map with the FOE
model, a group of 24 filters with a size of 5 × 5 [37] was utilized. A content-rich GF-
3 port SAR image was selected and convolved with each filter, resulting in a series of
convolutional feature maps, as shown in Figure 3, where the first 24 images represented the
multi-view feature maps obtained with Equation (6), and the 25th image corresponded to
Ô′. The original GF-3 port SAR image is positioned in the bottom-right corner of Figure 3.
It can be observed that these multi-view feature maps encompassed rich information,
and the edges were more obvious than the background. These features were highlighted
through enhancement processing in various directions. In addition, the enhanced image
was smoother than the original SAR image. This indicated that not only were the wake
features enhanced, but the speckle noise was also reduced due to the combination of the
FOE model and low-rank matrix recovery.
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The low-rank properties were also compared between the enhanced feature map and
the original SAR image. Singular value decomposition was executed on the enhanced
feature map and the original image, and the results are given in Figure 4. It can also be
observed that the singular values of the feature map were smaller. As illustrated in Figure 4,
the enhanced feature map had more obvious low-rank properties than those of the original
SAR image. This also supported the speckle noise reduction; as such, the enhanced feature
map would be beneficial for subsequent wake detection. Thus, the feature map could help
separate a sparse wake from the background.
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3.3. Discrimination of Wake Peak Points

CRC and a logical operation are introduced to further improve the decision reliability
of nonlocal LRSD in the Radon domain. Specifically, CRC is applied on both the Radon
images of the sparse wake and the enhanced feature map. Based on the clustering results, a
logical operation is conducted on the cluster center points.

Linear sea waves are discrete and characterized by isolated points in the Radon
domain, while wake components with breadth are characterized by a contiguous region.
Therefore, CRC is employed on Radon images to remove these isolated sea wave points
before the logical operation.

Based on the principle of Radon-based ship wake detection, a set of peak points are
retained after the threshold decision and represented by A. One peak point Ri at the
location (ρi, θi) in set A is expressed as {ρi, θi, Ii}, where ρi denotes the distance and θi
denotes the angle. Ii is the brightness value of this peak. Based on the brightness of A, if
all peaks have a path connecting them, then any two peaks can be considered connected.
The subset composed of all peaks connected to any peak is called the connected clustering
region of set A. Set A is binarized as B, and an array X0 of the same size as B is initialized
with 0. Then, the clustering regions are acquired through CRC using a structural element.
The progress is expressed as follows:

Xt = (Xt−1 ⊕ P)∩B k = 1, 2, 3, · · · (13)

where P is a neighborhood structural element. The iterative process stops when Xt = Xt−1.
All of the components of the connected regions are covered by Xt, and each component of
the connected regions represents a set of peak points. The center point of each component
of the connected regions, {ρc, θc, Ic} c ∈ C, is extracted gradually, where C is the total
number of clustering regions.

By applying CRC to Radon images, the clustering center points are set for the sparse
wake separated using nonlocal LRSD, and the enhanced feature map is obtained; these
are expressed as Xt_sw and Xt_e f , respectively. Then, the potential wake peak points are
extracted using a decision strategy based on a logical “and” operation, which is defined
as follows:

Xt_sw(R) ∩ Xt_e f (R) =
{

1 Xt_sw(R) = Xt_e f (R) = 1
0 others

(14)

The ship detection results based on these potential wake peak points are provided by
the inverse RT.

4. Experiments
4.1. Experimental Implementation Details

To demonstrate the performance of the proposed method, some ship wake samples
from different SAR satellites were utilized for testing and comparison with other existing
detection methods. The SAR image samples used for testing are depicted in Figure 5. As
shown in Figure 5a–c, some ship wake data were captured by the GF-3 satellite on 31 May
2022 using the C-band frequency with a resolution of 5 m. The data in Figure 5d were
obtained on 24 July 2021 with an X-band SAR sensor in the Iceye satellite with a resolution
of 2.5 m. The sample in Figure 5e was acquired from open-access HRSID data and was
labeled as P0137_35. In our experiments, the SAR image samples, which had a size of
196 × 196, encompassed different wake types, such as a narrow-V wake, as depicted in
Figure 5. It was observed that the wake components were weak targets that were obscured
by the background, making ship wake detection more difficult.

For the proposed method, the image patch size was 11× 11, and similar image patches
were collected in a search window, where n = 90 was used to construct the nonlocally
similar patch matrix Φ with a step of s = 5. The iteration number was T = 100 for the
augmented Lagrange multiplier with the alternating-direction minimized solution.
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From the 24 filters illustrated in Figure 3, a subset of 9 filters was chosen to represent
the wake features because of the sparsity of the multi-view feature maps. The empirical
parameter within the RT was adjusted according to the SAR images. K1 was set to 2.5, and
K2 was set to 4.

Remote Sens. 2024, 16, x FOR PEER REVIEW 11 of 19 
 

 

extracted using a decision strategy based on a logical “and” operation, which is defined 
as follows: 

( ) ( ) ( ) ( )_ _
_ _

1 1
0

t sw t ef
t sw t ef

X R X R
X R X R

others
= =

∩ = 


 (14)

The ship detection results based on these potential wake peak points are provided by 
the inverse RT. 

4. Experiments 
4.1. Experimental Implementation Details 

To demonstrate the performance of the proposed method, some ship wake samples 
from different SAR satellites were utilized for testing and comparison with other existing 
detection methods. The SAR image samples used for testing are depicted in Figure 5. As 
shown in Figure 5a–c, some ship wake data were captured by the GF-3 satellite on 31 May 
2022 using the C-band frequency with a resolution of 5 m. The data in Figure 5d were ob-
tained on 24 July 2021 with an X-band SAR sensor in the Iceye satellite with a resolution of 
2.5 m. The sample in Figure 5e was acquired from open-access HRSID data and was labeled 
as P0137_35. In our experiments, the SAR image samples, which had a size of 196 196× , 
encompassed different wake types, such as a narrow-V wake, as depicted in Figure 5. It was 
observed that the wake components were weak targets that were obscured by the back-
ground, making ship wake detection more difficult. 

   
(a) (b) (c) 

  

 

(d) (e)  

Figure 5. Experimental SAR image samples from different SAR satellites. (a–c) the GF-3 SAR im-
ages; (d) the SAR image sample from Iceye satellite; (e) SAR image sample from HRSID dataset. 

For the proposed method, the image patch size was 11 11×  , and similar image 
patches were collected in a search window, where 90n =  was used to construct the non-
locally similar patch matrix Φ  with a step of 5s = . The iteration number was 100T =   
for the augmented Lagrange multiplier with the alternating-direction minimized solution. 

From the 24 filters illustrated in Figure 3, a subset of 9 filters was chosen to represent 
the wake features because of the sparsity of the multi-view feature maps. The empirical 

Figure 5. Experimental SAR image samples from different SAR satellites. (a–c) the GF-3 SAR images;
(d) the SAR image sample from Iceye satellite; (e) SAR image sample from HRSID dataset.

4.2. Method Demonstration

First, Figure 5a is used as an example to demonstrate the experimental process in detail.
As depicted in the flowchart in Figure 1, the entire experiment was divided into three main
stages: the implementation of NLRSD, the enhancement of wake features, and wake peak
discrimination using clustering in the Radon transform domain. For convenience, NLRSD
and EFM are used as shorthand for the proposed nonlocal LRSD and the enhanced feature
map, respectively.

The SAR image in Figure 5a was broken down into low-rank components, as shown
in Figure 6a, and a sparse wake, as shown in Figure 6b, by using NLRSD as described in
Section 3.1. It was observed that the sparse wake components shown in Figure 6b were more
visible than in the original image. This revealed the effect of ship wake separation based
on NLRSD, which aimed to improve the observability of ship wake patterns against the
background. As shown in Figure 6b, it was also found that the boundaries of the separated
wake still seemed to be as blurry as those in the original. These blurry boundaries would
lead to weak distinguishability between wake peak points and the background in the
Radon domain, thereby increasing the risk of false alarms. As such, it was necessary to
enhance the wake edge features to improve the peak decision making.

In accordance with Section 3.2, an enhanced feature map for Figure 5a was generated, as
shown in Figure 6c. It can be seen that the wake and its edges were more distinct than those in
the sparse wake and the original SAR image. This indicated that the proposed enhanced feature
maps possessed the ability to characterize and amplify the linear structures of wakes.

Then, based on the processed results, the potential wake peak extraction in the Radon
transform domain was subsequently demonstrated. The outputs of the separated sparse
ship wake and the enhanced feature map were subjected to the Radon domain. CRC was
then performed within the two Radon outputs, and the centroids of these clustering results
from both Radon outputs were combined through logical operations to yield potential wake
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peak judgment points. Figure 7a shows the Radon output of the sparse wake, and Figure 7b
shows the clustering center point distribution in the Radon output. Correspondingly, the
Radon output and clustering center points for the enhanced feature map are displayed in
Figure 7c,d. The output for the extracted potential wake peak point is shown in Figure 7e.
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Obviously, the Radon output of the sparse wake in Figure 7a was smoother than that
of the enhanced feature map in Figure 7c, which suggested the effect of NLRSD on the
reduction in the background interference and indicated the advantage of this methodology.
The heightened luminance contrast between peak points in the Radon output derived from
the enhanced feature map confirmed the potency of the feature enhancement methodology.
This afforded a clearer visual representation for wake identification, as shown in Figure 6.

The clustering center points were obtained by clustering the Radon output, so the
distribution of the center points could reflect the distribution of lines in the images. For
example, if only one point existed in the clustering, there would only be one line in the
image. This was also observed in the presence of a few center points in Figure 7b, which
indicated a potential limitation in the precision of wake detection afforded by NLRSD.
Observation of Figure 7e suggests that the incorporation of an enhanced feature map
into NLRSD in the Radon domain presents a potential way to augment the precision and
reliability of wake recognition.

4.3. Contrastive Experimental Results

Finally, to illustrate the efficacy of the proposed method, its detection performance
on the real SAR image samples shown in Figure 5 was compared with that of existing
methods, including LRSD [23], GMC [15], a wavelet-transform-based method [19], and
the fast Radon method [14]. GMC is a state-of-the-art wake detection method. Specifically,
the detection results and the computational complexity of execution were analyzed and
compared. To ensure consistency in the experimental conditions, CRC was also applied to
the compared methods.

The detection results of the five methods are shown in Figures 8–12. The results of
the fast Radon method failed to achieve satisfactory accuracy, with many false alarms
being observable. As a classical wake detection method, this was attributed to it rarely
considering the suppression of background interference. In the results of the wavelet- and
LRSD-based methods, the false-alarm rate was reduced compared with that of the fast
Radon method. The visual results indicate that the accuracy of LRSD was better than that of
the wavelet-based method, which suggested the effectiveness of low-rank-based detection
methods for wake detection. As shown in Figure 9, the GMC method outperformed
the other three methods used for comparison and could sometimes achieve a detection
accuracy comparable to that of the proposed method. As shown in Figure 11, its accuracy
was even slightly higher than that of the proposed method. However, it is regrettable that
it occasionally exhibited missed detections, as seen in Figure 12. In contrast, the proposed
method yielded satisfactory results. The detection precision of the method introduced in
this study was generally higher than that of the methods used for comparison, and the
effect of eliminating false positives was also relatively competitive. This also illustrated
that the nonlocal method proposed in this study could be used to construct a matrix with
higher correlations to effectively reduce the background interference, while incorporating
the enhanced feature map improved the reliability of ship wake judgment, thereby filtering
out the probability of false alarms. The application proved the reliability of the proposed
method in practice.

Additionally, we conducted a statistical analysis of the time consumed by the different
methods during their execution. The average execution time of the methods on the sample
images was counted, and the results are listed in Table 1. In comparison with the existing
methods, our approach incurred more computational time. The extended computational
duration associated with our proposed algorithm was mainly attributed to the requirement
of constructing nonlocal image patch matrices, which could improve the detection perfor-
mance. For each matrix, repetitive calculations of image entropy and low-rank singular
value decomposition (SVD) were required. Consequently, this resulted in a longer time
commitment than that of the existing methods. Although this process required more time,
the resultant enhancement in performance was evident.
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Table 1. Comparison of the execution time (s).

NLRSD LRSD GMC Wavelet-Based
Method

Fast Radon
Method

Time 810 25 450 18 13

5. Discussion and Conclusions

This study was motivated by the objective of increasing the accuracy of ship wake
detection in SAR images and decreasing the rate of false alarms. Conventional LRSD-based
studies have primarily focused on background removal, ignoring the nonlocal similarity
priors and the reliability of wake decision making. This investigation indicated that wake
separation can be improved by using modified nonlocal LRSD. Enhanced wake features can
serve to distinguish between the true linear structure of a wake and the other false structures.
An analysis of the results for the computational time in a comparison between NLSD and
LRSD was also provided. There are two primary complex computations in the proposed
method. The first involves the decomposition process of singular value decomposition
(SVD), a fundamental component of LRSD-based methods. The computational complexity
of constructing an NPM is O

(
w2 × n2), according to the parameters set in the experiment.

The SVD is executed T times in a loop, and the complexity is T × O
(
w2 × n2). The other is

the calculation of entropy, for which the computational complexity of one patch is calculated
as O

(
w2). As described in Section 3.1, the computation of entropy necessitates repetitive

evaluations for each image patch. Moreover, the calculation of entropy is iteratively
executed within all candidate patches, thereby augmenting the computational burden. The
improvement of the detection accuracy is at the cost of computational complexity, and
future work will focus on reducing the runtime of the method while maintaining high
detection accuracy.

A novel ship wake detection procedure based on a nonlocal low-rank constraint and an
enhanced feature map was proposed in order to improve the reliability of wake decisions.
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The designed nonlocal similarity criterion was utilized to construct a matrix of nonlocally
similar image patches with high correlation, which provided a better separation between
sea clutter and wake patterns. An enhanced feature map was developed using the FOE
model to capture more wake details, thereby improving the reliability of wake peak point
decisions. Based on Radon images, clustering in connection regions was further employed
to filter out other linear structures of sea waves and noise. Our method demonstrated
remarkable detection accuracy when applied to real SAR images. However, it is worth
noting that the proposed method incurs higher computational costs due to the construction
of a nonlocally similar patch matrix. The trade-off between accuracy and computational
efficiency is a challenge that must be addressed in future research.
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