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Abstract: Climate change is a major issue in wastewater management at local and regional levels,
as it affects the frequency of flooding and therefore the need to update infrastructure and design
regulations. To this end, rainfall data are the main input to hydraulic models used for the design of
drainage systems and, in advanced contexts, for their real-time monitoring. Field observations are of
great interest and water authorities are increasing the number of existing rain gauges, but at present
they are scarce and require maintenance, so their number needs to be considered with their O&M
costs. Remote sensors, including both the existing satellite rain products (SRPs) and radar imagery
(RI), can complete the spatial distribution of rainfall and optimise the cost of observations. While
most SRPs are based on re-analysis and have a lag in availability, RI can be obtained in near real
time and is becoming increasingly popular in weather forecasting applications. Unfortunately, actual
rainfall forecasts from RI observations are not accurate enough for real-time monitoring of drainage
systems. In this paper, the Colour Pattern Regression (CPR) algorithm is used to recalibrate the 6 h
rainfall values from RI provided by the Agencia Estatal de Meteorología (AEMET) with the observed
rain gauge data, using as a case study the metropolitan area of Palma (Spain).

Keywords: nowcasting; rainfall radar calibration; remote sensing; CPR algorithm; QGIS

1. Introduction

The specific and local outcomes of climate change are uncertain and lead to impacts
on the hydrological cycle by altering the frequency, intensity, spatial extent, or duration of
weather and climate extremes, such as heavy precipitation events or droughts [1]. However,
in the context of global warming and climate change, it is generally accepted that both
temperature and precipitation patterns will change on a planetary scale [2] and, in this
sense, the latest report of the Intergovernmental Panel on Climate Change (IPCC) [3] states
that the frequency and intensity of heavy precipitation events have increased since the
1950s over most land areas for which observational data are sufficient for trend analysis,
and that anthropogenic climate change is likely to be the main driver. An increase in the
intensity of rainfall in urban contexts, together with an increase in urbanisation activities,
leads to the need to increase the capacity of urban drainage systems.

Rainfall is characterised by a high spatio-temporal variability, which in turn com-
plicates its quantitative description [4]. On one hand, rain gauges can be considered as
a very precise measurement estimation of the actual rainfall, but cannot reproduce its
spatial distribution [5]; and, on the other hand, meteorological radar presents a good spatial
distribution of the rainfall, but a poorer quantitative estimation.

The combination of meteorological radar and distributed hydrological models results
in a fundamental tool for flood risk management [4], but also the application of rainfall
prediction techniques, or nowcasting, based on weather radar is ideal for this purpose due
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to its good spatial coverage (around a km2) and temporal resolution (less than 15 min) [6–8].
The benefit of using radar-based nowcasts as inputs to hydrological models has also been
shown in urban catchments and flood forecasting [8–10]. Regardless, urban catchments
are usually smaller than rural watersheds, the runoff transformation of the catchments is
higher, and their reactive capacity is lower because natural retention is much less, so the
immediacy and accuracy of rainfall information is of paramount interest.

However, the use of meteorological radar for operational applications in urban hydrol-
ogy has been rare so far, either because of the more complex error characterisation of radar
data compared to direct observations in rain gauges, or because of the actual expansion and
development of the technical infrastructure—i.e., radar networks are not available everywhere.
In addition, it is also a feature of radar measurements that the uncertainty of the measurement
increases with higher rain intensities, which is of primary interest in urban hydrology, espe-
cially in high-intensity contexts [7]. Both measurement devices—i.e., meteorological radar
and rain gauges—are complementary and thus the simultaneous use of both can provide the
best spatial estimate of rainfall as required for urban hydrological applications.

This paper applies the Colour Pattern Regression (CPR) algorithm [11] to re-calibrate
the 6 h rainfall images coming from the meteorological radar provided by [12]. In order to
verify the suitability of the methodology, a case study was selected in Palma de Mallorca
(Spain), where rainfall patterns and the capacity of the sewerage system affect the number of
discharges into the Mediterranean Sea, which in turn affects water quality and the possibility
of beach closures, ultimately affecting the tourism sector [13]. Only in the period 2015–2021
is there an average of 45 days per year when more than one discharge body is flowing—see
Figure 1. In this context, the present study aims not only to quantify the spatio-temporal
distribution of rainfall, coupling the spatial distribution of the meteorological radar with the
observed rainfall of the rain gauges, while questioning the quantification of the radar, but also
to improve the capabilities of a prospective digital twin of the sewerage system, facilitating
the future infrastructure planning and maintenance of the EMAYA system.

Figure 1. Daily discharge calendar for the period 2015–2021. Green colour intensity indicates the
number of discharges affected. Source: EMAYA.
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2. Materials and Methods
2.1. Case Study

The city of Palma is located in the south of the island of Mallorca and is the capital of
the Balearic Islands region of Spain, with an area of around 210 km2 and elevations ranging
from 0 m, on the coast, to around 400 m in the municipality, but with heights of over 1000 m
in the Tramuntana mountains, around 20 km north of the city centre (Figure 2).

Since 1943, the Empresa Municipal de Agua y Alcantarillado, S.A. (EMAYA) has been
responsible for both water and waste management in the city of Palma, which has a
population of 420,000 [14]. The tributary basins of the city have a Mediterranean climate,
with a high seasonality of rainfall, experiencing bigger registers in autumn, which include
records of more than 100 mm/day [15]. The rainwater is collected in either the storm
or mixed sewer system, which ends up in the Palma II wastewater treatment plant, and
both the treatment discharges and the overflows from the collection system end up in
the Mediterranean Sea. Likewise, tourist activities are also affected by these discharges,
as they affect the quality of bathing water and cause beach closures, so minimising the
occurrence of such events is a priority for the EMAYA. In this sense, the recent update
of the national regulation by means of Royal Decree 665/2023 [16] and the proposal for
the adaptation of the Urban Wastewater Treatment Directive [17] establish criteria for the
design of infrastructures that limit the discharge of wastewater into the sea.

Figure 2. Location map: location of the city of Palma in the island of Mallorca (Spain); hydro-
meteorological and radar stations of the present study and sewage overflow discharges (in orange)
into the Mediterranean Sea.

Annual rainfall in this area ranges from 201.3 to 702.2 mm/year, with an annual
average of 449 mm over the period 1980–2010 [18]. The rainy season from September to
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November accounts for 52.2% of the annual rainfall, while the dry season in summer (from
June to August) accounts for 10% [19].

2.2. Conceptual Model

The aim of this study is to calibrate the meteorological radar with observed precipi-
tation at rain gauging stations in the context of the Palma city drainage system. The 6 h
cumulative rainfall product from the meteorological radar of [12] was used to verify the
agreement of the Marshall–Palmer relationship between the observed reflectivity and the
calculated rainfall and the observed rainfall in the existing rain gauges. The methodology
used in this study is shown in Figure 3. It includes the following steps: (1) data homogenisa-
tion and quality control using the RainFA software [13]; (2) identification of 73 daily events
with more than 10 mm accumulated rainfall in a single gauging station used for both spatial
interpolation (3) and meteorological radar data acquisition (5); (3) spatial interpolation
of the rainfall data at the gauging stations using the Inverse Distance Weighting (IDW)
method; (4) as a result of the spatial interpolation (3), raster maps of observed precipitation
were obtained and used for GIS calculations in QGIS, using the CPR algorithm plugin (7);
(5) 6 h accumulated rainfall product from the meteorological radar [12] data acquisition and
geo-referencing using the European Space Agency (ESA) SeNtinel Applications Platform
(SNAP) software; (6) transforming the geo-referenced meteorological radar maps into a
3-band RGB image using the colour legend provided by [12]; (7) applying the Colour
Pattern Regression (CPR) algorithm [11] to obtain simulated raster maps of precipitation,
minimising the differences between the spatially distributed IDW observed precipitation
from (4) and the colour ramp from the radar images computed in (6)—converting the
1-band product provided by [12] to 3-band RGB images; (7) this procedure is generalised
to recalibrate satellite precipitation meteorological radar products for Palma de Mallorca
(Spain) in the period 2015–2021.

Figure 3. Flowchart for the methodology adopted in the present study.

2.3. Rainfall Stations Data

Precipitation data were collected from 11 different rain gauges operated by AEMET—
i.e., B228, B236, and B278—and the non-profit regional meteorological association Balears
Meteo [20]—i.e., El Pil·lari, La Bonanova, Pòrtol, Son Rapinya, Pont d’Inca, Puntiró, Secar
de la Real, and Son Ferriol. The data sets were collected from 2015 to 2021 and are recorded
at different frequencies—i.e., 1, 5, and 10 min. A data quality control software called RainFA
[21] was used to detect outliers and temporal homogenisation. First, the various time series
were adjusted to a 10 min time step, summing 2 or 10 registers where appropriate, and
then four different data quality controls were applied: (1) user-defined thresholds, using
the standard procedure of converting to Nan the negative numbers and the records greater
than 40 mm in 10 min; (2) box and whisker and bivariate Highest Density Region (HDR)
boxplots, using the summary statistics of the distribution to obtain the quartiles and the
potential outliers, comparing stations in pairs with the HDR boxplots and looking for
the correspondence of common values densities; (3) double-mass curves, comparing the
cumulative rainfall of a single station with the average records of all stations and looking
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for trend anomalies; and (4) trend analysis, looking for non-stationary series with the
Mann–Kendall test. As a result, the Son Ferriol station data set was removed from the
study as it had less than two years of data and its registers did not agree with the rest of
the stations in the bivariate HDR boxplots and double-mass curve analysis. In addition,
4 discrete values were discarded from the rest of the time series.

Following this data regularisation, daily precipitation events were discretised and
those with cumulative registers greater than 10 mm were selected for calibration of the
radar imagery. Storm dates were used to request meteorological radar data from AEMET
and, where available, to accumulate precipitation into four daily 6 h values in accordance
with the radar products described in Section 2.4.

The 6 h accumulated rainfall was represented as a point-vector shapefile in QGIS and
spatially distributed using the Inverse Distance Weighting (IDW) method to produce raster
maps of the observed rainfall, which were compared with the different radar images using
the CPR algorithm QGIS plugin.

2.4. Meteorological Radar

The meteorological data come from the 6 h accumulated precipitation product pro-
vided by the Spanish Meteorological Service (AEMET, [12]). The instrument is equipped
with Doppler capability and operates in the 5.6 GHz band [22]. It currently provides raster
images for a circle of 240 km radius (long-range mode) reprojected to EPSG:4326 (World
Geodetic System 1984, WGS84) centred on the Illes Balears radar (39.57ºN, 2.65ºE). Each
image has 494 × 536 pixels and a spatial resolution of 1 × 1 km2 in the long-range mode.

The 6 h accumulated precipitation product in mm is the sum of the hourly precipitation
products of the period, calculated using the Marshall–Palmer precipitation relation [23],
shown in Equation (1).

Z = a · Rb, (1)

where Z is the reflectivity factor, R is the rain rate (in mm/h) , and a and b are constant
variables that depend on the type of precipitation. According to [4,5,7,12], for rainfall
precipitation they take the following values: a = 200 and b = 1.6.

However, the same source [12] states that there is no clear relationship between
reflectivity and rain water content, nor between reflectivity and rain rate, as the latter is
also affected by the velocity at which rain falls. They conclude by suggesting the use of
reflectivity raster maps—as detected by radar—instead of rain rates.

Ref. [24] studied the variation of these coefficients with the raindrop size distribu-
tion associated with different types of rainfall—e.g., ’orographic’, ’thunderstorm’, ’strati-
form’, or ’showers’. They concluded that (1) for a given rainfall rate, ’orographic’ rainfall
presents smaller raindrop sizes and larger concentrations than ’thunderstorms’, as would
be expected for these types of rainfall, and this explains the smaller prefactors—i.e., a
coefficients—and larger exponents—i.e., b coefficients—of the exponential Z-R relation-
ships of the ’orographic’ rainfall when compared to ’thunderstorms’; (2) it has been difficult
to obtain clear conclusions for the other types of rainfall; and (3) the coefficients adopted
in [12] are used in many parts of the world because they are close to the mean power law
of different authors [24–26] for rain rates between 1 and 50 mm/h.

The 6 h radar data acquired was manually geo-referenced using the tool Ground
Control Points (GCP) Manager of the ESA SNAP [27] software and then transformed
into a 3-banded RGB raster image by means of a colour classification algorithm using the
rasterio [28] Python library.

2.5. CPR Algorithm

The CPR algorithm is an add-on module to the open-source QGIS software imple-
mented as a raster interpolation method to determine the relationship between 3-band
colour raster products and raster maps [11]. It was developed to fill the gap of establishing
correlations between raster maps and aerial colour patterns, using a linear regression
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between the observed (O) values of the raster maps and the RGB bands of the aerial
images—referred to as simulated, S, values.

After (1) normalizing the pixel sizes and (2) clipping with a mask, both layers can
be treated as matrices of size m × n and the objective function can be written as follows—
Equation (2):

min
n

∑
j=1

m

∑
i=1

(
Oij − Sij

)2, (2)

where the observed values (O) are represented in Equation (3) and the simulated val-
ues (S) are represented as a matrix polynomial equation—i.e., Equation (4)—using three
parameters—i.e., R, G, and B—which are minimised in the calculation process.O11 · · · O1n

...
. . .

...
Om1 · · · Omn

, (3)

S11 · · · S1n
...

. . .
...

Sm1 · · · Smn

 = R ·

R11 · · · R1n
...

. . .
...

Rm1 · · · Rmn

+ G ·

G11 · · · G1n
...

. . .
...

Gm1 · · · Gmn

+ B ·

B11 · · · B1n
...

. . .
...

Bm1 · · · Bmn

, (4)

The QGIS CPR algorithm plugin also implements three goodness-of-fit metrics,
(1) the Normalised Nash–Sutcliffe Efficiency Coefficient (NNSE), (2) Kling–Gupta Effi-
ciency (KGE), and (3) the Percent Bias Index (PBIAS), which ultimately establish four
categories of performance metrics: Very good, Good, Satisfactory, and Unsatisfactory. In the
present case, the pixel size of both products—i.e., the IDW-interpolated rainfall raster map
and the 3-band coloured radar image—is the same, so there is no spatially distributed
metric, but a single performance number of each date–time evaluation.

Refs. [29,30], among others, defined values of the goodness-of-fit metrics for hydrolog-
ical modelling of streamflow and suspended sediment for different time steps, but there is
no reference of the corresponding values for rainfall data from radar observations at the 6
h time step. However, the QGIS CPR algorithm allows the user to adjust the thresholds to
suit the needs of the problem.

2.6. Evaluation Procedure

In line with the goodness-of-fit evaluation measurements of the CPR algorithm, three
quantitative performance metrics were used to measure, in this case, the accuracy of the
meteorological radar predictions with respect to the observed raster maps. The statistics
used are (see Table 1): (1) root mean square error (RMSE); (2) the Nash–Sutcliffe efficiency
coefficient (NSE); and (3) percent bias (PBIAS). The RMSE explains the deviation between
two sets of values, which in this case correspond to the difference between the inferred value
from the colour pattern of the CPR process—i.e., observed data—and the corresponding
value that was assigned in the colour legend of the meteorological radar product—i.e.,
simulated data. NSE indicates how well the correlation of observed and simulated data
fits the 1:1 line when plotted together, while PBIAS indicates the degree of over- or under-
estimation of the observed value as a percentage.

Where Oi and Si are, respectively, observed and simulated data, i is the data index
and n is the total number of measurements, and Ō is the average value of observed data.
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Table 1. Evaluation performance metrics.

Statistic Equation Value Range

RMSE
√

∑n
i=1(Oi−Si)2

n
[0,+∞)

NSE 1 − ∑n
i=1(Oi−Si)

2

∑n
i=1(Oi−Ō)2

(−∞,1]

PBIAS ∑n
i=1(Oi−Si)·100

∑n
i=1 Oi

(−∞,+∞)

3. Results

As mentioned in Section 2.3, rainfall data were curated and homogenised to a 10 min
time step using the RainFA software [21]. Daily rainfall values were then detected and those
with a cumulative rainfall greater than 10 mm and their preceding and following days were
used to obtain the meteorological radar products from [12]. Up to four daily meteorological
radar images—i.e., 6 h radar images at 00:00, 06:00, 12:00, and 18:00—were obtained from
73 different dates, resulting in the following findings: (1) there are 54 days with a gauged
rainfall greater than 10 mm and available radar inputs; (2) there are 19 images (out of 161)
with observed rainfall—i.e., records greater than 0.0 mm and up to 17.8 mm—where the
available meteorological radar image was not able to detect rainfall in the area of interest;
and (3) during these days, a total of 21 (out of 42) meteorological radar images represent
rainfall while there are no records of observed rainfall at the gauging stations. This means
that in the case study and in the situation of moderate to extreme rainfall [31], the radar
products are able to detect 88.2% of the 6 h time slots with rainfall, but the radar also detects
rainfall in the 50.0% of cases where there is no register at the gauging stations.

The rainfall records were then accumulated in accordance with the meteorological
radar images and spatially distributed using the IDW interpolation method. The monthly
distribution of the selected storm events is shown in Figure 4 and is in line with the values
referred to in [19] and presented in Section 2.1, indicating that the most frequent period of
moderate to extreme rainfall in the 2015–2021 period is September to November, accounting
for 49.3% of the total events, while the period from June to August accounts for only 9.6%.
Although the percentages are very similar, the reference values—i.e., annual rainfall vs.
number of moderate to extreme rainfall events—are completely different, suggesting a
direct relationship between monthly rainfall and the distribution of storms throughout the
year, which should be studied in detail.

Figure 4. Monthly distribution of moderate to extreme rainfall storm events in Palma de Mallorca
(Spain) for the period 2015–2021.
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As mentioned in the Section 2.4, the radar images were manually georeferenced using
the GCP Manager tool of the ESA SNAP software [27] and then transformed into a three-
band RGB raster image using two different colour label dictionaries for dates before and
after 1 January 2016. The following Table 2 shows the three-band RGB value dictionary for
both periods.

Table 2. Colour coding of cumulative rainfall values from meteorological radar for storm events
before and after 1 January 2016.

6 h Rainfall (mm) Before 2016 2016–onwards *

0.5–1 Various [0,0,250]
1–2 [254,254,254] [0,0,205]
2–4 [254,254,128] [0,0,155]
4–8 [254,128,128] [0,0,105]

8–16 [0,0,254] [0,100,0]
16–32 [0,128,254] [0,250,0]
32–64 [128,254,254] [250,250,0]

64–128 [192,0,0] [250,165,0]
128–256 [155,187,89] [250,0,0]

* Note that blueish colours explain cumulative values less than 8 mm, greenish colours cover the
range of values between 8 and 32 mm, and a combination of red and green colours is used for
values between 32 and 128 mm. The resulting colours are graphically represented as follows:

The corresponding date–time pairs of (1) the three-band RGB meteorological radar
image and (2) the 6 h cumulative rainfall IDW interpolated raster maps were used to apply
the CPR algorithm to assess the validity of the meteorological radar cumulative rainfall
values while improving the spatial distribution of the on-site weather stations. The results
of the application of the CPR algorithm are presented in Figure 5 and Table A1, including
the following: (a–b) date–time of the rainfall event; (c–e) R-G-B calculated parameters;
(f–h) goodness-of-fit statistics—i.e., NNSE, KGE, and PBIAS—of the performance of the
algorithm; and (i) maximum observed 6 h cumulative rainfall value.

Figure 5. CPR algorithm results including, for each date and time evaluated, the calculated R, G,
and B correlation coefficients and the maximum 6 h cumulative rainfall value observed at any of the
existing gauging stations.
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The model parameters of the CPR algorithm take on coherent values with the colour
ranges shown in Table 2, generally showing larger values with increasing rainfall and
including Green shades for higher amounts of rainfall. In this sense, there is a correspon-
dence between the maximum values of rainfall accumulated in rain gauges within 6 h slots
and the colour thresholds identified in the meteorological radar legend mentioned above.
Figure 6 shows the distribution values of rainfall associated with only Blue tones and in-
cluding Green tones: (a) shows the dispersion of the results for both coefficients, showing a
direct proportionality between their values and the maximum amount of rainfall registered,
and, as expected, greater Green coefficient values than the Blue ones for higher rainfall
and (b) highlights the Q1 and Q3 quartiles—which account for 50% of the values—in the
graph, resulting in a remarkable similarity with the Blue and Green rainfall thresholds of
the meteorological radar legend. However, despite the promising general results, a more
detailed study is carried out in Section 4 for the different thresholds.

Figure 6. Maximum 6 h observed rainfall for meteorological radar images that include only Blue and
also Green values. (a) Shows the dispersion of both CPR algorithm parameters, and (b) presents the
box and whisker results.

Regarding the CPR algorithm performance statistics, using the KGE values proposed
in [11] as a reference—i.e., values between 0 and 1 indicate Very good performance, between
−0.5 and 0 are considered Good, and values greater than −2 are considered Satisfactory—
137 out of 142 radar images that were able to detect precipitation have at least a Satisfactory
performance that explains the spatial distribution of precipitation according to its colour
pattern, 106 have a Good performance, while only 28 have a Very Good performance. In
terms of NNSE, the thresholds proposed in [11] cannot be considered as a reference, in line
with the final conclusion and future work of the referenced publication. Consistent with the
KGE statistic performance ranking, the variation in NNSE values suggests the use of the
following thresholds: (1) NNSE > 0.40 for Very good performance, (2) 0.40 > NNSE > 0.30
for Good performance, and (3) 0.30 > NNSE > 0.20 for Satisfactory performance, resulting
in NNSE < 0.20 as Unsatisfactory models, see Figure 7a. Finally, PBIAS is positive in all
cases, indicating that the IDW spatially distributed gauged values are overestimating the
simulated values from the colour patterns of the meteorological radar. In addition, using
the same KGE classification, PBIAS results are also in agreement with performance ratings
established in [11], concentrating both Very good and Good performance within the range
of [11.5; 35.2]% and obtaining an average of 51.4% for Satisfactory models, as presented in
Figure 7b.
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Figure 7. Performance rating result analysis for (a) NNSE and (b) PBIAS statistics.

4. Discussion

As seen in the previous Section (3), the results of the CPR algorithm in terms of the KGE
statistic are at least Satisfactory in practically all cases, and Good in most of them—i.e., 96.5%
and 74.6%, respectively. This means that the colour patterns of the meteorological radar
products are a good indicator of the rainfall observed in the rain gauges. However, this does
not mean that there is a unique relationship between radar observations (which ultimately
quantify reflectivity [7,12]), referred to as Z in Equation (1), and rain rate, referred to as R.
In this sense, Einfalt et al. [7], among others, highlight the difficulties in the transformation
between Z and R and the considerable deviations in their results [7,32,33]. In particular,
by applying different equations [23,34,35], can be seen that the most important differences
exist for higher rainfall intensities [7], but in the present case, data on these ranges are
missing and so it is only possible to assess the results for rainfall intensities below 32 mm.

In order to assess the ability of the meteorological radar to match the observations of
rain gauges, the following procedure was applied for every date–time: (1) create a mask of
the different colour categories of the meteorological radar; (2) apply the masks to the IDW-
interpolated rainfall raster map and calculate its basic statistics—i.e., minimum, maximum,
and average; (3) construct an observed array with the increasing colour categories’ minimum
and maximum values; (4) compare the observed array with the simulated array, generated
from the meteorological radar legend as [0.5, 1; 1, 2; 2, 4; 4, 8; 8, 16; 16, 32; 32, 64; 64, 128;
128, 256]; and (5) evaluate their goodness of fit using the performance metrics described in
Section 2.6. First, an evaluation was performed using the RMSE, discarding the date–time
registers that exceeded the maximum observed rainfall at the rain gauges, and found that
114 out of 142 (i.e., 80.3%) did not exceed this condition. Table A2 shows the corresponding
performance statistics for the selected dates.

Using the recommended values in [29] for the NSE statistic, only 28 of the models
have a performance rating of Very good and a total of 44 have a performance rating of at
least Good, corresponding to 19.7% and 31.0%, respectively. In addition, most of the models
(i.e., 39 out of 44) have a positive PBIAS, meaning that the observed values in the rain gauge
exceed the simulated values in the meteorological radar legend. Even for at least Satisfactory
models, 63 out of 142 (only 44.4%), PBIAS is positive in 55 cases—i.e., 87.3%. Such results
invite reconsideration of the Marshall–Palmer relation (Equation (1)) coefficients for the
transformation of radar reflectivity into rain rate (Z-R), as it is clearly underestimating the
rainfall results.

The minimum and maximum values were then presented in ranges and their evolution
studied for the Satisfactory, Good, and Very good performance models, in order to identify
appropriate thresholds that take into account the rainfall variability in the context of Palma
de Mallorca. Only the ranges with a minimum number of registers greater than five were
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considered, and so corresponded to [0.5, 1]; [1, 2]; [2, 4]; [4, 8]; [8, 16]; [16, 32]. Figure 8
shows the distribution boxplots of the corresponding combinations.

Figure 8. Minimum and maximum values of the 6 h observed rainfall for meteorological radar image
colour ranges. Corresponding to (a) Satisfactory, (b) Good, and (c) Very good performance models.

As a result of the analysis, the following thresholds were defined: [0.5, 2.5]; [2.5, 4.5];
; [6.5, 12]; [12, 16]; [16, 28]. Comparing them with the original ones used by AEMET [12],
it is noticeable that below 16 mm of accumulated rainfall, the simulated values used in the
meteorological radar legend underestimate the observed rainfall in the rain gauges. This result
is consistent with the PBIAS statistics result mentioned above.

Next, the evaluation procedure to assess the ability of the meteorological radar to
match the observations of rain gauges, was adapted to assess its capacity of being matched
by the CPR-interpolated raster map. In this case, the procedure was repeated from step (2)
and the masks were applied to the CPR-interpolated raster map instead of being applied
to the IDW-interpolated rainfall raster map, and, as the map was constructed from the
colour patterns, a single value corresponded to every colour instead of a series of them.
The observed array was compared with the same simulated array (4) and the performance
metrics were calculated (5).
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The results were then evaluated for the at least Satisfactory models in NSE of the
previous evaluation procedure—i.e., the IDW-interpolated rainfall raster map—and showed
that 42 out of 63 of the cases (66.7%) could also be considered as Satisfactory, 30 out of 44
(68.2%) could also be considered as Good, and 17 out of 28 (60.7%) could also be considered
as Very good. Using the same distribution evaluation as for the IDW-interpolated raster
map—i.e., see Figure 8—the defined thresholds were also appropriate, thus validating both
the new proposed ranges and the use of the CPR algorithm to recalibrate the meteorological
radar estimates.

Finally, the Marshall–Palmer precipitation relationship (Equation (1)) was recalculated
for the new rainfall thresholds, first changing the units of the reflectivity factor from
Z (in mm6/m3) to Z (in dBZ) using the following relationship, Z(dBZ) = 10 · log(Z)
[4,12], and then minimising the distance between the calculated values of Z (dBZ) and the
reference thresholds of the equivalent 6 h meteorological radar product in [12]—i.e., [12, 18];
; [24, 30]; [30, 36]; [36, 42]; [42, 48]. The coefficient a was fixed at 200 after warming up
the results and comparing them with the bibliographical references [7,32–35], and the b
calculation resulted in 1.335. Figure 9 shows the resulting Z-R curve compared with three
other existing curves: (a) the Marshall–Palmer relationship, Z = 200 · R1.6; (b) the tropical
climate relationship, Z = 250 · R1.2; and (c) the convective storm relationship, Z = 300 · R1.4.

For the period 2015–2021 and the analysis of moderate to extreme events—i.e., rainfall
rates up to 28 mm/h—the Z-R relationship is very similar to that for tropical climates and
significantly different from the standard Marshall–Palmer coefficients.

Figure 9. Comparison of the resulting curve with several Z-R relationships adopted from [7,32].

5. Conclusions

The EMAYA is developing a digital twin of the urban drainage system of the city of
Palma in Mallorca (Spain), whose main input data for being operational is rainfall, both
for nowcasting and forecasting solutions. On-site observations with rain gauges are of
utmost interest due to their estimation precision, but their network needs to be increased
in density to improve their spatial resolution, thus increasing the O&M costs. A trade-off
between cost and precision is needed and remote sensors, such as satellite observation
products, represent an alternative to optimise the cost of the rain gauge network, but their
measurements should be calibrated to improve their precision. The present manuscript
uses the CPR algorithm to recalibrate the meteorological radar information and validates
its results by calculating the new thresholds from the IDW-interpolated rainfall raster map.
The meteorological radar has demonstrated its ability to detect rainfall, with up to 88.2% of
the 6 h time slots containing rainfall. Results from the application of the CPR algorithm
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suggest that the colour patterns of the meteorological radar products are a good indicator
of the rainfall observed at the rain gauges. New thresholds for the meteorological radar
colour patterns were calculated from the IDW-interpolated raster map. When the new
ranges were applied to the CPR-calculated raster map, the same values were obtained,
validating the use of the CPR algorithm to recalibrate the meteorological radar estimates.

Finally, in terms of methodology, the CPR algorithm should be adapted to the QGIS
plugin if it is to be used for this particular purpose, with the following performance rating
values for NNSE: Very good > 0.40 > Good > 0.30 > Satisfactory > 0.20 > Unsatisfactory, in
accordance with the reference paper [11].
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Appendix A

Table A1. CPR algorithm results including, for each date and time evaluated, the calculated R, G,
and B correlation coefficients; the goodness-of-fit performance metrics NNSE, KGE, and PBIAS; and
the maximum 6 h cumulative rainfall value observed at any of the existing gauging stations.

Date
(dd.mm.yyyy) Time R G B NNSE KGE PBIAS Max. 6 h

Rainfall (mm)

15.08.2015

00:00 0.00000 0.00000 0.00000 7.2
06:00 0.00000 0.07215 0.04543 0.2356 −0.0955 17.34 16.0
12:00 0.00000 0.13040 0.10193 0.2358 −0.4239 17.37 27.3
18:00 0.00000 0.00000 0.00000 2.4

17.08.2015
00:00 0.00000 0.00000 0.00000 0.0
12:00 0.00000 0.06695 0.06369 0.1681 −0.4435 11.01 10.0
18:00 0.00000 0.00000 0.02048 0.1376 −0.4658 21.99 6.4

03.09.2015
00:00 0.00000 0.00000 0.00000 0.0
06:00 0.00000 0.07827 0.05904 0.0821 −1.0190 24.18 16.8
18:00 0.00000 0.00000 0.00000 0.0

04.09.2015
00:00 0.00000 0.00000 0.00000 0.0
06:00 0.00000 0.00000 0.00000 0.0
12:00 0.00000 0.10180 0.15863 0.3607 −0.2188 20.91 59.4

30.09.2015
06:00 0.00000 0.17489 0.16232 0.0182 −4.9178 10.55 20.8
12:00 0.00000 0.09469 0.12309 0.0220 −4.3269 14.91 16.0
18:00 0.00000 0.08330 0.03743 0.2351 0.0246 22.89 11.0
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Table A1. Cont.

Date
(dd.mm.yyyy) Time R G B NNSE KGE PBIAS Max. 6 h

Rainfall (mm)

14.10.2015

00:00 0.00000 0.00000 0.00000 2.6
06:00 0.00000 0.08402 0.08700 0.2648 −0.2994 8.52 18.9
12:00 0.00000 0.08306 0.04668 0.2149 −0.1749 12.48 15.0
18:00 0.00000 0.00000 0.00000 6.6

10.03.2016

00:00 0.00000 0.00000 0.00336 0.2374 −0.5855 99.45 1.4
06:00 0.00125 0.05175 0.08024 0.2333 −0.0440 15.05 14.2
12:00 0.00000 0.00000 0.00239 0.3860 −0.1869 25.44 2.0
18:00 0.00000 0.02299 0.00595 0.3177 −0.3048 17.78 3.8

01.04.2016
00:00 0.00000 0.00000 0.00000 0.0
06:00 0.00000 0.00000 0.00047 0.4022 0.2410 46.83 0.2
18:00 0.00000 0.10986 0.07559 0.2154 −0.2947 14.35 24.2

08.04.2016

00:00 0.00000 0.00000 0.00000 0.0
06:00 0.00000 0.00000 0.00000 0.0
12:00 0.00000 0.03800 0.03575 0.2859 −0.0751 9.96 8.4
18:00 0.00000 0.10770 0.06489 0.2355 −0.1122 10.85 15.6

20.09.2016
00:00 0.00000 0.00000 0.00000 0.0
06:00 0.00000 0.00000 0.00000 0.0
18:00 0.00000 0.00000 0.01405 0.4421 −0.0589 9.04 10.4

23.09.2016

00:00 0.00000 0.00000 0.00000 0.0
06:00 0.00000 0.00000 0.00000 0.0
12:00 0.00000 0.00022 0.00057 0.4691 −0.0067 61.73 0.4
18:00 0.00000 0.04947 0.04101 0.3805 −0.1296 27.37 27.6

24.09.2016
06:00 0.00000 0.00000 0.00179 0.2736 −0.3238 91.18 0.8
12:00 0.00000 0.00000 0.00000 0.0
18:00 0.00000 0.04508 0.07379 0.0828 −0.7453 93.85 36.8

06.10.2016
00:00 0.00000 0.00000 0.00000 0.0
06:00 0.00000 0.00000 0.00000 0.0
18:00 0.00000 0.02568 0.02218 0.4651 0.1650 28.74 16.8

20.10.2016

00:00 0.00000 0.39039 0.24741 0.4444 0.1087 8.11 93.4
06:00 0.00000 0.00000 0.00000 0.4
12:00 0.00000 0.00000 0.00893 0.2981 −0.0525 30.25 5.6
18:00 0.00000 0.00000 0.00000 1.0

22.10.2016

00:00 0.00000 0.00000 0.00000 0.0
06:00 0.00000 0.08369 0.06124 0.1820 −0.3293 11.51 13.2
12:00 0.00000 0.00000 0.00955 0.1035 −0.3691 58.08 4.2
18:00 0.00000 0.00553 0.00608 0.4221 0.0685 65.81 3.2

14.11.2016

00:00 0.00000 0.00000 0.00019 0.2941 −0.6089 96.53 0.2
06:00 0.00000 0.12595 0.10495 0.1063 −0.8459 10.07 17.4
12:00 0.00000 0.07472 0.07435 0.0793 −1.2213 13.68 12.2
18:00 0.00000 0.04710 0.01978 0.1239 −0.5720 20.78 6.8

05.12.2016

00:00 0.00000 0.00000 0.00000 0.8
06:00 0.00000 0.14227 0.09337 0.2800 −0.0774 10.91 23.6
12:00 0.00000 0.00000 0.00407 0.1001 −0.1867 80.88 1.8
18:00 0.00000 0.00000 0.00000 0.4

20.01.2017 00:00 0.00000 0.00028 0.00039 0.3807 −0.1015 24.46 0.2
12:00 0.00000 0.11805 0.21976 0.0113 −6.6076 19.89 28.4

21.01.2017
00:00 0.00000 0.04255 0.01485 0.4328 0.0494 10.25 7.8
06:00 0.00000 0.09288 0.06763 0.3744 0.3401 5.82 13.2
18:00 0.00000 0.10836 0.09454 0.2368 −0.0259 11.34 18.0



Remote Sens. 2024, 16, 3496 15 of 21

Table A1. Cont.

Date
(dd.mm.yyyy) Time R G B NNSE KGE PBIAS Max. 6 h

Rainfall (mm)

27.01.2017

00:00 0.00000 0.00011 0.00025 0.4884 −0.1857 14.78 0.2
06:00 0.00000 0.00000 0.00000 0.0
12:00 0.00000 0.00000 0.00000 0.0
18:00 0.00000 0.07822 0.06495 0.3207 0.0997 21.44 24.5

24.03.2017

00:00 0.00000 0.00929 0.00474 0.4543 −0.5686 22.93 5.7
06:00 0.00000 0.00000 0.00316 0.2479 −0.4220 68.34 3.8
12:00 0.00000 0.06980 0.05400 0.2533 −0.3400 9.68 12.0
18:00 0.00000 0.17729 0.14679 0.0423 −2.6738 6.47 21.4

05.06.2017

00:00 0.00000 0.00000 0.00000 0.2
06:00 0.00000 0.19373 0.13172 0.3190 −0.2191 11.40 38.4
12:00 0.00000 0.15269 0.24340 0.1852 −0.2550 17.51 51.0
18:00 0.00000 0.00000 0.00970 0.2031 −0.6666 99.71 6.4

15.09.2017

00:00 0.00000 0.00000 0.00000 0.0
06:00 0.00000 0.00000 0.00000 0.0
12:00 0.00000 0.03276 0.00816 0.4757 0.2122 36.01 7.4
18:00 0.00000 0.23895 0.22310 0.1300 −0.5430 18.21 53.4

19.10.2017

00:00 0.00000 0.00000 0.00000 3.0
06:00 0.00000 0.13118 0.08103 0.0879 −1.1058 11.55 17.4
12:00 0.00000 0.10523 0.08516 0.3308 −0.3131 9.57 20.1
18:00 0.00000 0.00000 0.01224 0.1166 −0.6815 99.79 9.2

06.02.2018

00:00 0.00000 0.00000 0.00592 0.3361 −0.1933 24.24 2.6
06:00 0.00000 0.08240 0.05643 0.2170 −0.2045 10.25 10.2
12:00 0.00000 0.02353 0.01287 0.1926 −0.3882 16.71 3.4
18:00 0.00000 0.03915 0.04833 0.2194 −0.2970 16.43 10.9

24.03.2018

00:00 0.00000 0.00000 0.00000 0.0
06:00 0.00000 0.00000 0.01617 0.3350 −0.5376 15.75 8.6
12:00 0.00000 0.11271 0.08759 0.1488 −0.4621 10.96 17.8
18:00 0.00000 0.07926 0.01915 0.4287 0.2006 25.10 17.4

14.04.2018

00:00 0.00000 0.00000 0.00049 0.4229 −0.5057 86.38 0.8
06:00 0.00000 0.00000 0.00319 0.1126 −0.5187 51.59 1.6
12:00 0.00000 0.00000 0.06276 0.1274 −0.7198 12.38 11.0
18:00 0.00000 0.00000 0.00233 0.2930 0.1242 67.58 1.2

01.05.2018

00:00 0.00000 0.00000 0.00000 0.0
06:00 0.00000 0.05953 0.03050 0.3111 −0.1460 20.20 13.6
12:00 0.00000 0.01665 0.00620 0.4207 −0.2361 39.47 11.3
18:00 0.00000 0.00000 0.01888 0.3354 −0.2971 46.07 20.0

13.05.2018

00:00 0.00000 0.00000 0.00000 0.8
06:00 0.00000 0.09960 0.06807 0.2157 −0.1736 10.65 19.2
12:00 0.00000 0.00000 0.00087 0.3859 −0.7393 99.81 3.8
18:00 0.00000 0.00000 0.00000 0.0

10.09.2018

00:00 0.00000 0.00000 0.00000 0.0
06:00 0.00000 0.04152 0.02772 0.4184 0.0128 17.39 16.4
12:00 0.00000 0.00000 0.07143 0.1713 −0.2488 87.10 33.0
18:00 0.00000 0.00000 0.00000 0.0

18.10.2018

00:00 0.00000 0.01173 0.00556 0.4698 −0.1350 12.38 4.6
06:00 0.00000 0.00000 0.01046 0.3471 −0.0280 58.97 6.0
12:00 0.00000 0.00000 0.00856 0.3937 0.0805 22.62 6.8
18:00 0.00000 0.04283 0.02574 0.3943 −0.3513 16.30 14.7
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Table A1. Cont.

Date
(dd.mm.yyyy) Time R G B NNSE KGE PBIAS Max. 6 h

Rainfall (mm)

27.10.2018

00:00 0.00000 0.00000 0.00000 0.0
06:00 0.00000 0.00000 0.00000 0.2
12:00 0.00000 0.03770 0.04636 0.3741 −0.1232 17.01 13.2
18:00 0.00000 0.12069 0.10040 0.4276 0.0497 8.52 42.0

28.10.2018

00:00 0.00000 0.10680 0.07288 0.2799 −0.0575 10.16 19.0
06:00 0.00000 0.00000 0.00000 17.8
12:00 0.00000 0.14157 0.04913 0.3249 −0.2707 26.34 24.8
18:00 0.00000 0.00465 0.00962 0.4130 0.3374 50.92 4.6

20.11.2018

00:00 0.00000 0.00000 0.00000 0.0
06:00 0.00000 0.00000 0.00064 0.2869 −0.4719 96.26 0.4
12:00 0.00000 0.07763 0.01208 0.4994 0.3678 16.11 12.0
18:00 0.00000 0.00000 0.00057 0.2448 −0.1070 78.67 0.2

27.08.2019

00:00 0.00000 0.00000 0.00000 0.0
06:00 0.00000 0.00000 0.00000 0.0
12:00 0.00000 0.05519 0.03457 0.3435 −0.2175 12.21 14.5
18:00 0.00000 0.00000 0.03086 0.3576 −0.0165 25.81 26.0

21.10.2019

00:00 0.00000 0.02466 0.03156 0.4677 −0.1902 11.82 15.8
06:00 0.00000 0.00000 0.04910 0.2771 0.0332 9.74 14.4
12:00 0.00000 0.00000 0.01786 0.2474 −0.2132 10.99 5.1
18:00 0.00000 0.03262 0.01347 0.2389 −0.0012 15.15 4.4

22.10.2019

00:00 0.00000 0.10469 0.22899 0.1012 −0.7995 20.79 34.8
06:00 0.00000 0.23423 0.20588 0.2094 −0.2307 7.15 34.2
12:00 0.00000 0.00000 0.00185 0.3723 −0.7435 99.94 11.2
18:00 0.00000 0.00000 0.00077 0.3272 0.0168 43.17 0.6

08.11.2019

00:00 0.00000 0.05782 0.02405 0.2880 −0.2068 24.35 12.4
06:00 0.00000 0.00000 0.00516 0.3753 −0.2356 17.00 4.6
12:00 0.00000 0.00000 0.00029 0.3174 −0.6104 98.56 0.2
18:00 0.00000 0.00000 0.00045 0.4147 −0.7258 99.45 2.0

22.11.2019

00:00 0.00000 0.00000 0.00000 0.0
06:00 0.00000 0.00000 0.00339 0.2201 0.0332 45.39 1.4
12:00 0.00000 0.07973 0.04286 0.2222 −0.1929 25.22 16.2
18:00 0.00000 0.00000 0.00273 0.4851 0.1760 20.68 3.4

02.12.2019

00:00 0.00000 0.00000 0.00000 0.0
06:00 0.00000 0.06222 0.03772 0.3141 −0.3692 24.47 16.8
12:00 0.00000 0.00000 0.00107 0.2720 0.1651 68.15 0.4
18:00 0.00000 0.00000 0.00000 0.2

04.12.2019
00:00 0.00000 0.00000 0.00000 14.6
12:00 0.00000 0.10460 0.15849 0.2332 −0.1179 17.44 40.8
18:00 0.00000 0.00000 0.01396 0.2982 −0.1009 12.56 5.2

19.01.2020
00:00 0.00000 0.00000 0.00000 0.0
06:00 0.00000 0.00000 0.00310 0.1425 −0.3678 44.53 1.6
18:00 0.00000 0.15813 0.11034 0.3567 0.2541 5.89 21.0

22.03.2020

00:00 0.00000 0.00093 0.00036 0.3250 −0.9038 88.16 1.0
06:00 0.00000 0.00000 0.00000 0.0
12:00 0.00000 0.06516 0.05396 0.3103 −0.4007 23.37 21.7
18:00 0.00000 0.00439 0.00470 0.3867 −0.3081 79.32 2.4

13.04.2020

00:00 0.00000 0.00000 0.00000 4.6
06:00 0.00000 0.00000 0.03392 0.2056 −0.5397 13.42 11.1
12:00 0.00000 0.00000 0.07010 0.2372 −0.0397 6.40 16.0
18:00 0.00000 0.00000 0.00000 0.0



Remote Sens. 2024, 16, 3496 17 of 21

Table A1. Cont.

Date
(dd.mm.yyyy) Time R G B NNSE KGE PBIAS Max. 6 h

Rainfall (mm)

20.04.2020

00:00 0.00000 0.00000 0.00867 0.4431 0.1717 6.80 4.3
06:00 0.00000 0.13323 0.04410 0.2566 0.0114 30.80 17.2
12:00 0.00000 0.00000 0.01009 0.3816 −0.3378 31.09 13.7
18:00 0.00000 0.23645 0.13889 0.3362 −0.1299 11.68 31.4

29.08.2020

0:00 0.00000 0.00000 0.00000 0.0
06:00 0.00000 0.00000 0.00000 0.4
12:00 0.00000 0.04537 0.03412 0.3928 −0.2837 21.97 22.2
18:00 0.00000 0.00000 0.04043 0.0846 −0.5687 99.05 18.0

30.08.2021

0:00 0.00000 0.00000 0.00000 0.0
06:00 0.00000 0.00000 0.00000 0.0
12:00 0.00000 0.06166 0.07989 0.2982 −0.4465 14.54 22.2
18:00 0.00000 0.00000 0.00000 3.8

01.10.2021

0:00 0.00000 0.00000 0.00000 0.2
06:00 0.00000 0.00000 0.00000 0.0
12:00 0.00000 0.08098 0.02229 0.3358 −0.6754 23.51 14.6
18:00 0.00000 0.00000 0.01700 0.1630 −0.3035 86.12 10.0

30.10.2021

0:00 0.00000 0.00000 0.00000 0.0
06:00 0.00000 0.00000 0.01168 0.4004 −0.4089 14.25 7.3
12:00 0.00000 0.14804 0.07711 0.2142 −0.1048 9.75 21.4
18:00 0.00000 0.00000 0.00092 0.2177 −0.6203 95.64 1.0

10.11.2021

0:00 0.00000 0.00000 0.05640 0.0326 −2.8578 26.87 17.4
06:00 0.00000 0.12993 0.08696 0.1337 −0.5915 9.68 17.6
12:00 0.00000 0.10863 0.04335 0.2869 −0.3597 15.72 17.2
18:00 0.00000 0.05921 0.02528 0.1956 −0.5300 15.94 7.4

11.11.2021

0:00 0.00000 0.01903 0.00740 0.3762 −0.1392 14.80 3.6
06:00 0.00000 0.10492 0.02616 0.3295 −0.4307 18.84 17.0
12:00 0.00000 0.11718 0.03424 0.2605 −0.6268 22.02 16.3
18:00 0.00000 0.07882 0.02975 0.2020 −0.6140 20.55 10.4

23.11.2021

0:00 0.00000 0.00665 0.00285 0.2659 −0.1517 34.97 1.5
06:00 0.00000 0.24326 0.08213 0.3929 0.0298 18.78 36.5
12:00 0.00000 0.09404 0.08781 0.1373 −0.5594 10.69 16.4
18:00 0.00000 0.15801 0.09698 0.2743 0.0039 9.00 24.0

25.11.2021

0:00 0.00000 0.00000 0.00000 0.0
06:00 0.00000 0.00000 0.00023 0.4554 −0.4072 91.03 0.2
12:00 0.00000 0.08443 0.03864 0.2621 −0.3625 15.06 11.5
18:00 0.00000 0.00000 0.00000 0.0

28.11.2021

0:00 0.00000 0.00000 0.00364 0.2483 −0.0208 43.75 2.6
06:00 0.00000 0.00000 0.00540 0.2860 0.0646 60.55 3.0
12:00 0.00000 0.00000 0.00558 0.4726 0.2432 44.82 5.2
18:00 0.00000 0.00000 0.00000 0.0

Appendix B

Table A2. Goodness-of-fit RMSE, NSE, and PBIAS performance statistics of the observed—i.e., IDW-
interpolated rainfall raster map—and simulated—i.e., radar legend—thresholds taking into account
the different colour patterns of the meteorological radar legend.

Date
(dd.mm.yyyy) Time Max. 6 h Rainfall (mm) RMSE NSE PBIAS

15.08.2015 06:00 16.0 9.23 −0.5913 5.34
12:00 27.3 9.45 0.7722 31.60
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Table A2. Cont.

Date
(dd.mm.yyyy) Time Max. 6 h Rainfall (mm) RMSE NSE PBIAS

17.08.2015 12:00 10.0 9.99 −0.7789 −81.19
18:00 6.4 2.85 0.6621 29.64

03.09.2015 06:00 16.8 9.58 −0.0695 36.11

04.09.2015 12:00 59.4 41.40 −2.2250 −22.79

30.09.2015
06:00 20.8 9.24 0.8715 23.05
12:00 16.0 9.27 0.6088 14.63
18:00 11.0 4.74 0.5797 37.66

14.10.2015 06:00 18.9 5.15 0.8460 17.87
12:00 15.0 5.86 0.4344 39.38

10.03.2016 00:00 1.4 0.27 0.9875 10.74

01.04.2016 00:00 24.2 8.96 0.6436 53.91

08.04.2016 12:00 8.4 5.47 0.1734 −86.58
18:00 15.6 6.93 0.4540 52.20

20.09.2016 18:00 10.4 4.34 0.3055 19.50

23.09.2016 18:00 27.6 16.98 −0.9877 −5.11

24.09.2016 06:00 0.8 0.75 0.4110 −123.65
18:00 36.8 19.09 −6.0217 −15.04

20.10.2016 00:00 93.4 42.35 0.3597 86.39
12:00 5.6 2.50 0.6456 15.59

22.10.2016 06:00 13.2 5.00 0.7227 29.52
12:00 4.2 1.38 0.8849 36.53

14.11.2016
06:00 17.4 10.54 −0.0971 42.08
12:00 12.2 8.64 0.2936 −24.03
18:00 6.8 4.16 −0.0462 −10.10

05.12.2016 06:00 23.6 8.99 0.7362 22.95
12:00 1.8 1.44 −0.1816 −93.84

20.01.2017 12:00 28.4 17.52 0.5718 5.63

21.01.2017
00:00 7.8 3.79 0.0680 −38.67
06:00 13.2 2.78 0.9410 9.52
18:00 18.0 7.56 0.7016 5.54

27.01.2017 18:00 24.5 14.35 −1.5837 −15.46

24.03.2017
06:00 3.8 0.82 0.8335 −11.65
12:00 12.0 3.77 0.8652 0.76
18:00 21.4 11.17 0.7997 60.22

05.06.2017
06:00 38.4 15.99 0.7309 64.99
12:00 51.0 19.95 0.7926 52.22
18:00 6.4 1.69 0.9390 69.07

15.09.2017 12:00 7.4 4.65 −1.6078 −80.89
18:00 53.4 26.20 0.3097 71.38

19.10.2017
06:00 17.4 9.33 0.4002 63.78
12:00 20.1 6.63 0.8291 34.45
18:00 9.2 2.32 0.9279 75.49

06.02.2018 06:00 10.2 3.72 0.8709 1.13
18:00 10.9 9.97 −1.6244 −46.31
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Table A2. Cont.

Date
(dd.mm.yyyy) Time Max. 6 h Rainfall (mm) RMSE NSE PBIAS

24.03.2018
06:00 8.6 2.21 0.7689 20.83
12:00 17.8 8.86 0.6369 11.37
18:00 17.4 6.79 0.1904 −7.45

14.04.2018
06:00 1.6 1.54 −0.6957 −120.78
12:00 11.0 5.74 0.7878 59.80
18:00 1.2 0.71 0.6839 −73.59

01.05.2018
06:00 13.6 7.94 −0.5120 −4.61
12:00 11.3 10.04 −5.6762 −145.24
18:00 20.0 7.22 0.4642 60.94

13.05.2018 06:00 19.2 7.64 0.6772 48.25
12:00 3.8 0.58 0.0968 −244.89

10.09.2018 06:00 16.4 8.14 −0.1452 −6.57
12:00 33.0 18.90 0.6923 93.54

18.10.2018
06:00 6.0 2.73 0.4035 −6.27
12:00 6.8 3.01 0.7267 51.87
18:00 14.7 5.60 0.3686 23.13

27.10.2018 12:00 13.2 10.21 −0.6154 −107.91
18:00 42.0 16.67 0.1749 70.63

28.10.2018 00:00 19.0 7.85 0.7816 36.96
12:00 24.8 7.29 0.5871 30.00

20.11.2018 12:00 12.0 3.17 0.6958 −2.35

27.08.2019 12:00 14.5 4.71 0.5455 −10.51
18:00 26.0 11.16 0.4794 80.78

21.10.2019
00:00 15.8 12.23 −0.8259 −85.84
06:00 14.4 6.62 0.5615 66.65
12:00 5.1 2.01 0.7679 20.71

22.10.2019
00:00 34.8 19.79 0.4640 2.46
06:00 34.2 16.79 0.8677 62.81
12:00 11.2 1.23 −0.3087 −295.49

08.11.2019
00:00 12.4 5.57 0.4514 29.06
06:00 4.6 2.05 0.3953 −48.81
18:00 2.0 0.68 −3.5196 −569.22

22.11.2019 12:00 16.2 9.18 −0.2618 17.01
18:00 3.4 1.22 0.8331 21.61

02.12.2019 06:00 16.8 5.73 0.5225 29.25

04.12.2019 12:00 40.8 18.91 0.2574 2.67
18:00 5.2 2.79 −0.0720 −41.81

19.01.2020 06:00 1.6 1.11 0.5882 −49.47
18:00 21.0 5.90 0.9492 33.90

22.03.2020 12:00 21.7 10.24 0.2119 32.67

13.04.2020 06:00 11.1 2.60 0.8930 35.14
12:00 16.0 9.36 0.8015 79.60

20.04.2020

00:00 4.3 1.76 0.7482 17.41
06:00 17.2 9.04 0.4237 60.34
12:00 13.7 3.78 0.4156 15.91
18:00 31.4 14.65 0.5662 67.41
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Table A2. Cont.

Date
(dd.mm.yyyy) Time Max. 6 h Rainfall (mm) RMSE NSE PBIAS

29.08.2020 12:00 22.2 7.96 0.2838 32.47
18:00 18.0 6.88 0.8178 78.23

30.08.2021 12:00 22.2 7.62 0.7229 21.23

01.10.2021 12:00 14.6 4.43 0.5907 25.26
18:00 10.0 5.10 0.7766 79.70

30.10.2021
06:00 7.3 2.19 0.5441 −23.15
12:00 21.4 8.08 0.5341 61.97
18:00 1.0 0.44 0.7635 −143.45

10.11.2021

00:00 17.4 11.39 0.6121 86.23
06:00 17.6 7.03 0.7300 51.50
12:00 17.2 6.15 0.5433 47.45
18:00 7.4 4.09 0.2967 7.21

11.11.2021
06:00 17.0 6.05 0.5533 44.87
12:00 16.3 4.92 0.6556 42.23
18:00 10.4 4.25 0.5489 26.02

23.11.2021
06:00 36.5 12.25 0.3974 54.68
12:00 16.4 8.72 0.4762 −10.23
18:00 24.0 10.90 0.7974 57.30

25.11.2021 12:00 11.5 3.12 0.7256 13.63

28.11.2021
00:00 2.6 1.61 0.1114 −72.87
06:00 3.0 0.87 0.8947 1.95
12:00 5.2 1.89 0.6879 −10.62
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