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Abstract: The highly dynamic properties of maneuvering targets make it intractable for radars to
predict the target motion states accurately and quickly, and low-grade predicted states depreciate
the efficiency of resource allocation. To overcome this problem, we introduce the modified current
statistical (MCS) model, which incorporates the input-acceleration transition matrix into the aug-
mented state transition matrix, to predict the motion state of a maneuvering target. Based on this, a
robust resource allocation strategy is developed for maneuvering target tracking (MTT) in a netted
opportunistic array radar (OAR) system under uncertain conditions. The mechanism of the strategy
is to minimize the total transmitting power conditioned on the desired tracking performance. The
predicted conditional Cramér–Rao lower bound (PC-CRLB) is deemed as the optimization criterion,
which is derived based on the recently received measurement so as to provide a tighter lower bound
than the posterior CRLB (PCRLB). For the uncertainty of the target reflectivity, we encapsulate the
determined resource allocation model with chance-constraint programming (CCP) to balance re-
source consumption and tracking performance. A hybrid intelligent optimization algorithm (HIOA),
which integrates a stochastic simulation and a genetic algorithm (GA), is employed to solve the CCP
problem. Finally, simulations demonstrate the efficiency and robustness of the presented algorithm.

Keywords: resource allocation; maneuvering target tracking; netted opportunistic array radar;
chance-constraint programming

1. Introduction

As a new type of recently proposed radar system, the opportunistic array radar (OAR)
is gradually attracting considerable attention due to its the unique array arrangement and
flexible working modes [1–4]. On the other hand, netted radar systems [5], integrating
several radar stations and fusing the information from them, show great advantages over
traditional monostatic radars [6,7]. Based on this, the netted OAR will show powerful
detection capability in a variety of military and civilian applications. However, in practice,
the limited resources are the key factor affecting the full release of potential for a radar
system, especially for the radars mounted on moving carriers [8,9]. Consequently, the
effective use of limited radar resources to carry out a specified task is a significant problem.

Extensive work about the resource allocation of radar systems has been published [10–16].
The resource allocation strategies for multiple target localization in different scenarios are
presented in [10–12], and the performance metric function is the Cramer–Rao lower bound
(CRLB). In [13–16], resource allocation for tracking targets at a constant speed is studied,
and the posterior CRLB (PCRLB) is used as a metric function to quantify target tracking
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performance. Nevertheless, in the above literature, the studies related to the resource
allocation of maneuvering targets are relatively few. In modern electronic countermeasures,
to avoid being captured by radars, the maneuverability of manned/unmanned aerial
vehicles has also been improved [17,18]. The use of intelligent penetration technology
further increases the difficulty [19,20].

In traditional research, the interacting multiple model (IMM) algorithm is used to track
maneuvering targets [21–23]. In general, the motion models of maneuvering targets in the
IMM algorithm only include constant velocity motion, constant acceleration motion and
coordinated turn motion [24]. However, the maneuvering targets possess more complex
motion modes in actual flight. The insufficient motion modes depreciate the meaning of
“maneuverability”.

Researchers usually quantify the theoretical tracking performance of any estima-
tor with PCRLB under the Bayesian framework [13–16]. The PCRLB is derived by the
expectation with respect to the joint probability density function of the target state and mea-
surements from the start to the current time. The useful measurements are averaged out,
resulting in an off-line bound [25]. However, the predicted bound of the mean square error
(MSE) of target state estimates at time kT has the closest relationship with the measurement
at time (k − 1) T. Therefore, the predicted conditional CRLB (PC-CRLB) conditioned on the
latest actual measurement is developed to characterize the tracking performance [26].

In this study, we employ the centralized network architecture (CNA), in which each
node sends raw data to the central fusion center (CFC) [27], to fuse the echo information. In
addition, on account of the data processing capacity and the transmission bandwidth, only
parts of radar nodes are in working mode [28,29]. Hence, a selection algorithm of radar
nodes should be taken into consideration to maximize the power allocation efficiency.

Owing to the target identity, observation angle, polarization, etc., the radar cross sec-
tion (RCS) is considered as a random variable in the OAR framework [30], which is different
from the determined value in traditional studies [8–11,13–16,28,29]. Aiming to achieve the
randomness of constraint conditions, we introduce chance-constraint programming (CCP)
to handle the uncertainty on the condition that the stochastic constraint holds at a specified
confidence level [31]. It is not cost-effective to spend superfluous resources on the low
probability incident that the RCS takes values at the lower bound of the distribution interval.
On the other hand, to obtain an acceptable tracking error, the confidence level cannot be
low either. Therefore, the suitable confidence level is selected by the environments and the
desired tracking performance.

Motivated by those reasons, we propose a robust resource allocation strategy for
maneuvering target tracking (MTT) in a netted opportunistic array radar (OAR) system
under uncertain conditions. The tracking filter fuses all the acquired measurements and
updates the track through a centralized architecture. Based on this, the fusion center
selects the working radar nodes which will illuminate the target. The optimal power
allocation results among the selected radar nodes are in turn used to guide the upcoming
probing. The whole process can be viewed as an adaptive reaction of the radar system to
the surroundings.

The main contributions of this paper are as follows:

(1) The PC-CRLB of radar resource allocation for MTT is derived. We adopt the modified
current statistical (MCS) model to characterize the motion state of maneuvering
targets. The original state transition matrix and the input-acceleration matrix are
combined to form the augmented state transition matrix in this model. And the
process noise is periodically updated by the estimated error covariance to realize the
self-adaption [32,33]. Considering the high maneuverability, the PC-CRLB instead of
the PCRLB is utilized as the performance metric in resource allocation. The PC-CRLB
provides a tighter lower bound since it is dependent on the actual measurement
realizations. The mathematical expression of PC-CRLB for the centralized system is
derived with the optimal fusion.
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(2) A closed-loop resource allocation strategy for the netted OAR system is formulated.
The MCS-based strong tracking square-root cubature Kalman filter (ST-SCKF) is
employed to obtain the global posterior distribution of the target conditioned on
the CNA [32,33]. Based on the updated target state and the radar coordinates, the
resource allocation strategy is performed with the objective of minimizing the total
power consumption. In this strategy, the fuzzy logic inference system (FLIS) is used
to select the most efficient radar group in line with the properties of targets relative
to different radars [34,35]. The optimal power allocation for the next round can be
implemented through the CCP model, subject to the uncertain constraints arising
from the unknown RCS. The closed-loop signal processing framework is illustrated in
Figure 1.

(3) A hybrid intelligent optimization algorithm (HIOA) consisting of a stochastic sim-
ulation and a genetic algorithm (GA) is developed to solve the non-convex power
optimization problem. Considering the uncertainty of the RCS, the resource allocation
is modeled as the non-convex CCP. The stochastic simulation samples the random
variables according to the probability distribution. The GA calculates the optimal
solution of resource allocation based on all the sampling values meeting the con-
straint conditions. Superior to other solution methods, the HIOA could solve all the
stochastic CCP.
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The remainder of this paper is structured as follows: The system model of the ma-
neuvering target is given in Section 2. In Section 3, we derive the centralized PC-CRLB
gradually. The CCP-based resource allocation model and the HIOA are presented in
Section 4. Simulations and discussions are given in Section 5. Finally, we conclude this
paper in Section 6.

2. System Model

Assume that a two-dimensional netted radar system consists of M independently dis-
tributed OARs in a time-synchronized manner. Each radar node generates one transmitting
beam with the maximal power budget rPtotal (0 ≤ r ≤ 1) to track the target in the CNA. The
location of the mth (m = 1, 2, . . ., M) radar nodes is denoted as (xR

m, yR
m). T0 is the sampling

interval for target tracking. At time kT0, denoted by k, there is a point-like target in the
surveillance region, with the coordinate (xk, yk), velocity (

.
xk,

.
yk) and acceleration (

..
xk,

..
yk).

To ensure the resource allocation proceeds smoothly, some assumptions are made
to simplify the problem. (1) Assume that the carrier frequencies of transmitting signals
from different colocated transmitters are different, and each radar receiver is equipped
with a matched filter which excludes the echo signals transmitted from the other radars.
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(2) The radar network has excellent system performance, i.e., the transmission bandwidth,
transmission rate and computational power could support the CNA.

2.1. Signal Model

Suppose that the mth radar transmits the signal sm,k(t) at the kth sampling interval.

sm,k(t) =
√

Pm,kSm,k(t) exp(−j2π fmt) (1)

where Pm,k denotes the transmitting power. Sm,k(t) denotes the normalized complex en-
velope of the transmitted signal. fm denotes the carrier frequency. Assume that all the
transmitting signals are narrowband with the following effective bandwidth Bm,k [36]:

(Bm,k)
2 =

∫ (
f − f

)2∣∣Sm,k( f )
∣∣2d f /

∫ ∣∣Sm,k( f )
∣∣2d f (2)

where f represents the first-order origin moment of the frequency spectrum |Sm,k(f )|2, and
in general, f = 0. And the effective time duration Tm,k is [36]

(Tm,k)
2 =

∫ (
t − t

)2∣∣Sm,k(t)
∣∣2dt/

∫ ∣∣Sm,k(t)
∣∣2dt (3)

where t represents the first-order origin moment of |Sm,k(t)|2, and in general, t = 0.
The baseband representation rm,k(t) of the received signal is an attenuation counterpart

of the transmit signal, which is delayed by τm,k and shifted by fm,k.

rm,k(t) = hm,k

√
αm,kPm,kSm,k(t − τm,k) exp(−j2π fm,kt) + ωm,k(t) (4)

where the target reflectivity hm,k is a random variable [30]. αm,k denotes the attenuation
coefficient in the signal strength due to the path loss, and αm,k ∝ 1/R4

m,k (Rm,k is the range
between the target and the mth radar). ωm,k represents a zero-mean, complex Gaussian
noise, spatially and temporally white with autocorrelation function σ2

ωδ(τ) [10].

2.2. Motion Model

The motion models of maneuvering targets are divided into a single model and multi-
models. Although the multi-model algorithm can match the target maneuver as much
as possible according to multiple model sets, it is impossible to fully characterize all the
motion states of the target for the finite sets. The increase in the model sets will also lead to
the degradation of the real-time performance for the tracking algorithm. In all single-model
algorithms [37–39], the CS model possesses a better ability to describe the maneuvering
characteristics compared with others. The expression of the CS model is [38]

xk = Fk−1xk−1 + Uk−1
¯
ak−1 + wk−1 (5)

where the target state is xk =
[
xk

.
xk

..
xk yk

.
yk

..
yk
]T. Fk−1 denotes the transition matrix.

Uk−1 denotes the input-acceleration transition matrix.
..
a denotes the mean of the current

input acceleration. wk−1 represents zero-mean, complex Gaussian white noise, with the
covariance [33]

Qk−1 = 2α · diag
(

σ2
ax,k−1, σ2

ay,k−1

)
⊗ qcs,k−1 (6)

where σ2
ax,k−1 and σ2

ay,k−1 are the variances of the target acceleration in x and y directions,
respectively. They all obey the modified Rayleigh distribution. qcs,k−1 is decided by
the maneuvering frequency α and the sampling interval T0. The detailed expressions
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can be seen by referring to [39]. To track the maneuvering target with a standard filter,
the equation

¯
a
(1)

k =
¯
a
(1)

k−1 (7)

and the CS model are combined to form the MCS model[
xk

¯
a
(1)

k

]
=

[
F′

k−1 U′
k−1

02×6 I2×2

][xk−1
¯
a
(1)

k−1

]
+

[
wk−1

0

]
(8)

which is simplified as the following expression:

ξk = FAUG,k−1ξk−1 + wAUG,k−1 (9)

where
¯
a
(1)

k =
[ ...

x k−1,
...
y k−1

]T is the mean Jerk vector. After transformation, the expressions
of the two transition matrixes in Equation (8) are changed. Hence, a small apostrophe is in
the upper right corner of the new symbols. The expression of F′

k−1 is [39]

F′
k−1 = I2 ⊗

1 T0 T0/2
0 1 T0
0 0 1

 (10)

where ⊗ is the Kronecker operator; I2 denotes a unit matrix of order 2. The expression of
U′

k−1 is [39]

U′
k−1 = I2 ⊗

T3
0 /6 −

(
2 − 2αT0 + α2T2

0 − 2e−αT0
)
/2α3

T2
0 /2 −

(
e−αT0 − 1 + αT0

)
/α2

T0 −
(
1 − e−αT0

)
/α

 (11)

where the maneuvering frequency α can be adaptively adjusted by the structured strong
maneuvering detection function [33].

In the MCS model, the variances σ2
ax,k and σ2

ay,k of the process noise are adaptively
updated by the corresponding elements of the state covariance Pk−1, which enhances the
ability of adaptive tracking [33].

σ2
ax,k =

4 − π

π

(
Pk−1

( ..
xk−1,

..
xk−1

)
+ T0Pk−1

( ..
xk−1,

...
x k−1

)
+ T0Pk−1

( ...
x k−1,

..
xk−1

)
+ T2

0 Pk−1(
...
x k−1,

...
x k−1)

)
(12)

where Pk−1(•, •) is the element at the corresponding position. σ2
ay,k can be obtained by a

similar method.

2.3. Measurement Model

The target information, such as the range, bearing angle and Doppler frequency, can
be extracted from the radar receiving signals [40]. At time k, the independent measurement
of the mth radar is

zm,k = hm,k(ξk) + vm,k (13)

where the nonlinear transform function is

hm,k(ξk) = (Rm,k, θm,k, fm,k)
T (14)

with 
Rm,k =

√
(xk − xR

m)
2
+ (yk − yR

m)
2

θm,k = arctan
[(

yk − yR
m
)
/
(
xk − xR

m
)]

fm,k = − 2
λm

( .
xk,

.
yk
)
·
(
xk − xR

m, yk − yR
m
)T/Rm,k

(15)
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where λm denotes the carrier wavelength. The measurement noise vm,k is also zero-mean
Gaussian white noise with a covariance Σm,k

Σm,k = diag
(

σ2
Rm,k

σ2
θm,k

σ2
fm,k

)
(16)

where diag(•) denotes the diagonal matrix operator. σ2
Rq,k

, σ2
θq,k

and σ2
fq,k

are the CRLBs on the
estimation MSE of the range, bearing angle and Doppler frequency at a high signal-to-noise
ratio (SNR) [36,41]. 

σ2
Rm,k

∝ c2/
[
32π2·SNRm,k·(Bm,k)

2
]

σ2
θm,k

∝ 3(BNN)
2/
(
8π2·SNRm,k

)
σ2

fm,k
∝ 3/

[
8π2·SNRm,k·(Tm,k)

2
] (17)

where c represents the speed of light. BNN represents the null-to-null beam width. SNRm,k
is the SNR with the expression in [10].

3. Centralized PC-CRLB

In the Bayesian framework, the PCRLB provides a lower bound on the performance
of estimating target state ξk, and the MSE cannot go below this bound [42]. The PCRLB is
defined as

Eξk ,Z1:k

[(
^
ξk(Z1:k)− ξk

)(
^
ξk(Z1:k)− ξk

)T
]
≻CPCRLB(ξk) = J−1(ξk) (18)

where we let
^
ξk be an estimation of ξk. Eξk ,Z1:k [•] denotes the expectation with respect to

the target state ξk and the measurement Zk from the start to time k. CPCRLB(•) is the PCRLB
matrix defined as the inverse of the Fisher information matrix (FIM) J(ξk). The overall
measurement vector Z1:k is represented as follows:

Z1:k =
{

zm,1:k
}M

m=1 (19)

The CNA is utilized here to fuse the independent measured information transmitted
from different nodes.

In the calculation of the PCRLB, the measurements are considered as random vectors.
As clearly shown in Equation (18), the bound is calculated by taking the average of the
target states and the measurements up to current time, leading to an offline bound [25].
However, in normal circumstances, we could obtain all the actual measurements up to time
k − 1. Based on these received data, a new bound can be calculated online to provide us
a more precise performance criterion for the MSE of the estimator. To better allocate the
system resource in tracking maneuvering targets, the PC-CRLB is developed and defined
as [25]

Eξk ,Zk |Zk−1

[(
^
ξk(Zk−1)− ξk

)(
^
ξk(Zk−1)− ξk

)T
]
≻J−1(ξk|Zk−1) (20)

where the PC-FIM J−1(ξk|Zk−1) is defined as

J(ξk|Zk−1) = −Eξk ,Zk |Zk−1

[
∆ξk
ξk

log p(ξk, Zk|Zk−1)
]

(21)

where the notion ∆ξk
ξk

represents the second-order partial derivative vectors. p(ξk, Zk|Zk−1)
denotes the joint probability density function (PDF). The PC-CRLB matrix is the inverse of
the PC-FIM.

Similar to the recursive calculation method of FIM, the PC-FIM consists of two submatrixes.

J(ξk|Zk−1) = JP(ξk|Zk−1) + JD(ξk|Zk−1) (22)
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where JP(ξk|Zk−1) and JD(ξk|Zk−1) are the prior information and the data information of
the PC-FIM, respectively. The expression of JP(ξk|Zk−1) is

JP(ξk|Zk−1) = −Eξk |Zk−1

[
∆ξk
ξk

log p(ξk|Zk−1)
]

(23)

where p(ξk|Zk−1) denotes the prior PDF of prediction, which is Gaussian. It serves as the
PDF for calculating the prior information of the PC-BIM. In many instances, deriving the
analytical expression of the prior term is intractable. Owing to the Gaussian distribution,
this term is approximated by the predicted covariance matrix, which can be calculated
numerically by a set of particles and weights [26]. This is why the prior term is also called
the predicted information matrix (PIM).

JP(ξk|Zk−1) ≈
(
Eξk |Zk−1

[(
~
ξk(Zk−1)− ξk

)(
~
ξk(Zk−1)− ξk

)T
])−1

(24)

where
~
ξk = Eξk |Zk−1

[ξk].
Considering the measurement model in Section 2.3, the data term JD(ξk|zm,k−1) of

each radar node is [6]

JD(ξk|zm,k−1) = −Eξk ,zm,k |zm,k−1

[
∆ξk
ξk

log p
(

zm,k
∣∣ξk
)]

= Eξk ,zm,k |zm,k−1

[
HT

m,kΣ−1
m,kHm,k

]
(25)

where Hm,k =
[
∂hT

m,k(ξk)/∂ξk

]T
.

Since the measurements from different radar nodes are independent from each other,
the integrated data term JD(ξk|Zk−1) can be represented as

JD(ξk|Zk−1) = −Eξk ,Zk |Zk−1

[
∆ξk
ξk

log p(Zk|ξk)
]

= JD(ξk|z1,k−1, z2,k−1, · · · , zM,k−1) =
M
∑

m=1
JD(ξk|zm,k−1)

=
M
∑

m=1
Eξk ,zm,k |zm,k−1

[
HT

m,kΣ−1
m,kHm,k

] (26)

The expected value in Equation (26) could be evaluated by Monte Carlo techniques.
To simplify the calculation and reduce the computing time, JD(ξk|Zk−1) is rewritten as [43]

JD(ξk|Zk−1) =

(
M

∑
m=1

HT
m,kΣ−1

m,kHm,k

)∣∣∣∣∣
ξk|k−1

(27)

where ξk|k−1 denotes the predicted target state.
Substituting Equations (24) and (27) into Equation (22), we obtain the centralized

PC-FIM J−1(ξk|Zk−1) as

J(ξk|Zk−1) = JP(ξk|Zk−1) +
M

∑
m=1

JD(ξk|zm,k−1) (28)

4. Resource Allocation Strategy for MTT

Technically speaking, the resource allocation strategy can be regarded as an intelligent
response to complex surroundings. The problem can be converted into an optimization
algorithm conditioned on the predetermined tracking performance. Based on the received
measurements, the PC-CRLB bounds the error variance of the unbiased estimates of the
unknown target state. Hence, we utilize the PC-CRLB as the performance criterion of MTT
in the resource allocation strategy.



Remote Sens. 2024, 16, 3499 8 of 24

In this study, in order to conveniently implement the node selection and power allocation,
we use the binary vector uk = [u1,k, u1,k, . . ., uM,k] to represent the selected nodes and use the
power vector Pk = [P1,k, P2,k, . . ., PM,k] to represent the allocated power. The two vectors will
be employed to build the resource optimization model at an upcoming time.

4.1. Tracking Performance Metric

The crucial mechanism of resource allocation lies in the prediction of the tracking
performance. Thereby, the radar system could make decisions in advance in terms of the
predicted results. Considering the decision vectors uk and Pk defined before, the centralized
PC-FIM is adjusted as

J(uk, Pk)|ξk |Zk−1
= JP(ξk|Zk−1) +

M

∑
m=1

um,k JD(Pm,k)
∣∣
ξk |zm,k−1

(29)

The predicted PC-CRLB is calculated as the inverse of the PC-FIM.

CPC−CRLB(uk, Pk) =
[

J(uk, Pk)|ξk |Zk−1

]−1
(30)

To quantify the target tracking performance, we use the diagonal elements of
CPC−CRLB(uk, Pk) to denote the lower bound of estimation errors.

F(uk, Pk) =
√

Tr(CPC−CRLB(uk, Pk)) (31)

where Tr(•) denotes the trace operator.

4.2. Radar Node Selection

Another significant problem that must be solved before power allocation is the selec-
tion of the radar nodes, i.e., the binary vector uk. The radar system should know which
radars are a preferable alternative to tracking the target. Herein, we employ the FLIS, which
integrates multiple influence factors, to calculate the priority of each radar as a reference
for node selection. A brief review is in the upcoming section. The readers can refer to [44]
for the detailed process.

The motion states of the target relative to different radars are different. In this strategy,
two different fuzzy variables concerning the priority are considered, i.e., the range and the
radial velocity. In order to realize the mapping from an exact value to a fuzzy value, it is
emphasized that the exact value of radial velocity is a direction vector. The radial velocity
is negative when the target flies away from the radar, and the radial velocity is positive
when the target flies toward the radar.

The three fuzzy variables are all assigned seven fuzzy values, which are defined in
Table 1.

Table 1. Fuzzy variables and fuzzy values.

Fuzzy Variable Fuzzy Value

Range very close, close, medium-close, medium, medium-far, far, very far
Radial velocity very slow, slow, medium-slow, medium, medium-fast, fast, very fast
Priority very low, low, medium-low, medium, medium-high, high, very high

For convenience, the actual values of range, radial velocity and priority are normalized,
as shown by the x axis in Figure 2. The normalized values are fuzzed with the triangu-
lar fuzzy number, which possesses a simple representation and strong anti-interference
ability [34,35]. The membership functions, which are employed for the fuzzy values of the
range and radial velocity, are presented for the evaluation of the priorities of the radars.
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Figure 2. Membership function of fuzzy variables. (a) Normalized range; (b) normalized radial
velocity; (c) normalized priority.

Based on the permutation and combination of the fuzzy values in Table 1, 49 if–then
inferential rules are generated by intuitive and expert considerations. Then, we need
to perform the fuzzy inference in accordance with the fuzzy rules. On account of the
simple calculation steps and the accurate calculation results, the Larsen inference is utilized
here [45]. Through the fuzzy inference, the fuzzy sets of the priority are obtained.

In order to use the priority in the actual calculation, we defuzzify the fuzzy sets of the
priority to generate an exact value. The center average defuzzifier is adopted owing to the
characteristics of plausibility, computational simplicity and continuity [46].

Through the aforementioned analysis, the FLIS can calculate the exact values of the
priorities with the following process in Figure 3.
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4.3. Optimization Modeling

According to Equation (31), it can be seen that the decision vectors of the target
tracking error are the binary vector uk and the power vector Pk. For the predetermined
radar number M1 and the tracking error ηk, we should select the optimal combination of
the radars and allocate the power among these radars. The initial optimization model of
the resource allocation is

min 1T
MPk

s.t.
um,k ∈ {0, 1}, m = 1, 2, · · · , M{

Pm,k > Pmin, um,k = 1
Pm,k = 0, um,k = 0

1T
MPk ≤ Ptotal

F(uk, Pk) ≤ ηk

(32)

where 1T
M = [1,1, . . .,1]1×M.

In this model, the solving process of the binary vector uk is dim, which makes the
model inaccurate. We will make some modifications to this model in the upcoming step.
Assume that the priority vector of all the radars is Prik = [pri1,k, pri2,k, . . ., priM,k]. We define
the vector Priorder

k and INk as (
Priorder

k , INk

)
= sort(Prik) (33)

where sort(•) denotes the descending operator. Priorder
k is the descending order of Prik. INk

indicates the positions of the elements in Priorder
k within Prik. Through the above derivation,

the optimal combination uM1,opt
k of the selected radars is denoted as

uM1,opt
k =

{
1, m = INk(1 : M1)
0, others

(34)

For a specified uM1,opt
k , the corresponding power allocation model is modified condi-

tioned on Equation (32).

min 1T
MPM1

k
s.t.{

Pm,k ≥ Pmin, uM1,opt
m,k = 1

Pm,k = 0, uM1,opt
m,k = 0

1T
MPM1

k ≤ Ptotal

F
(

uM1,opt
k , PM1

k

)
≤ ηk

(35)

where PM1
k denotes the transmit power of the corresponding M1 radar nodes.

The target RCS hm,k is affected by the identification, attitude, position, aspect angle,
wave length, polarization, etc. The target RCS hm,k is unknown and uncertain, and we
consider it as an uncertain variable with a random distribution [30]. However, the de-
terministic resource allocation model cannot handle the uncertainty and guarantee the
robustness of the model. Let hM1

k denote the corresponding RCS. The stochastic CCP is
introduced to package the deterministic resource allocation model, which is reformulated
as follows:
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min 1T
MPM1

k
s.t.{

Pm,k ≥ Pmin, uM1,opt
m,k = 1

Pm,k = 0, uM1,opt
m,k = 0

1T
MPM1

k ≤ Ptotal,
Pr
(

F
(

uM1,opt
k , PM1

k , hM1
k

)
≤ ηk

)
≥ δ

(36)

where Pr(•) denotes the probability. δ denotes the confidence level.

4.4. Solution Strategy

The CCP makes sure that the stochastic constraints of the resource management hold
at least with the confidence level δ. In this section, this uncertain programming is solved
by the HIOA, which integrates the stochastic simulation and GA [31]. This algorithm is
universal and can solve any uncertain programming models. The detailed process is shown
as follows.

4.4.1. Stochastic Simulation

According to the expert experience and historical measurement data, assume that
there exist Nk historical observations hi,k (i = 1, 2, . . ., Nk) of RCS for all radar nodes. In
practice, only M1 radar nodes transmit beams to illuminate the target at each sampling
instant, i.e., the RCS participating in calculation is denoted as hM1

i,k . Equivalently, we can

generate Nk random variables F
(

uM1,opt
k , PM1

k , hM1
i,k

)
according to the historical RCS. The

solving steps are illustrated as follows in Table 2 [31].

Table 2. The process of stochastic simulation.

Step 1 Let N′ = 0;
Step 2 Select hM1

i,k (i = 1, 2, . . ., Nk) from the set and produce F
(

uM1,opt
k , PM1

k , hM1
i,k

)
;

Step 3 If F
(

uM1,opt
k , PM1

k , hM1
i,k

)
≤ ηk, N′ = N′ + 1;

Step 4 Repeat the second and third steps Nk times;
Step 5 Pr

(
F
(

uM1,opt
k , PM1

k , hM1
i,k

)
≤ ηk

)
= N′/Nk. If N′/Nk ≥ δ, the uM1,opt

k and PM1
k meet the

constraints, otherwise not.

4.4.2. Hybrid Intelligent Optimization Algorithm

Only one set of (uM1,opt
k , PM1

k ) is generated during each stochastic simulation. We need

to execute the stochastic simulation many times to find the optimal (uM1,opt
k , PM1,opt

k ), which
can be efficiently obtained by the HIOA presented in Table 3.

Table 3. The process of hybrid intelligent optimization algorithm.

(1) Initialize the population, and check the feasibility of the generated chromosomes by the
stochastic simulation in Table 2.
(2) Update the chromosomes by crossover and mutation in which the feasibility of offspring can
be checked by the stochastic simulation in Table 2.
(3) Calculate the objective function values of all the chromosomes.
(4) Compute the fitness of each chromosome according to the objective function values.
(5) Select the chromosomes by spinning the roulette wheel.
(6) Repeat the second to fifth steps for a given number of cycles.
(7) Report the best chromosome as the optimal solution PM1,opt

k .
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4.4.3. Closed-Loop Signal Processing Framework

In practice, according to the aforementioned modeling process, the joint resource
allocation is decomposed into two steps. The first step is to select the radar nodes for
illuminating the target, and the second step is to allocate the power among the selected
radars. Of course, we can also not specify the number of working radars, and the power
resource is allocated among all the radars. However, the working environment of radar
systems varies. Hence, based on the demand pull of radar missions, the power resource is
allocated among the radars of the specified number M1.

In the resource allocation process, radar node selection and power allocation have a
coupling relationship. The problem is whether the two-step solution strategy that we used
can obtain the global optimal solution. The detailed analysis process is as follows.

After resource allocation, the centralized PC-FIM J(uk, Pk) at instant k is calculated as
Equation (29), and

M

∑
m=1

um,k = M1 (37)

where M1 is the number of radars illuminating the target.
Clearly, since the PIM JP(ξk|Zk−1) is only related to the target motion equation, it will

not be affected no matter which radar illuminates the target. Combining Equations (17)
and (29), only the data information matrix (DIM) JD(ξk|Zk−1) is affected by the radar node
selection and power allocation.

JD(ξk|Zk−1) =
M

∑
m=1

um,kJD(Pm,k) (38)

Assume that the transmit power of each radar is not zero, i.e., um,k = 1, and we collect
JD(ξk|Zk−1) into a vector

JD =
{

JD(P1,k), JD(P2,k), · · · , JD(PM,k)
}

(39)

If the transmitting power of each radar is equal, the JD(Pm,k) with longer distance
has a smaller value. In addition, it can be seen from (25) and (27) that JP(ξk|Zk−1) and
JD(ξk|Zk−1) are both positive definite matrixes. Since the PC-CRLB CPC-CRLB(uk, Pk) is the
inverse matrix of J(uk, Pk), the smaller JD(Pm,k) with longer distance will obtain a greater
CPC-CRLB(uk, Pk). In order to obtain a smaller target tracking error, the long-range radar
will consume more power.

The fuzzy logic inference algorithm used in this paper calculates the priority of each
radar according to the range and radial velocity, and the range plays a major role. The
selected radars are those with closer ranges and those that consume less power. Based
on this, the solution strategy of the adopted resource allocation model can also obtain the
global optimal solution.

In the rest of this section, the closed-loop signal processing framework is summarized
for the MTT in a centralized OAR network.

At first, the MCS-based ST-SCKF is utilized to fuse the received signal from each radar
node through the CFC. In this fusion process, the global posterior estimate is computed
by the sequential updating scheme, in which the most accurate local measurement should
be updated first so as to reduce subsequent linearization errors. We adopt the FLIS to
evaluate the priority of the target corresponding to different radar nodes by intelligent
and valid means. As a more accurate bound to quantify the tracking performance, the
centralized PC-CRLB is utilized as the optimization criterion for the selected radar nodes.
The stochastic CCP of the resource allocation is solved by the HIOA. Thus, the joint resource
allocation strategy realizes the optimal node and power allocation, which in turn benefits
the target tracking. The integrated closed-loop feedback system is in Table 4.
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Table 4. The process of closed-loop signal processing.

(1) Let k = 1, initialize the (uM1,opt
k , PM1,opt

k ).
(2) The MCS-based ST-SCKF with the sequential updating technique is used to obtain the global
state estimate.
(3) Based on the updated target state, obtain the optimal radar nodes according to the priority.
(4) Compute the centralized PC-CRLB conditioned on a particle filter, and adopt the HIOA to
solve the CCP-based resource allocation for the optimal solution.
(5) Send the optimal allocation (uM1,opt

k+1 , PM1,opt
k+1 ) back to guide probing in next sampling instant.

(6) Let k = k + 1, and go to (2).

4.5. Further Statement

Statement 1: Three bounds are developed to quantify the MSE of the target state
estimates in the published literature. The PCRLB is derived by taking the expectation with
the joint distribution of ξk and Zk up to the current time, i.e., it considers the measurements
as random vectors and quantifies the target tracking performance conditioned on all the
data possibly received [25]. However, the actually received measurements are the key in
characterizing tracking performance in the upcoming moment. Accordingly, the conditional
PCRLB is developed and conditioned on all the received data Z1:k−1. Nevertheless, taking
the average over all past measurement data weakens the tightness of the bound close to the
MSE [26]. In practice, the tracking performance at time k has the closest connection with
the measurement Zk−1. Hence, the PC-CRLB, which is averaged over the joint density of ξk
and Zk conditioned on Zk−1, is the tightest bound to the PC-MSE matrix in Equation (20).
After comprehensive comparison, the PC-CRLB is the optimal alternative.

Statement 2: In the MCS-based ST_SCKF, the target state is updated according to the
measurement from one node at a time, i.e., the sequential updating technique. Since the
measurement model is nonlinear, we should update the target state with the measurement
from the most accurate radar node to reduce subsequent linearization errors. Otherwise,
the measurement errors will be amplified in the sequential procedure, even resulting
in divergence.

5. Simulations and Analysis

In this section, we present some simulation results and analyses to demonstrate the
effectiveness of the proposed resource allocation strategy. Here, we consider a centralized
tracking scenario with eight radar nodes and a maneuvering target. The effective bandwidth
and the effective time duration are set to Bm,k = 5 MHz and Tm,k = 1 ms, respectively. The
carrier frequency of each transmitting signal is set to 10 GHz and the carrier wavelength is
λm = 0.03 m. The number of the coherent pulses is 64. The lower bound of the transmitting
power is Pmin = 0.1 Ptotal. A sequence of 40 frames with the sampling interval T0 = 1 s is
adopted for the simulation process. The initial maneuvering frequency is α = 0.1, and the
initial forgetting factor is ρf = 0.95. Without loss of generality, assume that the target reflectivity
hm,k has the same distribution function, which is modeled as a Swerling I model with the
mean being 0.3. The initial states of the radars and the target are shown in Table 5. The display
and analysis of subsequent simulations are divided into two cases.

Table 5. The initial target state and the radar coordinates.

Index Initial Position (km) Velocity (m/s)

Radar 1 (18, 0) (-, -)
Radar 2 (25, 0) (-, -)
Radar 3 (35, 5) (-, -)
Radar 4 (45, 10) (-, -)
Radar 5 (15, 20) (-, -)
Radar 6 (25, 24) (-, -)
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Table 5. Cont.

Index Initial Position (km) Velocity (m/s)

Radar 7 (35, 24) (-, -)
Radar 8 (45, 24) (-, -)

Case 1: Target (20, 9) (380, 440)
Case 2: Target (46, 16) (−600, −250)

In Case 1, the target has great maneuverability in both the x and y directions, and we
let three radars track the target through the whole tracking process. The target tracking is
shown by the blue line in Figure 4, and the acceleration model is shown in Figure 5a.
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In Case 2, only the acceleration in the y direction changes greatly over time, and we let
four radars track the target. The target tracking is shown by the red line in Figure 4, and
the acceleration model is shown in Figure 5b.

Just to be clear, except for the comparison of resource consumption at different con-
fidence levels, without restricting generality, the confidence levels are all set to δ = 0.9 in
other simulations of the following two cases.

5.1. Case 1: 3 Radars and Acceleration Model 1
5.1.1. Adaptive Priority

The priority of the radars at each sampling interval is updated in real time according
to the range and the radial velocity. Although two influencing factors are considered for the
priority, the relative range between the target and the radars plays a decisive role. Figure 6
depicts the radar priority which varies with the target state. Together with Figure 4, we
can obviously identify that the three nearest radars, i.e., radar 1, 2 and 5, have the highest
priority in the initial period. As time goes on, the three selected radars become radar 3, 6
and 7. Finally, radar 4, 7 and 8 have the highest priority. Throughout the tracking process,
the range dominates the priority with the reason being that the received signal strength is
inversely proportional to the quadratic power of the range, as shown in Equation (4).
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Figure 6. Priority of radars over time in Case 1.

Figure 7 gives the radar serial number in the working state at each frame. Through
comparison with Figure 6, we find that the working radars are the three radars with the
highest priority.

5.1.2. Power Allocation with Different Conditions

We then proceed with our simulations to compare the power consumption under
different conditions. Figure 8 presents the optimal power allocation results at each sampling
instant with the same confidence. They are all normalized with the total transmitting power
of each frame. The radar with the largest power consumption changes continually with the
movement of the target.

In Figure 9, Psum denotes the sum of transmitting power of all radars, and Ptotal denotes
the rated power of the OAR system. This figure describes the total power consumption
with respect to different power allocation algorithms and different tracking performance
criteria. Here, we need to explain the three curves in detail. While the PC-CRLB is adopted
as the optimization criterion, as shown by the blue curve and the red curve in Figure 9,
the adaptive allocation algorithm could reduce the power consumption by 18% compared
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to the uniform allocation algorithm. In addition, through comparing the optimal power
allocation with different optimization criterions, as shown by the blue curve and the green
curve, we find that the total power consumption based on PC-CRLB is more than the
counterpart based on PCRLB. The reason is as follows: The PC-CRLB provides a tighter
lower bound on the MSE of any estimator than the PCRLB, i.e., the PC-CRLB is larger than
the PCRLB with respect to a specific estimate. For a preset tracking error threshold, the
allocation algorithm with the PC-CRLB has to consume more power. The comparison of
the total power consumption between PC-CRLB and PCRLB demonstrates from the reverse
side that PC-CRLB is a more accurate bound.
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The total power consumption is relative to the confidence level. In general, the
appropriate confidence levels are selected in accordance with tracking scenarios. Herein,
we specify the confidence level δ as 0.99, 0.95 and 0.9 in Figure 10. The requirement for
power decreases as the reliability of the inequality decreases. Hence, it is clear that the
power consumption is proportional to the confidence levels.
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5.1.3. Target Tracking

Figure 11 shows the estimated trajectory and the actual trajectory of the target. Com-
bined with Figure 4, although the maneuverability of the target is very high in the x and y
directions in the whole tracking process, the tracking effect is satisfactory. Figure 12 gives
the root MSE (RMSE) of the target.

In the simulation, the stochastic simulation is embedded into the GA to form an HIOA
to solve CCP problems. The two sub-algorithms are quite time-consuming. It takes 513 s to
solve the model in Case 1.
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5.2. Case 2: Four Radars and Acceleration Model 2
5.2.1. Adaptive Priority

The priority of the radars is still updated in line with the range and the radial velocity.
Since the starting position and moving track of the target are different from the situation in
Case 1, the radars close to the starting point have higher priority at the beginning, such as
radars 3, 4, 7 and 8. Other radars also occupy the high-priority positions for a short time as
the target moves. In addition, the high acceleration in the y direction shown in Figure 5b
makes the target turn to the positive direction of the y coordinate. Radar 7 has high
priority through the whole tracking process. Combining Figures 13 and 14, we can obtain a
clearer conclusion.
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Figure 14. Working radars in each frame in Case 2.

5.2.2. Power Allocation with Different Conditions

Figure 15 depicts the optimal power allocation with four radars. Compared with
Figure 8, we add a new radar to the radar working group. The newly added radar has
lower priority than the other three radars. Under the condition that the target tracking
performance remains unchanged, the addition of a new radar will reduce the transmitting
power of other radars in the tracking process. Hence, we find that the red boxes are reduced
in Figure 15. Simultaneously, the lower priority makes the transmitting power of this
radar larger than the sum of the power reductions in other radars. Based on this, the total
transmitting power in Figure 16 is higher than its counterpart in Figure 9 conditioned on
the same tracking performance.

The total power consumption is shown in Figure 16 with the same confidence level.
Under the same desired tracking error, the size relationships of power consumption among
the three conditions are similar to the relationships in Figure 9. The distinction between the
two figures is that the total power consumption in Figure 16 is larger than the counterpart
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in Figure 9, which is attributed to the increase in radars. For a detailed explanation for
Figure 16, one could refer to the analysis of Figure 9.
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Figure 16. Total power consumption ratio under different conditions in Case 2.

Figure 17 describes the total power consumption conditioned on different confidence
levels. The variation of Figure 17 with respect to Figure 10 is similar to the variation of
Figure 16 with respect to Figure 9.

5.2.3. Target Track

Figures 18 and 19 show effective target tracking. These figures demonstrate that we
realize the optimal resource allocation without losing tracking performance. It consumes
more time to allocate system resources among more radar nodes, and it takes 625 s to solve
the model in Case 2.
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Figure 17. Total power consumption ratio of different confidence levels in Case 2.
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6. Conclusions and Future Work

In this paper, we develop a robust resource allocation strategy for MTT in a netted
OAR system under uncertain conditions. First, we obtain the global posterior estimate of
the target state conditioned on the optimal fusion through a closed-loop signal processing
framework. The FLIS infers the optimal tracking radars according to the relative motion
states of the target. Due to the large measurement error caused by the high maneuverability
of the target, we deduce the centralized PC-CRLB as the optimization criterion to bound
the target state estimate error. Finally, the resource allocation model encapsulated with
the CCP is solved by an HIOA, and the power allocation results are sent back to guide
the resource allocation for the upcoming probing period. Simulation results show that the
resource allocation strategy can effectively improve the overall power utilization rate. The
derived PC-CRLB provides a tighter bound than the PCRLB. The CCP model enables the
robust power allocation conditioned on different confidence levels.

In this paper, the stochastic simulation is embedded into the GA to form the HIOA.
Stochastic simulation uses the Monte Carlo method to generate random variables according
to probability distribution, and it takes a lot of time. Moreover, as a kind of intelligent
optimization algorithm, a GA has a slow computational speed and is prone to converging
prematurely. Motivated by the aforementioned problems, finding a fast algorithm for solv-
ing uncertain programming is an urgent problem to be solved. This is also the direction we
need to work in in the future. On the other hand, the sharp increase in commercial wireless
communications services has resulted in the problem of radio frequency electromagnetic
spectrum congestion. Driven by the need to improve spectrum exploitation, the joint
optimization of power resources and spectrum resources, or resource optimization under
the condition of integrated radar and communication systems, is also worth studying.
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