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Abstract: In applications such as satellite remote sensing and aerial photography, imaging equipment
must capture brightness information of different ground scenes within a restricted dynamic range.
Due to camera sensor limitations, captured images can represent only a portion of such information,
which results in lower resolution and lower dynamic range compared with real scenes. Image super
resolution (SR) and multiple-exposure image fusion (MEF) are commonly employed technologies to
address these issues. Nonetheless, these two problems are often researched in separate directions.
In this paper, we propose MEFSR-GAN: an end-to-end framework based on generative adversarial
networks that simultaneously combines super-resolution and multiple-exposure fusion. MEFSR-
GAN includes a generator and two discriminators. The generator network consists of two parallel
sub-networks for under-exposure and over-exposure, each containing a feature extraction block (FEB),
a super-resolution block (SRB), and several multiple-exposure feedback blocks (MEFBs). It processes
low-resolution under- and over-exposed images to produce high-resolution high dynamic range
(HDR) images. These images are evaluated by two discriminator networks, driving the generator to
generate realistic high-resolution HDR outputs through multi-goal training. Extensive qualitative
and quantitative experiments were conducted on the SICE dataset, yielding a PSNR of 24.821 and an
SSIM of 0.896 for 2× upscaling. These results demonstrate that MEFSR-GAN outperforms existing
methods in terms of both visual effects and objective evaluation metrics, thereby establishing itself as
a state-of-the-art technology.

Keywords: multitask networks; super resolution; multiple exposure fusion; generative adversarial
networks

1. Introduction

In natural scenes, objects can have significant differences in brightness and thus, a
wide dynamic range. However, camera sensors have limitations that prevent them from
capturing the full range of information [1]. As a result, captured images often exhibit
distortion, noise, and other issues, thus leading to lower resolution compared with real
scenes [2]. Common methods employed to address this issue include single image super
resolution (SISR) and multiple-exposure fusion (MEF).

Single image super resolution is a significant challenge within the field of computer
vision. It focuses on enhancing the quality of low-resolution (LR) images to produce clear
and detailed high-resolution (HR) versions [3]. This technology holds significant value
in aerospace and remote sensing image processing, where captured images often appear
to be low-resolution due to equipment constraints. SISR techniques play a vital role in
overcoming these limitations and enable the generation of high-quality images that of-
fer enhanced data support for diverse applications in remote sensing analysis [4]. This
is crucial for enhancing information extraction capabilities and analytical depth in the
aforementioned fields. Previous approaches [5,6] initially treated SISR as an interpolation
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issue, resulting in fast processing but often sacrificing high-frequency details. More recent
efforts [7–10] have focused on learning degradation models from unpaired real image
data to enhance generalization. However, these learning-based techniques rely heavily
on training data and may exhibit significant performance decline when encountering un-
foreseen degradations during testing. Leveraging the powerful representation capabilities
of convolutional neural networks (CNNs), several methods [11,12] have emerged that
utilize deep learning to map low-resolution (LR) to high-resolution (HR) images. In re-
cent years, methods based on implicit neural representations, such as LIIF and FunSR,
have led to significant breakthroughs in super-resolution tasks. Unlike traditional explicit
representation methods, implicit neural representation techniques model image content
by learning continuous functions, enabling the generation of high-resolution images at
any scale while retaining greater detail and offering enhanced flexibility. These methods
are particularly effective in the realm of remote sensing image processing, where they
address challenges associated with multi-scale variations and complex scenes, thereby
improving both the reconstruction quality and computational efficiency of images. These
have achieved state-of-the-art results. For instance, to tackle potential blur and distortion
issues in the produced super-resolution images, SRGAN [13] introduced a method based
on generative adversarial networks (GANs). Through an adversarial training mechanism,
the Super Resolution Generative Adversarial Network (SRGAN) is capable of generating
realistic high-resolution images and effectively restoring intricate details. Particularly in
image super-resolution tasks, the GAN framework excels at capturing and reconstructing
subtle texture features through the adversarial learning process that occurs between its
generator and discriminator, thereby surpassing the performance of traditional methods.
The network discussed in the present paper also adopts the GAN framework.

Multiple-exposure image fusion involves merging multiple low-dynamic-range (LDR)
images with varying exposure levels to create high-dynamic-range (HDR) images [14].
Due to hardware or optical limitations, a single sensor can capture only a portion of the
available information, such as the brightness of reflected light within a specific range and
depth of field. Image fusion aims to combine data from multiple images taken using
different sensors or setups to create a composite image with enhanced scene representation
and improved visual perceptibility. This process is particularly valuable in aerospace
and remote sensing applications, where capturing a wide range of brightness information
within a limited dynamic range is crucial for tasks like satellite remote sensing and aerial
photography. MEF technology effectively addresses the limitations of LDR images by com-
bining multiple images taken under varying exposure conditions to create HDR images [15].
In particular, GAN-based multi-exposure fusion technology effectively integrates image
information captured under varying exposure conditions to produce high-dynamic-range
(HDR) images, preserving intricate details and realistic lighting effects. These attributes
position GAN as a potent tool for multi-exposure fusion tasks. This process significantly
improves the image’s dynamic range and detail performance. For instance, in satellite
remote sensing, MEF can merge LDR images captured at different times to enhance ground
object information [16]. MEF excels in capturing details in dark or reflective areas and offers
high-quality data for geographic information extraction and environmental monitoring.
Similarly, in aerial photogrammetry, MEF is valuable for producing clear and detailed HDR
orthophotos by blending images with different exposures. These enriched data are benefi-
cial for applications like 3D modeling, change detection, urban planning, and infrastructure
management. Furthermore, in astronomical imaging, MEF can fuse starscape images taken
at varying exposure times to preserve dark details and capture detailed textural informa-
tion of bright objects. This approach provides valuable data for astronomical research. In
general, MEF technology holds significant potential in aerospace remote sensing since it
expands the dynamic range of imaging equipment to produce detailed HDR images for
various aerospace applications [17]. The continuous advancement of MEF methods will
further enhance their value in the aerospace sector. These methods can be categorized as
either non-extreme exposure fusion or extreme exposure fusion, based on the number of
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LDR images used. In non-extreme cases, fusion performance is closely tied to the quantity
of LDR images available [15]. While a greater number of LDR images typically results in
better fusion outcomes, it also increases storage and computational complexity, and it may
even be impossible to obtain a large number of LDR images. To address these limitations,
recent advancements in fusion methods have introduced extreme fusion techniques that
rely on just a pair of extreme exposure images to enhance fusion outcomes [18]. Given that
extreme exposure images typically contain implicit information, these methods leverage
deep convolutional neural networks to thoroughly analyze and merge this information.
The present study also belongs to this realm of extreme fusion techniques.

As confirmed in previous research [19], HDR images have been shown to offer more
enhanced features in comparison to LDR images. Additionally, recent findings [20] indicate
that super-resolution techniques can greatly enhance the precision of object detection. To
achieve high-quality performance in diverse tasks related to remote sensing imaging and
astronomical observation, it is essential to simultaneously apply SR and MEF processing
to remote sensing or astronomical images to generate HR images with HDR capabilities.
Despite the abundance of studies on SR and MEF, these topics are typically treated as
separate research inquiries. Xin Deng [21] introduced a coupled feedback network (CF-Net):
a deep neural network combining MEF and SR tasks in an end-to-end CNN framework. In
CF-Net, the synergy between MEF and SR tasks is prioritized since better fusion results
can enhance SR accuracy, which in turn can boost fusion performance. Inspired by CF-Net,
our present work incorporates a GAN architecture to process two low-resolution over-
exposed images and generate HDR-SR images simultaneously, thus leading to significant
enhancements in MEF and SR performance. Notably, our work presents the first end-
to-end GAN framework for achieving state-of-the-art results in both MEF and SR tasks
simultaneously. The key contributions of this research are outlined below:

1. Introduction of an end-to-end Multi-Exposure Super-Resolution Generative Adver-
sarial Network (MEFSR-GAN): This paper presents the first use of a GAN framework
to simultaneously achieve multi-exposure fusion (MEF) and super resolution (SR) in
a unified model. MEFSR-GAN effectively enhances both MEF and SR performance
under extreme exposure conditions;

2. Development of a multi-exposure feedback block (MEFB): We propose a novel MEFB
specifically designed to handle low-resolution images with over-exposure and under-
exposure. The MEFB processes highly exposed images in parallel and incorporates
a channel attention mechanism to optimize feature extraction and improve model
generalization;

3. Proposal of a dual discriminator network: To tackle the challenges of training on
extremely exposed images, we introduce a dual discriminator network that guides
the generator to learn stable and distinct feature representations, producing images
that closely resemble the ground truth.

4. State-of-the-art results with SICE and PQA-MEF datasets: Experimental results ob-
tained using the SICE and PQA-MEF datasets demonstrate that MEFSR-GAN outper-
forms the latest MEF and SR methods, achieving state-of-the-art performance in both
qualitative and quantitative evaluations.

2. Related Work

In this section, we review related work on super-resolution image reconstruction and
multi-exposure image fusion.

2.1. Single-Image Super-Resolution

SISR is a technique that focuses on generating HR images from LR images to produce
detailed and natural results [22]. This field has gained significant attention recently due to
its practical applications. SISR methods involve mapping LR images to HR counterparts,
and degradation models determine how HR images are transformed into LR images [23].
Two common degradation models are (1) bicubic degradation, which uses bicubic interpo-
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lation to generate LR images, and (2) traditional degradation, which can be mathematically
modeled as follows:

y = (x ⊗ k) ↓s +n, (1)

The process of obtaining an LR image involves convolving an HR image with a Gaus-
sian kernel (or point spread function) k to create a blurred image y. This is followed by
downsampling operation ↓s with a scale factor s and the addition of white Gaussian noise
with standard deviation σ. Bicubic degradation is seen as a special case of traditional degra-
dation since it can be approximated by adjusting the kernel with zero noise. Degradation
models are typically defined by factors like blur kernels and noise level. Depending on
prior knowledge of these factors, SISR methods are categorized into non-blind methods
and blind methods.

Single-image super resolution is considered an ill-posed inverse problem because
one LR image can be associated with multiple HR images [24]. In 1991, Irani and Peleg
proposed the iterative back projection (IBP) method [25]. In 1992, Ur and Gross put
forward the non-uniform difference method to enhance image resolution [26]. In the
same year, Schulz and Stevenson introduced the maximum a posterior probability (MAP)
method [27,28]. Elad and Feuer proposed the adaptive filtering method in 1999 [29]. Then,
in 2002, Lertrattanapanich presented the Delaunay triangulation network reconstruction
method [30] along with enhanced algorithms and joint algorithms that incorporated various
regularization terms.

Recent advances in artificial intelligence have propelled learning-based super-resolution
reconstruction to the forefront, with foundational work by Freeman in 2000 [31]. Subse-
quently, several influential approaches have emerged, including the sparse representation
method introduced by Yang in 2008 [32,33]; the neighbor-model-based domain restoration
(anchored neighborhood regression (ANR)) method proposed by Timofte in 2013 [34]; and
the deep convolutional neural network-based method (SRCNN) introduced by Dong at the
Chinese University of Hong Kong in 2014 [35], which significantly advanced the field of
super resolution.

In the field of SISR reconstruction, the advancement of deep learning techniques has
led to the creation of various novel network architectures. Each of these architectures is
designed with unique features and strategies to enhance the quality of reconstructed images.
This section provides an overview and assessment of several notable networks such as
SRCNN [35], VDSR [36], DRCN [37], SRGAN [13], MemNet [38], EDSR [39], RCAN [40],
HAT [41], SwinIR [42], and SAN [43].

SRCNN [35] performs image reconstruction tasks using a three-layer convolutional
neural network. Its simplicity and efficiency have paved the way for further research. How-
ever, due to its shallow nature, SRCNN has limitations in processing complex textures. This
indicates the need for deeper network structures to capture more intricate image features.

VDSR [36] builds on SRCNN by deepening the network to 20 convolutional layers
and introducing residual learning, which accelerates convergence and improves super-
resolution performance. However, the increased training complexity and computational
demands of VDSR emphasize the need to balance efficiency and performance.

DRCN [37] introduces a recursive convolutional structure, reusing layers multiple
times to reduce the number of parameters. It also employs multi-supervised training with
supervision signals at various depths to enhance efficiency. However, the recursive nature
adds computational complexity.

SRGAN [13] integrates generative adversarial networks with residual networks, using
stacked residual blocks to extract high-level semantic features. A discriminator guides the
generator to produce more realistic HR images, though potential for artifacts exists.

EDSR [39] enhances SRGAN by removing the BatchNorm layer, adding residual blocks,
and increasing feature channels. It also introduces multi-scale fusion for handling varying
scale information. Despite these improvements, EDSR has extensive model parameters,
leading to high computational demands.
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RCAN [40] builds on EDSR by incorporating a channel attention mechanism to dynam-
ically adjust feature weights, prioritizing those beneficial for super-resolution tasks. It uses
a residual grouping strategy to increase network depth, achieving top-tier performance but
with notable model complexity.

MemNet [38] introduces memory blocks to extract features at different receptive field
scales, improving the ability to process multi-scale features. However, its high complexity
presents training challenges.

Meanwhile, SwinIR [42] employs depthwise separable convolution to reduce compu-
tational load and incorporates adversarial and perceptual losses to enhance visual quality.
The transformer architecture excels at capturing long-range dependencies and multi-scale
features, producing images with superior detail. However, SwinIR’s large model parame-
ters and computational requirements, along with potentially weaker performance when
used with very small LR images, are notable drawbacks.

In recent years, the aforementioned methods have employed deep network structures
to capture multi-scale features of images, thereby preserving more details during the image
reconstruction process. However, these techniques typically depend on fixed magnification
factors and lack the flexibility needed for super resolution of images at arbitrary scales. The
local implicit image function (LIIF) [43] is a technology developed to address the challenge
of image super resolution at any scale. LIIF predicts the corresponding pixel value based
on any input coordinates by learning a continuous mapping function that relates image
coordinates to pixel values. This method does not rely on fixed interpolation operations,
allowing it to generate super-resolution images at any scale and making it particularly
well-suited for processing remote sensing image data characterized by varying resolutions
and intricate details.

The various networks discussed above exhibit distinct strengths and limitations,
hence showcasing a wide range of exploration and advancement in the realm of super-
resolution reconstruction. Subsequent research should aim to strike a more optimal balance
between enhancing image reconstruction quality, minimizing computational expenses, and
enhancing model robustness.

2.2. Multi-Exposure Fusion

Multi-exposure fusion is a significant area of research focused on producing HDR
images by combining multiple images of the same scene captured at varying exposure
levels. Conventional techniques relying on the Laplacian pyramid have evolved into
approaches utilizing deep learning and offering unique features and applications.

Since the initial proposal by Burt and Adelson in 1983 to utilize the Laplacian pyramid
for image fusion, it has been fundamental in MEF research [44]. Mertens et al. [45] intro-
duced the first pixel-level MEF method within the Laplacian pyramid framework, and they
successfully balanced visual quality and computational complexity. Subsequent pixel-level
MEF methods built upon this framework aimed to enhance visual quality, albeit often at the
cost of increased computational demands [46]. Burt et al. [47] developed weights based on
local energy and the correlation between pyramids, effectively reducing artifact generation;
this marked a significant advancement in MEF research.

Compared with pixel-level methods, patch-based approaches generate smoother
weight maps but at a higher computational cost. Goshtasby [48] and Ma and Wang [49]
demonstrated the potential of non-overlapping block-based fusion, though block artifacts
remain an issue. Techniques like pixel-based and multi-scale transformations (e.g., pyra-
mids, wavelet transforms) improve visual quality but struggle with accurately representing
curves and edges, highlighting the complexities in multi-spectral and multi-modal fusion.

To reduce artifacts in dynamic scenes, Liu and Wang [50] introduced dense SIFT
(DSIFT) for improved image alignment, enhancing quality but at the cost of high compu-
tational demands and complex parameter tuning. Sang-hoon Lee et al. [51] developed
an adaptive weight-based method combining pixel intensity and gradient information



Remote Sens. 2024, 16, 3501 6 of 26

to reduce halo and ghost effects, though challenges persisted under extreme exposure
conditions and real-time processing.

Recently, deep learning-based multi-exposure fusion has gained traction. Deep-
Fuse [52] pioneered this integration with a focus on structure and contrast, though it
may overlook other important information. IFCNN [53] and MEF-CNN [54] offer CNN-
based frameworks with strong visual effects but require significant optimization and high
computational resources. MEF-GAN [55] employs GANs to enhance naturalness, while
FusionDN [56] uses densely connected networks for detailed fusion, though both are
computationally intensive.

Xu’s U2Fusion [57] introduced a unified unsupervised network to merge image in-
formation without manual annotations, enhancing adaptability and automation. This
approach is especially suited for scenarios like night vision and infrared fusion, but achiev-
ing accuracy comparable to supervised methods can be challenging due to the reliance on
large amounts of unlabeled data.

As shown through the above review, SR and MEF tasks are commonly considered
separate research inquiries. This paper makes a significant contribution to the literature by
introducing an end-to-end network utilizing a GAN framework to accomplish both image
fusion and super resolution simultaneously.

3. Multi-Exposure Feedback and Super-Resolution Generative Adversarial Networks
(MEFSR-GAN)

In this section, we provide a detailed introduction to the proposed MEFSR-GAN. We
begin by outlining the overall network architecture in Section 3.1. Next, in Section 3.2, we
delve into the unique architecture of the MEFB utilized in our network. Then, in Section 3.3,
we discuss the discriminator network. Finally, in Section 3.4, we discuss the employed
loss function.

3.1. Network Architecture

Our proposed MEFSR-GAN features a GAN architecture with a generator and two
discriminators, as shown in Figure 1. The generator consists of two interconnected networks
that take low-resolution over-exposed or under-exposed images as input and produce super-
resolved fused images as output. Each sub-network includes an initial FEB, an SRB, and an
MEFB. The FEB extracts essential features from the low-resolution inputs to support the
subsequent SRB and MEFBs. With the LR over-exposed and under-exposed image inputs
denoted as IO

lr and Iu
lr, respectively, the corresponding features FO

in and Fu
in extracted by the

FEB can be obtained by the following equation:

Fo
in = fFEB

(
Io
lr
)
,

Fu
in = fFEB

(
Iu
lr
)
,

(2)

where fFEB represents the operation of the feature extraction block. The FEB consists of two
convolutional layers with parametric rectified linear unit (PReLU) activation. The first layer
has 256 filters of size 3 × 3, which are utilized for extracting fundamental low-resolution
features. The subsequent layer utilizes 64 filters of size 1 × 1 to enhance and consolidate
cross-channel features for more reduced feature complexity. Fo

in and Fu
in serve as important

input features for the subsequent SRB and MEFBs.
With the basic features Fo

in and Fu
in as inputs, the role of the SRB is to learn more high-

level features and increase image resolution. Our SRB was inspired by residual-in-residual
dense block (RRDB) modules [58]. The SRB network comprises multiple dense blocks with
skip connections, including one at the block’s start to enhance feature transfer and prevent
gradient vanishing and feature loss in deep networks, as shown in Figure 2.
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Note that the SRB comprises multiple RRDBs. The high-level features learned by the
SRB can be represented as follows:

Go = fSRB
(

Fo
in
)
,

Gu = fSRB
(

Fu
in
)
,

(3)

where fSRB denotes the operation of the SRB and Go and Gu represent the high-level
features of the over-exposed and under-exposed images, respectively. To reconstruct the
super-resolved images, a reconstruction block (REC) is utilized to map Go and Gu to
the high-resolution images. The reconstruction block features a pixel shuffle layer and a
convolutional layer with PReLU. The pixel shuffle layer was chosen over deconvolution for
its reduced checkerboard artifacts and greater efficiency. The original image is bilinearly
upsampled and combined with the reconstructed image via a skip connection to generate
super-resolution images for both over-exposed and under-exposed inputs:

Io
sr = fUP

(
Io
lr
)
+ fREC(Go),

Iu
sr = fUP

(
Iu
lr
)
+ fREC(Gu),

(4)

where fUP represents bilinear amplification and fREC represents the reconstruction opera-
tion. Io

sr and Iu
sr are the super-resolution reconstruction results of Io

lr and Iu
lr, respectively,

without multi-exposure features. By constraining the loss functions of Io
lr and Iu

lr, the
SRB module ensures effective operation and offers reliable high-level features for subse-
quent MEFBs.

The MEFBs are the core of our proposed MEFSR-GAN, designed to achieve super
resolution and image fusion simultaneously through interconnections (see Figure 1). Unlike
the FEB and SRB, multiple interconnected MEFBs are employed, where the output of the
(T − 1)-th MEFB serves as the input for the T-th MEFB, along with two additional inputs.
For example, given Io

lr, the output of the T-th MEFB is represented as follows:

Go
T = fMEFB

(
Fo

in, Go
T−1, Gu

T−1
)
, (5)

where Fo
in represents the basic feature extracted by MEFB, and Go

T−1 and Gu
T−1 come from

the previous over-exposed and under-exposed MEFB, respectively. In (5), the first two
inputs play a significant role in enhancing super-resolution performance while the last
input enhances fusion effects. Similarly, for an MEFB with Iu

lr as input, the output of the
T-th MEFB can be expressed as follows:

Gu
T = fMEFB

(
Fu

in, Gu
T−1, Go

T−1
)
, (6)

After each MEFB, we can reconstruct a fused SR image by the following equation:

Io
T = fUP

(
Io
lr
)
+ fREC

(
Go

T
)
,

Iu
T = fUP

(
Iu
lr
)
+ fREC

(
Gu

T
)
,

(7)

where fUP represents an upsampling operation and fREC represents a reconstruction op-
eration. Both Io

T and Iu
T are super-resolution images with high dynamic range. Since Go

T
and Gu

T are generated by MEFBs from over-exposed and under-exposed images, both Io
T

and Iu
T have high dynamic range features. After processing, the final high-dynamic-range

super-resolution image (HDR-SR) is obtained using the following formula:

Iout = ηo Io
T + ηu Iu

T , (8)

In this study, we set both ηo and ηu to 0.5 as weighted parameters. Although not the
final images, Io

T and Iu
T combine their feature information post-MEFB processing. These

images already approach the high-dynamic-range ground truth image within the limitations
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of the loss function. Experimental results demonstrate that Io
T and Iu

T exhibit good dynamic
range and high resolution. Through the application of the constraint fusion described in
Formula (8), superior fusion results can be attained.

3.2. Multi-Exposure Feedback Block (MEFB)

The multiple exposure feedback block (MEFB) is a fundamental component of MEFSR-
GAN. Prior studies [59,60] highlight the importance of feedback mechanisms in image
restoration and super resolution. This paper introduces a multi-exposure feedback mecha-
nism that enhances both tasks simultaneously. The architecture of the MEFB is shown in
Figure 3. Multiple MEFBs are used consecutively throughout the network; we focus on the
t-th MEFB in the over-exposure subnetwork to detail its structure and interactions.
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Figure 3. Architecture of the multiple exposure feedback block (MEFB). The upper sub-network of
the T-th MEFB accepts Fo

in Go
T−1 and Gu

T−1 as inputs, and outputs Go
T , while the lower sub-network

of the T-th MEFB accepts Fu
in Gu

T−1 and Go
T−1 as inputs, and outputs Gu

T .

In the upper layer of the over-exposure subnetwork, the t-th MEFB receives three
inputs: a basic feature Fo

in extracted by the FEB, and two feedback features Go
t−1 and Gu

t−1
from the previous MEFB. These latter two feedback features have different roles. Specifically,
Go

t−1 is a feedback feature from the same sub-network and is primarily aimed at correcting
and boosting the basic feature Fo

in to enhance SR performance. On the other hand, Gu
t−1

represents feedback from the other sub-network and its primary function is to incorporate
feature information from under-exposed images to enhance fusion performance. Taken
together, these three feature inputs are first concatenated and then fused by a set of 1 × 1
filters as follows:

Lo
t = fcat

(
Fo

in, Go
t−1, Gu

t−1
)
,

Lo
t (0) = fconv(Lo

t ),
(9)

where Lo
t (0) is the refined feature based on the three inputs, while fconv represents a set of

1 × 1 filters. The fcat operation combines the three inputs in the feature dimension. This
type of connection is commonly utilized for feature fusion, and it involves merging data
from different feature sets into a larger feature set to enhance the input information for
further processing by the model. Essentially, this approach aims to expand the feature
space to enable the model to receive and process more information. Subsequently, a
series of projection groups repeatedly perform upscaling and downscaling operations with
Lo

t (0) as input to extract more effective high-level features. Within each projection group,
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upsampling is initially carried out through a deconvolution layer to obtain HR feature
maps; this is followed by downsampling through a convolutional layer to generate LR
feature maps. Building upon previous research [59,60], we utilize dense connections to
incorporate all previously extracted features for both upsampling and downsampling. Let
Lo

t (n) and Ho
t (n), respectively, represent the LR and HR feature maps extracted in the n-th

projection group within the t-th MEFB. The HR feature map Ho
t (n) can be obtained through

the following process:

Ho
t (n) = fdeconv([Lo

t (0), Lo
t (1), Lo

t (2), . . . , Lo
t (n − 1)]), (10)

where fdeconv represents the deconvolution operation in the n-th projection group. It is
evident that all previous LR feature maps are combined to produce HR feature maps.
Likewise, the LR feature map Lo

t (n) in the n-th projection group is created by combining all
previous HR feature maps:

Lo
t (n) = fconv([Ho

t (0), Ho
t (1), Ho

t (2), . . . , Ho
t (n − 1)]), (11)

where fconv represents the convolution operation in the n-th projection group. As previously
discussed, the feedback feature Gu

t−1 from the under-exposed sub-network is essential
for improving fusion performance. However, it may be noticed that as the number of
projection groups increases, the influence of Gu

t−1 decreases, and this results in less effective
fusion outcomes. This decrease in influence is mainly due to the gradual weakening or
disappearance of the feature memory of Gu

t−1 with longer projection groups. To strengthen
the influence of Gu

t−1, we not only use it as initial input for the MEFBs, but also integrate
it into the middle layer of the projection group through skip connections to revive the
memory. Assuming a total of N projection groups, the reactivation of fusion features by
Gu

t−1 is completed at the position of the M-th projection group, where M can be expressed
as follows:

M = round
(

N
2

)
, (12)

where round(·) denotes a round operation. The skip connection of Gu
t−1 in the M-th

projection group can be expressed as follows:

Lo
t (M)∗ = f cat

(
Lo

t (M), Gu
t−1

)
, (13)

where Lo
t (M) represents the LR feature map in the n-th projection group and fcat denotes a

concatenation operation. After N projection groups, the LR feature maps are collected and
then passed to the channel attention module.

In order to assess and adjust the significance of various channel features, we have
integrated a channel attention mechanism module into the MEFB. This module comprises
four layers: global average pooling, feature compression, attention weights generation,
and feature rescaling. Our attention mechanism effectively evaluates and adjusts the
importance of different channel features and thus improves the network’s sensitivity to
key information. This process is crucial for enhancing MEFSR-GAN’s performance and
generalizability.

After channel attention, the LR feature maps are fused together using a set of
1 × 1 filters. The input features Lo

t are then added to the N-th projection group via residual
connections to form the output of the t-th MEFB. The formula for this process is as follows:

Go
t = fconv

([
Lo

t (0), Lo
t (1), . . . , Lo

t (M)∗, . . . , Lo
t (N)

])
+ Lo

t , (14)

where fconv denotes the convolution using a set of 1 × 1 filters. The output of the t-th MEFB
Go

t is passed to the (t + 1)-th MEFB as input. The same feature learning process as for the t-th
MEFB is repeated. Following the reconstruction operation, the new features from Go

T are
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connected with the upsampled features of the original image to produce super-resolution
images with a high dynamic range, which are denoted as Io

T .
The network structure of the MEFB over-exposed sub-network is discussed in the

preceding section. The MEFB under-exposed sub-network mirrors the same architecture as
the upper sub-network, as illustrated in Figure 3, and thus is not further elaborated on in
this paper.

3.3. Discriminator Network

This study introduces a U-Net discriminator with spectral normalization (SN) to
address image degradation (see Figure 4). The discriminator provides precise feedback on
both style and textural details. By adding skip connections to a VGG-style discriminator,
the U-Net structure enhances pixel-level feedback but increases training instability due to
its complexity. To stabilize training and reduce over-sharpening artifacts, we apply spectral
normalization. These adjustments effectively balance the enhancement of local details and
the reduction of artifacts in MEFSR-GAN training.
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3.4. Loss Function
3.4.1. Adversarial Loss

We introduce an enhanced discriminator called the relativistic average discriminator
(RaD) [61] to replace the standard discriminator in SRGAN. In SRGAN, the standard dis-
criminator is typically denoted as D(x) = σ(C(x)), where σ represents a sigmoid function,
and C(x) is the discriminator’s output without any transformation. Conversely, the RaD
formula is expressed as DRa(xr, x f ) = σ(C(xr)−Ex f [C(x f )]), where Ex f [·] represents the
average computation for all synthetic data in a mini-batch. Subsequently, the discriminator
loss is derived as follows:

Ladv(D(xt), yt) = −Exr [log(DRa(yt, G(xt)))]
−Ex f [log(1 − DRa(G(xi), yi))],

(15)

The adversarial loss for the generator takes a symmetrical form:

Ladv(G(xi), yi) = −Exr [log(1 − DRa(yi, G(xi)))]
−Ex f [log(DRa(G(xi), yi))],

(16)

where yi represents the target image and G(xi) represents the SR image. This loss function
encourages the generator to produce images that are challenging for the discriminator to
differentiate, which ultimately enhances the realism of the generated images.

3.4.2. Content Loss

In super-resolution (SR) tasks, content loss is critical for measuring similarity between
the generated and real images, typically using mean square error (L2 loss) or absolute error
(L1 loss). L1 loss is favored for its ability to reduce sensitivity to outliers, promoting smooth
images with sharp edges and better preserving intricate details and textures. Compared
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with L2 loss, L1 loss excels in handling high-frequency details by avoiding excessive
smoothing, making it widely used in image super-resolution reconstruction. Specifically,
Lcontent can be represented as follows:

Lcontent(G(xi), yi) = Exi [∥ G(xi)− yi ∥1], (17)

where the notation Exi [·] denotes the expectation for all pixels xi, G(xi) represents the SR
image, and yi represents the target image.

3.4.3. Perceptual Loss

The perceptual loss evaluates the perceptual quality difference between the generated
and target images. Using the first 20 layers of the pre-trained VGG-19 model [62], we
extract image features and apply L1 loss to measure feature differences. The formula for
perceptual loss is as follows:

Lperceptual(G(xi), yi) = Exi [∥ VGG(G(xi))− VGG(yi) ∥1], (18)

Using VGG network features to compute loss provides a comprehensive assessment
of perceptual quality beyond pixel-level differences, making it particularly effective for
image super-resolution and fusion tasks.

3.4.4. Structural Similarity Index Measure Loss

SSIM loss is widely used in image processing, especially for image quality assessment
and reconstruction [63]. Unlike pixel-based losses like L1 and L2, SSIM loss emphasizes
perceptual quality by evaluating contrast, brightness, and structure, aligning more closely
with human visual perception. The SSIM loss function is defined as follows:

Lssim(y, ŷ) = 1 −
(
2µyµŷ + C1

)(
2σyŷ + C2

)(
µ2

y + µ2
ŷ + C1

)(
σ2

y + σ2
ŷ + C2

) , (19)

where y and ŷ represent the SR image and the target image, respectively, µy and µŷ are
the average brightnesses of those images, σ2

y and σ2
ŷ are the variances of the images, σyŷ

is the covariance of y and ŷ, and C1 and C2 are constants introduced to stabilize the
division operation.

SSIM loss quantifies image similarity by prioritizing structural characteristics, enabling
optimization to focus on preserving image integrity rather than just pixel matching. In
tasks like super-resolution and denoising, SSIM loss enhances the naturalness and accuracy
of reconstructed images, making it a valuable tool in image processing.

3.4.5. Mixed Loss Function

Since we aim to achieve super-resolution and image fusion simultaneously, we impose
hierarchical loss constraints to guarantee efficient network training. The total loss function
of our MEFSR-GAN is defined as follows:

Ltotal = λt(Lssim(Io
sr, Io

gt) + Lssim(Iu
sr, Iu

gt)) + λa(Ladv(Io
T , Igt) + Ladv(Iu

T , Igt))

+λp

(
Lperceptual((Io

T , Igt) + Lperceptual(Iu
T , Igt)

)
+ λc((Lcontent((Io

T , Igt)

+(Lcontent(Iu
T , Igt)) + λs(Lssim((Io

T , Igt) + Lssim(Iu
T , Igt))

(20)

where Io
gt and Iu

gt are the ground truth high-resolution (HR) over-exposed and under-
exposed images, respectively, and Igt is the ground truth HR image with high dynamic
range, which is our final target. Io

T and Iu
T represent the super-resolution (SR) over-exposed

and under-exposed images, respectively, that have been processed by the MEF network. λt,
λa, λp, λc, and λs are the weights assigned to each loss. The loss function in Equation (20)
comprises two parts: the first ensures SRB effectiveness, optimizing super-resolution
performance, while the second maintains MEB functionality, enhancing both SR and MEF
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performance. The first part also underpins the losses in the second. The network is trained
end-to-end by minimizing this loss function.

4. Results

The performance of the proposed MEFSR-GAN is evaluated in this section. The exper-
imental setup is detailed in Section 4.1, while Sections 4.2 and 4.3 present the quantitative
and qualitative comparison results with other state-of-the-art methods. Ablation studies
are described in Section 4.4.

4.1. Experimental Setup
4.1.1. Dataset

The training data were sourced from the SICE dataset [64], containing images with
various exposure levels. To address extreme exposure image fusion and super-resolution,
we specifically chose pairs of highly over-exposed and under-exposed images from the
dataset for training. Figure 3 shows examples of these images, encompassing diverse
scenes containing people, natural landscapes, and man-made structures. Notably, the
under-exposed images appear very dark while the over-exposed images are excessively
bright; both conceal significant detail. Through the MEFSR network, we were able to
merge these concealed details and enhance image resolution. During network training,
the SICE dataset provided real fusion images for HDR reference. From this dataset, we
randomly selected 420 pairs of over-exposed and under-exposed images: 300 pairs for
training and 100 pairs for testing. In addition to training and testing, we also used 20 pairs
of images for validation. Apart from the test image pairs sourced from the SICE dataset, the
PQA-MEF dataset [65] was also utilized for testing purposes. During training, we utilized
data enhancement technology to further expand the training data.

4.1.2. Training Details

To generate LR training images, we applied bicubic downsampling to HR images that
were over-exposed and under-exposed, using MATLAB’s bicubic kernel with
2× and 4× downsampling factors, respectively. The mini-batch size was set to 32, and the
spatial size of the cropped LR patch was 40 × 40. Our findings suggested that training a
deeper network benefited from a larger patch size since it enhanced the receptive field for
capturing more semantic information. However, this came with the drawback of longer
training times and increased consumption of computing resources. Each subnetwork was
composed of three MEFBs, with each MEFB containing six projection groups.

The generator was trained using the loss function defined in Equation (3) with λt = 1,
λa = 0.1, λp = 0.01, λc = 0.1, and λs = 1. The generator’s learning rate was set to
1 × 10−4, while the discriminator’s learning rate was set to 1 × 10−4. Both the generator
and discriminator had their learning rates reduced by half at iterations 2500 and 4500.
Optimization was performed using Adam with parameters β1 = 0.9 and β2 = 0.999. The
output weights ηo and ηu were both set to 0.5. Finally, the generator was trained for 1 × 105

epochs. The generator and discriminator were iteratively updated until the model reached
convergence.

4.1.3. Comparison Methods

Our study aimed to complete exposure fusion and image super-resolution simul-
taneously. Currently, only CF-Net has achieved this through a multi-task network. We
identified several state-of-the-art methods for solving SR or MEF problems and combined
them to develop a method able to address both SR and MEF. We also considered several
SR methods (i.e., EDSR [39], SRFBN [60], SWINIR [42], and RND [66]) and MEF methods
(i.e., IFCNN [53], MEF-Net [67], U2Fusion [57], and Fast SPD-MEF [68]). To compare
these methods, a new approach was developed, randomly combining different SR and
MEF methods and altering the order of application: i.e., either performing SR followed
by MEF (SR+MEF) or MEF followed by SR (MEF+SR). All deep learning-based models
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were retrained using the same training dataset as ours for fair comparison. The training
process involved training the first task, then the second task, and finally fine-tuning the
entire network to achieve optimal results.

4.2. Quantitative Comparison Results

In this study, we assessed the effectiveness of our method using three evaluation
metrics: PSNR, SSIM [63], and MEF-SSIM [68]. Higher values of these indicators indicate
better performance in image super-resolution and fusion. Results obtained with the SICE
dataset included evaluation of these three indicators. For results obtained with the PQA-
MEF dataset, lacking real data, we evaluated only the MEF-SSIM.

Tables 1 and 2 compare the proposed method with other state-of-the-art methods. We
focus on comparisons of 2× SR and MEF using the SICE and PQA-MEF datasets. The
tables display experimental results derived from executing SR and MEF in both orders.

Table 1. Comparisons with other state-of-the-art methods in terms of PSNR, SSIM, and MEF-SSIM
using the SICE dataset for 2× upscaling. The best results are in bold and the second-best results are
underlined.

SR + MEF

Methods
IFCNN MEF-Net Fast SPD U2Fusion

PSNR SSIM MEF-SSIM PSNR SSIM MEF-SSIM PSNR SSIM MEF-SSIM PSNR SSIM MEF-SSIM

EDSR 21.003 0.812 0.808 15.127 0.765 0.794 17.088 0.757 0.829 16.119 0.723 0.810
SRFBN 20.949 0.808 0.803 15.106 0.760 0.786 17.052 0.752 0.819 16.098 0.718 0.819
RDN 20.910 0.796 0.790 15.093 0.753 0.774 17.063 0.743 0.798 16.088 0.714 0.774

SWINIR 21.034 0.816 0.811 15.153 0.770 0.799 17.149 0.763 0.840 16.131 0.727 0.816

MEF + SR

Methods
IFCNN MEF-Net Fast SPD U2Fusion

PSNR SSIM MEF-SSIM PSNR SSIM MEF-SSIM PSNR SSIM MEF-SSIM PSNR SSIM MEF-SSIM

EDSR 20.251 0.777 0.756 15.106 0.763 0.787 16.908 0.739 0.796 16.031 0.686 0.757
SRFBN 20.286 0.776 0.754 15.090 0.759 0.781 16.935 0.739 0.796 16.022 0.684 0.754
RDN 20.347 0.774 0.757 15.071 0.752 0.771 16.962 0.736 0.793 16.028 0.683 0.751

SWINIR 20.082 0.772 0.749 15.118 0.766 0.790 16.867 0.739 0.791 16.035 0.688 0.759

CF-Net PSNR = 22.669 SSIM = 0.857 MEF-SSIM = 0.848

Ours PSNR = 24.821 SSIM = 0.896 MEF-SSIM = 0.855

Table 2. Comparisons with other state-of-the-art methods in terms of MEF-SSIM using the PQA-MEF
dataset for 2× upscaling. The best results are in bold and the second-best results are underlined.

SR + MEF

Methods IFCNN MEF-Net Fast SPD U2Fusion

EDSR 0.774 0.801 0.869 0.867
SRFBN 0.782 0.806 0.870 0.870
RDN 0.787 0.810 0.861 0.875

SWINIR 0.762 0.796 0.864 0.861

MEF + SR

Methods IFCNN MEF-Net Fast SPD U2Fusion

EDSR 0.744 0.800 0.842 0.875
SRFBN 0.752 0.804 0.847 0.877
RDN 0.761 0.808 0.849 0.875

SWINIR 0.732 0.794 0.828 0.874

CF-Net 0.851

Ours 0.843
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The results in Table 1 demonstrate that our method outperformed all others on the
SICE dataset. Specifically, we achieved a 2.152 dB higher PSNR, 0.039 higher SSIM, and
0.007 higher MEF-SSIM compared with the second-best method.

As shown in Table 2, for the PQA-MEF dataset, only MEF-SSIM was used as the
evaluation metric due to the absence of a ground truth image. The reference input consisted
of sequences of over-exposed and under-exposed images. The wide dynamic range of
extremely exposed images led to missing details. Note that MEF-SSIM may not allow
us to accurately assess the color reproduction quality of an image. Consequently, even if
an image lacks good detail, structure, or accurate color reproduction, it may still yield a
high MEF-SSIM result. However, such images may be perceived as poor quality by the
human eye. The results in Table 2 further support this observation. Therefore, MEF-SSIM
alone was not fully able to evaluate the quality of extremely exposed color images in this
experiment. For a more detailed comparison of image characteristics, please refer to the
subsequent subsection on qualitative comparisons.

Tables 3 and 4 present the 4× upscaling results obtained with the SICE and PQA-MEF
datasets, respectively. Using the SICE dataset, our method obtained a 0.963 dB higher
PSNR, 0.007 higher SSIM, and 0.058 higher MEF-SSIM than the second-best method. For
the PQA-MEF dataset, the test result was similar to x2. The absence of ground truth images
necessitated the use of over-exposed and under-exposed grayscale image sequences as
inputs for calculating MEF-SSIM. Consequently, there was a notable deficiency in color
details and the broad dynamic range that the ground truth images possessed. As a result,
while the MEF-SSIM scores from the U2Fusion + RDN compared method were notably high
when using the PQA-MEF dataset, the final image still lagged behind that produced by our
proposed method in terms of color accuracy and resolution. MEF-SSIM is not particularly
effective at capturing halos and may even exhibit a preference for this artifact [69]. Therefore,
the performance of our method may not have been fully demonstrated by the MEF-SSIM
values. For more detailed results and analysis, please refer to the upcoming subsection on
qualitative comparisons.

Table 3. Comparisons with other state-of-the-art methods in terms of PSNR, SSIM, and MEF-SSIM
using the SICE dataset for 4× upscaling. The best results are in bold and the second-best results
are underlined.

SR + MEF

Methods
IFCNN MEF-Net Fast SPD U2Fusion

PSNR SSIM MEF-SSIM PSNR SSIM MEF-SSIM PSNR SSIM MEF-SSIM PSNR SSIM MEF-SSIM

EDSR 19.813 0.662 0.643 14.727 0.627 0.618 16.559 0616 0.627 15.562 0.587 0.633
SRFBN 19.814 0.673 0.657 14.722 0.630 0.623 16.568 0.623 0.643 15.579 0.588 0.636
RDN 19.632 0.620 0.595 14.270 0.507 0.526 15.972 0.512 0.543 15.418 0.526 0.584

SWINIR 20.054 0.711 0.702 14.828 0.665 0.668 16.726 0.657 0.701 15.689 0.623 0.685

MEF + SR

Methods
IFCNN MEF-Net Fast SPD U2Fusion

PSNR SSIM MEF-SSIM PSNR SSIM MEF-SSIM PSNR SSIM MEF-SSIM PSNR SSIM MEF-SSIM

EDSR 19.020 0.646 0.616 14.718 0.626 0.615 16.448 0.601 0.616 15.532 0.555 0.590
SRFBN 18.990 0.651 0.619 14.705 0.629 0.619 16.454 0.606 0.621 15.540 0.555 0.592
RDN 19.050 0.626 0.603 14.677 0.604 0.596 16.420 0.580 0.595 15.550 0.546 0.582

SWINIR 18.525 0.651 0.614 14.760 0.656 0.650 16.254 0.612 0.623 15.584 0.568 0.605

CF-Net PSNR = 20.965 SSIM = 0.722 MEF-SSIM = 0.678

Ours PSNR = 21.928 SSIM = 0.729 MEF-SSIM = 0.743
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Table 4. Comparisons with other state-of-the-art methods in terms of MEF-SSIM using the PQA-MEF
dataset for 4× upscaling. The best results are in bold and the second-best results are underlined.

SR + MEF

Methods IFCNN MEF-Net Fast SPD U2Fusion

EDSR 0.788 0.807 0.835 0.850
SRFBN 0.791 0.806 0.845 0.843
RDN 0.791 0.823 0.823 0.869

SWINIR 0.739 0.776 0.820 0.809

MEF + SR

Methods IFCNN MEF-Net Fast SPD U2Fusion

EDSR 0.749 0.804 0.815 0.848
SRFBN 0.750 0.803 0.818 0.845
RDN 0.767 0.822 0.825 0.875

SWINIR 0.693 0.772 0.774 0.846

CF-Net 0.766

Ours 0.748

4.3. Qualitative Comparison Results

In this subsection, we qualitatively compare our method against others. As shown in
Figure 5, when using the compared methods, incorrect colors were visible in the skies in
the images (c,d) and (g,h); moreover, an incorrect halo was present around the two peaks
seen in image (k). Meanwhile, our method effectively maintained global image contrast
and accurately restored image detail and color information.
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Figure 6 visualizes the results obtained by our method and the other methods using
the PQA-MEF dataset. Images obtained via methods (c,d) and (g,h) all exhibited numerous
erroneous black features in regions with higher brightness. In contrast, method (k) led to
distorted and blurred letters on the hot air balloon. Methods (i,j) produced darker overall
brightness and serious color distortion. Our method stands out by preserving higher details
and contrast.

Figure 7 presents the results obtained on the SICE dataset with 4× upscaling. In
the results generated by methods (c,d) and (g,h), there were noticeable overly bright or
overly dark artifacts present in the sky. Meanwhile, methods (i,j) exhibited an overall dull
color palette with a lack of detail. Additionally, methods (e,f) failed to accurately restore
resolution and texture details. In contrast, our proposed method effectively restored color
information and thus provided a higher dynamic range and resolution. Examining locally
enlarged features, it is evident that our method outperforms others in terms of resolution
enhancement and fusion.
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Figure 8 displays results obtained using the PQA-MEF dataset with 4× upscaling,
specific to images of candles. Images obtained with methods (c,d) exhibited a significant
number of artifacts, while those using methods (e,f) and (i,j) appeared dim in color, lacked
highly dynamic features, and had low resolution. In the result produced by method (k),
erroneous black features were visible on the desktop. In comparison, our proposed method
accurately restored the overall color information of the image as well as correctly capturing
the details of the candle flame’s core characteristics and highly dynamic brightness features.
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The qualitative findings presented here indicate that our proposed method effectively
enhanced the overall color contrast and dynamic range of the produced images. Particularly
in the ×4 upscaling results, despite the input low-resolution image having few features,
our method enriched the images’ textural features and preserved fine details. While our
method did not yield the best MEF-SSIM results in the quantitative comparison using the
PQA-MEF dataset, the subsequent qualitative comparison demonstrated its superior SR
and fusion outcomes.

4.4. Ablation Study

In this subsection, we report a series of experiments conducted to investigate the
effects of the proposed attention mechanism, the number of MEFBs, and the output weight
on the performance of MEFSR-GAN.

4.4.1. Effect of Attention Mechanism

In an MEFB, the attention mechanism plays a crucial role in enhancing resolution
and fusion effects. To demonstrate the efficacy of the proposed attention mechanism, we
evaluated MEFSR-GAN’s performance on the SICE dataset with and without its attention
mechanism. The results are shown in Figure 9, indicating that removing the attention
mechanism module led to erroneous halos near features with significant brightness gradient
changes. Additionally, as illustrated in Table 5, the inclusion of the attention mechanism
resulted in higher PSNR and SSIM values.

Table 5. The effect of the attention mechanism illustrated by evaluating PNSR and SSIM.

Metric Without Attention Mechanism Added Attention Mechanism

PSNR 24.746 24.821
SSIM 0.881 0.896
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4.4.2. Effect of the Number of MEFBs

The results of our ablation experiments, as presented in Table 6, indicated that varying
the number of MEFBs had a notable impact on our network’s performance. Specifically,
we observed that the network achieved optimal PSNR and SSIM scores when utilizing
three MEFBs.

Table 6. Effects of different numbers of MEFBs.

Metric Num = 2 Num = 3 Num = 4

PSNR 23.503 24.821 22.689
SSIM 0.885 0.896 0.876

4.4.3. Effect of Output Weight

As demonstrated in Equation (8), the final image quality is influenced by the weighting
of the last MEFB. Therefore, the values of the two output weights play a crucial role in
determining the overall image quality. To explore their effect, we tested our model with
ηo and ηu varying from 0.3 to 0.7. The specific results are presented in Table 7. Based
on analysis of the final output images’ PSNR and SSIM values, we found that the model
achieved the best results when ηo and ηu were both set to 0.5.
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Table 7. Effect of output weight value on PSNR and SSIM.

ηo ηu PSNR SSIM

0.3 0.7 24.801 0.895
0.4 0.6 24.817 0.895
0.5 0.5 24.821 0.896
0.6 0.4 24.813 0.896
0.7 0.3 24.793 0.895

5. Discussion

In this section, we provide a comprehensive analysis of prior research and the experi-
mental findings, with the objective of underscoring the significance of the results.

With the SICE dataset, our method achieved a PSNR of 24.821, SSIM of 0.896, and
MEF-SSIM of 0.855 in the 2× experiment. For the results of the 4× experiment, our
method yielded a PSNR of 21.928, an SSIM of 0.729, and a MEF-SSIM of 0.743. Both sets of
results represent the best performances recorded. Similarly, the visualization results further
confirm the excellent performance of our network. In Figure 5, the images labeled (c,d)
exhibit erroneous black shadows in the sky, while the background noise in images (e,f) is
excessive, resulting in unclear details. Additionally, the sky in images (g,h) is over-exposed,
and images (i,j) are generally dark, obscuring the dark features on the ground. The peak
in image (k) displays an incorrect halo. In contrast, only our method achieved a higher
resolution and dynamic range without artifacts or false halos. Figure 7 presents the results
for the dynamic scene 4× experiment. Similar to the 2× results, images obtained with
methods (c,d) exhibit black artifacts in the sky, along with blurred wave features. Those
acquired with methods (e,f) include the presence of uneven color patches and noise. In
images (g,h), the sky is over-exposed, while the overall color in images (i,j) appears dim,
failing to achieve the desired HDR effect. In image (k), a false halo can be observed at the
junction of the sea and sky, contributing to the blurring of wave characteristics. In contrast,
our method successfully restored the details of wave characteristics and achieved a higher
dynamic range.

In the PQA-MEF dataset experiment, the absence of a ground truth (GT) image
precluded a direct comparison of PSNR and SSIM results. Instead, we evaluated the
experimental outcomes using MEF-SSIM. Our method achieved an MEF-SSIM score of
0.843 at both 2× and 4× magnification. The resulting value of 0.748 indicates that we
did not attain the optimal MEF-SSIM. This limitation arose from the lack of a GT image,
as we calculated MEF-SSIM by combining the input low-resolution over-exposed and
under-exposed images. Following the image interpolation method, this combined image
was used as a surrogate GT for the MEF-SSIM calculation. However, due to the absence
of genuine HDR information in both the under-exposed and over-exposed images, the
evaluation of MEF results lacked precision. It is important to note that MEF-SSIM may not
provide an accurate assessment of an image’s color reproduction quality. Consequently, an
image that exhibits poor structural detail or inaccurate color reproduction may still achieve
a high MEF-SSIM score. However, such images are likely to be perceived as low-quality by
the human eye. Specific visualization results can be found in Figures 6 and 8. In Figure 6,
black artifacts can be observed above the sun in the images obtained with methods (c,d).
Additionally, the background of the hot air balloon letters has not been accurately restored.
The solid color sections of the hot air balloons in (e,f) exhibit increased noise, and the letters
display incorrect halos. Furthermore, erroneous halos and artifacts are present around the
sun in figures (g,h). The overall images in figures (i,j) appear darker, and the hot air balloon
letters in figure (k) contain incorrect features. In contrast, our method successfully restored
both the letter features and background details of the hot air balloon, while ensuring that
the sky remained free of artifacts and false halos.
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6. Conclusions

This paper introduces a novel multi-task network that combines multi-exposure
fusion and super-resolution reconstruction in a unified framework. The proposed MEFSR-
GAN architecture consists of a generator and two discriminators, thus enabling end-
to-end processing. The generator comprises under- and over-exposure sub-networks,
each incorporating a feature extraction block (FEB), a super-resolution block (SRB), and
multiple-exposure feedback blocks (MEFBs). By taking low-resolution under-exposed and
over-exposed images as input, the generator extracts features through the FEB, generates
high-level features via the SRB, and further refines them through the MEFBs to produce
two high-resolution HDR images. The inclusion of a channel attention mechanism in each
MEFB enhances image feature details and mitigates halo effects from over-exposure. Since
the generated images are evaluated by two discriminators, the generator is encouraged to
generate more realistic high-resolution HDR images through simultaneous optimization.
Experimental results demonstrate the superiority of our approach over existing methods in
terms of both super-resolution accuracy and fusion performance.
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