Is It Reliable to Extract Gully Morphology Parameters Based on High-Resolution Stereo Images? A Case of Gully in a “Soil-Rock Dual Structure Area”
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methods
2.2.1. Technical Flow
2.2.2. UAV Tilt Photography Measurement Data Acquisition and Processing
- (1)
- Tilt photogrammetry data of UAV
- (2)
- Layout of ground control points
- (3)
- Three-dimensional model and digital orthophoto map (DOM) data processing
2.2.3. Preprocesses of High-Resolution Remote Sensing Stereopair Image and DEM Extraction High Resolution
2.2.4. Extraction of Gully Morphology Parameters
2.2.5. Error Evaluation Index
3. Results
3.1. Accuracy Analysis of Morphology Parameters Extracted from High-Resolution Stereo Images
3.2. Factors Influencing Visual Interpretation Accuracy
3.2.1. Visual Interpreters
3.2.2. Spatial Resolution of Stereo Image
3.3. Relationship of 3D Morphology Parameters Extracted from Oblique Photogrammetry and Remote Sensing Images
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Poesen, J.; Nachtergaele, J.; Verstraeten, G.; Valentin, C. Gully erosion and environmental change: Importance and research needs. Catena 2003, 50, 91–133. [Google Scholar] [CrossRef]
- Bartley, R.; Poesen, J.; Wilkinson, S.; Vanmaercke, M. A review of the magnitude and response times for sediment yield reductions following the rehabilitation of gullied landscapes. Earth Surf. Process. Landf. 2020, 45, 3250–3279. [Google Scholar] [CrossRef]
- Anderson, R.L.; Rowntree, K.M.; Roux, J.J.L. An interrogation of research on the influence of rainfall on gully erosion. Catena 2021, 206, 105482. [Google Scholar] [CrossRef]
- Liu, B.Z. Soil Erosion; Shaanxi People’s Publisher: Xi’an, China, 1997; pp. 15–26. (In Chinese) [Google Scholar]
- Majhi, A.; Nyssen, J.; Verdoodt, A. What is the best technique to estimate topographic thresholds of gully erosion? Insights from a case study on the permanent gullies of Rarh plain, India. Geomorphology 2021, 375, 107547. [Google Scholar] [CrossRef]
- Torri, D.; Poesen, J.; Rossi, M.; Amici, V.; Spennacchi, D.; Cremer, C. Gully head modelling: A Mediterranean badland case study. Earth Surf. Process. Landf. 2018, 43, 2547–2561. [Google Scholar] [CrossRef]
- Poesen, J. Soil erosion in the Anthropocene: Research needs. Earth Surf. Process. Landf. 2018, 43, 64–84. [Google Scholar] [CrossRef]
- Bernatek-Jakiel, A.; Poesen, J. Subsurface erosion by soil piping: Significance and research needs. Earth-Sci. Rev. 2018, 185, 1107–1128. [Google Scholar] [CrossRef]
- Valentin, C.; Poesen, J.; Yong, L. Gully erosion: Impacts, factors and control. Catena 2005, 63, 132–153. [Google Scholar] [CrossRef]
- Liu, Y.B.; Zhu, X.M.; Zhou, P.H.; Tang, K.L. The laws of hillslope channel erosion occurrence and development on Loess Plateau. Memoir of NISWSC. Acad. Sin. 1988, 7, 9–18. (In Chinese) [Google Scholar]
- Roberts, M.E.; Burrows, R.M.; Thwaites, R.N.; Hamilton, D.P. Modelling classical gullies—A review. Geomorphology 2022, 407, 108216. [Google Scholar] [CrossRef]
- Shen, H.O.; Zheng, F.L.; Wen, L.L. A research review of rill development and morphological characteristics. Acta Ecol. Sin. 2018, 38, 6818–6825. (In Chinese) [Google Scholar]
- Liu, G.; Zheng, F.L.; Wilson, G.V.; Xu, X.M.; Liu, C. Three decades of ephemeral gully erosion studies. Soil Tillage Res. 2021, 212, 105046. [Google Scholar] [CrossRef]
- Zhou, X.; Wei, Y.; He, J.; Cai, C.F. Estimation of gully erosion rate and its determinants in a granite area of southeast China. Geoderma 2023, 429, 116223. [Google Scholar] [CrossRef]
- Xiong, D.H.; Fan, J.R.; Lu, X.R.; Zhou, H.Y. A Review on the study of gully erosion. World Sci-Tech R D 2007, 29, 29–35. (In Chinese) [Google Scholar]
- Luffman, I.E.; Nandi, A.; Spiegel, T. Gully morphology, hillslope erosion, and precipitation characteristics in the Appalachian Valley and Ridge province, southeastern USA. Catena 2015, 133, 221–232. [Google Scholar] [CrossRef]
- Zhang, G.H.; Zhao, W.J.; Yan, T.T.; Qin, W.; Miao, X.J. Estimation of Gully Growth Rate and Erosion Amount Using UAV and Worldview-3 Images in Yimeng Mountain Area, China. Remote Sens. 2023, 15, 233. [Google Scholar] [CrossRef]
- Tang, J.; Zhang, Y.; Fan, C.H.; Cheng, X.X.; Deng, J.Y. Accuracy assessment of gully morphological parameters from high resolution remote sensing stereoscopic satellite images on hilly Loess Plateau. Trans. CSAE 2017, 33, 111–117. (In Chinese) [Google Scholar]
- Li, Z.; Zhang, Y.; Yang, S.; Zhu, Q.K.; Wu, J.H.; Ma, H.; He, Y.M. Error assessment of extracting morphological parameters of bank gullies by manual visual interpretation based on QuickBird imagery. Trans. CSAE 2014, 30, 179–186. (In Chinese) [Google Scholar]
- Cui, H.; Liu, Q.J.; Zhang, H.Y.; Zhang, Y.X.; Wei, W.L.; Jiang, W.; Xu, X.L.; Liu, S.T. Long-term manure fertilization increases rill erosion resistance by improving soil aggregation and polyvalent cations. Catena 2023, 223, 106909. [Google Scholar] [CrossRef]
- Goodwin, N.R.; Armston, J.D.; Muir, J.; Stiller, I. Monitoring gully change: A comparison of airborne and terrestrial laser scanning using a case study from Aratula, Queensland. Geomorphology 2017, 282, 195–208. [Google Scholar] [CrossRef]
- Caraballo-Arias, N.A.; Conoscenti, C.; Di Stefano, C.; Ferro, V.; Gómez-Gutiérrez, A. Morphometric and hydraulic geometry assessment of a gully in SW Spain. Geomorphology 2016, 274, 143–151. [Google Scholar] [CrossRef]
- Gao, C.; Li, P.; Hu, J.; Yan, L.; Latifi, H.; Yao, W.Q.; Hao, M.K.; Gao, J.J.; Dang, T.M.; Zhang, S.H. Development of gully erosion processes: A 3D investigation based on field scouring experiments and laser scanning. Remote Sens. Environ. 2021, 265, 112683. [Google Scholar] [CrossRef]
- Feng, L.; Li, B.B. Establishment of high precision terrain model of eroded gully with UAV oblique aerial photos and ground control points. Trans. CSAE 2018, 34, 88–95. (In Chinese) [Google Scholar]
- Li, J.J.; Xiong, D.H.; Lu, X.N.; Dong, Y.F.; Su, Z.A.; Zhai, J.; Yang, D. Morphological characteristics of the gully head in dry-hot vally based on the RTK–GPS technology. Mt. Res. 2014, 32, 706–716. (In Chinese) [Google Scholar]
- Belayneh, M.; Yirgu, T.; Tsegaye, D. Current extent, temporal trends, and rates of gully erosion in the Gumara watershed, Northwestern Ethiopia. Glob. Ecol. Conserv. 2020, 24, e01255. [Google Scholar] [CrossRef]
- Brecheisen, Z.S.; Richter, D.D. Gully-erosion estimation and terrain reconstruction using analyses of microtopographic roughness and LiDAR. Catena 2021, 202, 105264. [Google Scholar] [CrossRef]
- Castillo, C.; Gómez, J.A. A century of gully erosion research: Urgency, complexity and study approaches. Earth-Sci. Rev. 2016, 160, 300–319. [Google Scholar] [CrossRef]
- Frankl, A.; Stal, C.; Abraha, A.; Nyssen, J.; Rieke-Zapp, D.; De Wulf, A.; Poesen, J. Detailed recording of gully morphology in 3D through image-based modelling. Catena 2015, 127, 92–101. [Google Scholar] [CrossRef]
- Ben Slimane, A.; Raclot, D.; Rebai, H.; Le Bissonnais, Y.; Planchon, O.; Bouksila, F. Combining field monitoring and aerial imagery to evaluate the role of gully erosion in a Mediterranean catchment (Tunisia). Catena 2018, 170, 73–83. [Google Scholar] [CrossRef]
- Wang, J.X.; Zhang, Y.; Deng, J.Y.; Yu, S.W.; Zhao, Y.Y. Long-Term Gully Erosion and Its Response to Human Intervention in the Tableland Region of the Chinese Loess Plateau. Remote Sens. 2021, 13, 5053. [Google Scholar] [CrossRef]
- Yuan, M.T.; Zhang, Y.; Zhao, Y.Y.; Deng, J.Y. Effect of rainfall gradient and vegetation restoration on gully initiation under a large-scale extreme rainfall event on the hilly Loess Plateau: A case study from the Wuding River basin, China. Sci. Total Environ. 2020, 739, 140066. [Google Scholar] [CrossRef] [PubMed]
- le Roux, J.; Morake, L.; van der Waal, B.; Anderson, R.L.; Hedding, D.W. Intra-gully mapping of the largest documented gully network in South Africa using UAV photogrammetry: Implications for restoration strategies. Prog. Phys. Geogr. Earth Environ. 2022, 46, 772–789. [Google Scholar] [CrossRef]
- Pineux, N.; Lisein, J.; Swerts, G.; Bielders, C.L.; Lejeune, P.; Colinet, G.; Degré, A. Can DEM time series produced by UAV be used to quantify diffuse erosion in an agricultural watershed? Geomorphology 2017, 280, 122–136. [Google Scholar] [CrossRef]
- Song, X.P.; Zhang, Y.; Wang, Z.Q.; Deng, J.Y.; Wang, J.X. Accuracy of gully morphological parameters extracted by UAV photogrammetry in the Loess Plateau. J. Beijing Norm. Univ. (Nat. Sci.) 2021, 57, 606–612. (In Chinese) [Google Scholar]
- Rossi, P.; Mancini, F.; Dubbini, M.; Mazzone, F.; Capra, A. Combining nadir and oblique UAV imagery to reconstruct quarry topography: Methodology and feasibility analysis. Eur. J. Remote Sens. 2017, 50, 211–221. [Google Scholar] [CrossRef]
- Liu, K.; Ding, H.; Tang, G.A.; Na, J.M.; Huang, X.L.; Xue, Z.G.; Yang, X.; Li, F.Y. Detection of Catchment-Scale Gully-Affected Areas Using Unmanned Aerial Vehicle (UAV) on the Chinese Loess Plateau. ISPRS Int. J. Geo-Inf. 2016, 5, 238. [Google Scholar] [CrossRef]
- Hu, F.; Gao, X.; Li, G.; Li, M. DEM Extraction from Worldview-3 Stereo-images and Accuracy Evaluation. ISPRS Congr. Remote Sens. Spat. Inf. Sci. 2016, XLI-B1, 327–332. [Google Scholar]
- Dong, Y.; Chen, W.; Chang, H.; Zhang, Y.; Feng, R.; Meng, L. Assessment of orthoimage and DEM derived from ZY-3 stereo image in Northeastern China. Surv. Rev. 2016, 48, 247–257. [Google Scholar] [CrossRef]
- Li, J.J.; Liu, Q.J.; Wang, Y.; Zhang, H.Y.; Li, J.Q.; Wang, K.L.; Geng, J.B.; Wang, L.Z.; Fang, N.F. Systematic evaluation of the effects of the length, depth, and amount of incorporated maize straw on rill flow velocity. J. Hydrol. 2023, 621, 129550. [Google Scholar] [CrossRef]
- Vanmaercke, M.; Panagos, P.; Vanwalleghem, T.; Hayas, A.; Foerster, S.; Borrelli, P.; Rossi, M.; Torri, D.; Casali, J.; Borselli, L.; et al. Measuring, modelling and managing gully erosion at large scales: A state of the art. Earth-Sci. Rev. 2021, 218, 103637. [Google Scholar] [CrossRef]
- Giménez, R.; Marzolff, I.; Campo, M.A.; Seeger, K.M.; Alvarez-Mozos, J. Accuracy of high-resolution photogrammetric measurements of gullies with contrasting morphology. Earth Surf. Process. Landf. 2009, 34, 1915–1926. [Google Scholar] [CrossRef]
- Zhang, C.M.; Wang, C.M.; Long, Y.Q.; Pang, G.W.; Shen, H.Z.; Wang, L.; Yang, Q.K. Comparative Analysis of Gully Morphology Extraction Suitability Using Unmanned Aerial Vehicle and Google Earth Imagery. Remote Sens. 2023, 15, 4302. [Google Scholar] [CrossRef]
- Chen, Y.; Jiao, J.; Wei, Y.; Zhao, H.; Yu, W.; Cao, B.; Xu, H.; Yan, F.; Wu, D.; Li, H. Accuracy Assessment of the Planar Morphology of Valley Bank Gullies Extracted with High Resolution Remote Sensing Imagery on the Loess Plateau, China. Int. J. Environ. Res. Public Health 2019, 16, 369. [Google Scholar] [CrossRef] [PubMed]
- Castillo, C.; Pérez, R.; James, M.R.; Quinton, J.N.; Taguas, E.V.; Gómez, J.A. Comparing the Accuracy of Several Field Methods for Measuring Gully Erosion. Soil Sci. Soc. Am. J. 2012, 76, 1319. [Google Scholar] [CrossRef]
- Wu, J.; Wang, Y.W.; Liu, J.C.; Song, N.; Wang, D.Q.; Fu, J. Orientation Precision and Photogrammetry Control Point in the Plateau Area Based on Single Geo Eye-1 Image Stereopair. Surv. Mapp. 2020, 43, 220–222. (In Chinese) [Google Scholar]
UAV | Sensor | Sensor Size (mm) | Focal Length (m) | Resolution (cm) | Shooting Interval(s) |
---|---|---|---|---|---|
DJI M600Pro | FAST-X1 (Five-lens camera) | 23.5 | 35 mm × 5 | 3 cm | 2.5 s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, T.; Zhao, W.; Xu, F.; Shi, S.; Qin, W.; Zhang, G.; Fang, N. Is It Reliable to Extract Gully Morphology Parameters Based on High-Resolution Stereo Images? A Case of Gully in a “Soil-Rock Dual Structure Area”. Remote Sens. 2024, 16, 3500. https://doi.org/10.3390/rs16183500
Yan T, Zhao W, Xu F, Shi S, Qin W, Zhang G, Fang N. Is It Reliable to Extract Gully Morphology Parameters Based on High-Resolution Stereo Images? A Case of Gully in a “Soil-Rock Dual Structure Area”. Remote Sensing. 2024; 16(18):3500. https://doi.org/10.3390/rs16183500
Chicago/Turabian StyleYan, Tingting, Weijun Zhao, Fujin Xu, Shengxiang Shi, Wei Qin, Guanghe Zhang, and Ningning Fang. 2024. "Is It Reliable to Extract Gully Morphology Parameters Based on High-Resolution Stereo Images? A Case of Gully in a “Soil-Rock Dual Structure Area”" Remote Sensing 16, no. 18: 3500. https://doi.org/10.3390/rs16183500
APA StyleYan, T., Zhao, W., Xu, F., Shi, S., Qin, W., Zhang, G., & Fang, N. (2024). Is It Reliable to Extract Gully Morphology Parameters Based on High-Resolution Stereo Images? A Case of Gully in a “Soil-Rock Dual Structure Area”. Remote Sensing, 16(18), 3500. https://doi.org/10.3390/rs16183500