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Abstract: Crop monitoring is a fundamental practice in seaweed aquaculture. Seaweeds are vul-
nerable to several threats such as ice-ice disease (IID) causing a whitening of the thallus due to
depigmentation. Crop condition assessment is important for minimizing yield losses and improving
the biosecurity of seaweed farms. The recent influence of modern technology has resulted in the
development of precision aquaculture. The present study focuses on the exploitation of spectral
reflectance in the visible and near-infrared regions for characterizing the crop condition of two of
the most cultivated Eucheumatoids species: Kappaphycus alvareezi and Eucheuma denticulatum. In
particular, the influence of spectral resolution is examined towards discriminating: (a) species and
morphotypes, (b) different levels of seaweed health (i.e., from healthy to completely depigmented)
and (c) depigmented from silted specimens (thallus covered by a thin layer of sediment). Two spectral
libraries were built at different spectral resolutions (5 and 45 spectral bands) using in situ data.
In addition, proximal multispectral imagery using a drone-based sensor was utilised. At each ex-
perimental scenario, the spectral data were classified using a Random Forest algorithm for crop
condition identification. The results showed good discrimination (83–99% overall accuracy) for crop
conditions and morphotypes regardless of spectral resolution. According to the importance scores
of the hyperspectral data, useful wavelengths were identified for discriminating healthy seaweeds
from seaweeds with varying symptoms of IID (i.e., thalli whitening). These wavelengths assisted in
selecting a set of vegetation indices for testing their ability to improve crop condition characterisation.
Specifically, five vegetation indices (the RBNDVI, GLI, Hue, Green–Red ratio and NGRDI) were
found to improve classification accuracy, making them recommended for seaweed health monitoring.
Image-based classification demonstrated that multispectral library data can be extended to photomo-
saics to assess seaweed conditions on a broad scale. The results of this study suggest that proximal
sensing is a first step towards effective seaweed crop monitoring, enhancing yield and contributing
to aquaculture biosecurity.

Keywords: hyperspectral; macroalgae; seaweed; ice-ice disease; crop condition; aquaculture

1. Introduction

Macroalgae farming has experienced significant advancements in recent decades [1,2].
Recently, state-of-the-art technology has been introduced for remotely monitoring macroal-
gae growth and water environmental parameters at various scales [3–7]. This is true for
Eucheumatoids macroalgae cultivated in the tropics, which are of high economic signif-
icance due to their carrageenan content [1,8]. These recent developments have initiated
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precision aquaculture techniques using unmanned system technologies [9,10]. An impor-
tant aspect of effective aquaculture management is crop condition monitoring, related to
biomass quality control to achieve maximum crop yields [8,11,12].

Regular crop condition assessment (e.g., daily or weekly) involves collecting macro-
scopic information about the health of the macroalgae thallus, typically through visual
examination or photographs. Various management decisions can be made based on vis-
ible crop condition indicators [12]. This assessment is crucial for the early detection of
health issues in macroalgae. In Eucheumatoids algae of the genus Kappaphycus sp. and
Eucheuma sp., the main signs include (a) silting, (b) epiphytes or epizoa, (c) grazing marks
and (d) disease-causing colour changes. They can directly or indirectly make crops vul-
nerable to pathogens or indicate disease symptoms affecting the thallus [13,14]. Silting
occurs in poorly circulating, turbid waters and directly impacts the photosynthetic ability
of macroalgae, leading to reduced yields. Under stressed conditions, it can also promote
the development of ice-ice disease (IID) [11,15]. Epiphytes and endophytes impact both
the quantity and quality of the biomass [16,17]. Grazing is a major cause of yield loss,
contributing to macroalgae stress and disease, as mechanical injuries on the thalli open
the way for pathogens [14,15]. IID is the most common syndrome in Eucheumatoids,
caused by unfavourable environmental conditions (temperature and salinity) followed
by a bacterial infestation [14,15]. Its main symptom is loss of pigmentation, leading to a
gradual whitening and hardening of the thalli [11–13]. IID is a major yield-limiting factor
and has caused significant economic damage recently [14,15,17]. Although there are several
studies on IID in Eucheumatoids, no effective approach has been developed for the early
detection of IID symptoms using optical sensors. A regular and automated crop condition
assessment would be important to increase biomass yield and strengthen the biosecurity of
macroalgae aquaculture [12,13,15,18,19].

Modern technological advances in drone and sensor equipment have resulted in the
development of a new sector, that of ‘precision aquaculture’ [9], and a growing demand for
automated procedures in aquaculture production [3,10,20,21]. For example, [3] estimated
the canopy area of offshore-farmed kelp species using drone imagery, while [22] applied this
technique to monitor green macroalgae cultivation in the Yellow Sea. Using a multispectral
drone, [9] evaluated macroalgae biomass and carrageenan yield at the spatial resolution
of single cultivation lines. Reference [23] used the same drone technology to accurately
distinguish between different types of shallow water macroalgae, while [24] utilised in
situ spectrometry and multispectral drone data to characterise Sargassum accumulations
onshore. In particular, they distinguished Sargassum at different decomposition stages,
proposing an effective approach for monitoring phenotypic properties. Similarly, [25]
quantified the decay level of stranded Sargassum using in situ spectrometry to inform coastal
management decision makers. Several studies have shown that macroalgae taxa can be
spectrally discriminated due to their characteristic photosynthetic and accessory pigments
using spectral libraries for analysing and quantifying macroalgae optical properties [26–31].
These examples highlight numerous potential applications for spectral reflectance and
image analysis approaches in seaweed aquaculture.

This study aims to evaluate the utility of visible near-infrared (VIS-NIR) spectroradiom-
etry in remotely characterising the loss of thallus pigmentation for Eucheuma denticulatum
and Kappaphycus alvarezii using proximal sensing techniques. A spectroradiometer was
used to measure the hyperspectral spectral signatures (or shapes) of cultivated macroalgae
over various crop conditions spanning from healthy to various levels of depigmentation,
including silted and fully whitened specimens. We employed linear spectral mixing be-
tween healthy and whitened specimens to enhance the dataset for characterising thallus
whitening. Spectral signatures were degraded at a drone multispectral sensor resolution
to assess the potential loss of information at a lower spectral resolution. Two spectral
libraries were built at a hyper- and multispectral resolution. Applying machine learning
classifications, the most suitable bands and spectral indices for effective crop condition
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monitoring were identified. A raster-based classification was further applied to assess the
performance of crop condition discrimination using a drone multispectral sensor.

2. Methodology
2.1. In Situ Data Acquisition

Macroalgae samples were collected from a nearshore farm at Punaga village (5◦35′2.257′S,
119◦25′52.058”E; South-West Sulawesi, Indonesia) in order to create a baseline spectral
library. Hyperspectral visible and near-infrared measurements were recorded using a field-
portable Lamba NIR spectroradiometer (Japan). After removing the dark current noise, the
radiance of a 99% reflective Spectralon® (Labsphere, North Sutton, NH, USA) reference
panel was measured to convert each radiance measurement into reflectance. Measurements
were obtained using a fiber-optic cable. Mean reflectance was calculated from at least
six spectra replicates for each sample. Spectral signatures were subsampled at 10 nm
intervals in the 400–850 nm range for further examination. The samples included: (a) E.
denticulatum, (b) E. denticulatum covered with silt, (c) depigmented thallus of E. denticulatum,
(d) green morphotype of K. alvarezii and (e) brown morphotype of K. alvarezii (Figure 1).
The average spectra along with one standard deviation (SD) boundaries are presented in
the Supplementary Materials (Figures S1–S5).
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Figure 1. Characteristic end-member spectra used for the spectral library with various crop types:
(A) E. denticulatum with deep purple/brown thalli, typical in healthy specimens, (B) silted E. denticu-
latum, with thalli in beige colour patches due to accumulation of silt particles, (C) depigmented E.
denticulatum, that is the typical appearance of deceased seaweed, (D) green morphotype of K. alvareezi,
with branching thalli and (E) brown morphotype of K. alvareezi with light brown/orange thalli.

The hyperspectral signatures were further degraded to the five bands of a DJI Phantom
4 multispectral drone presented with more details in a previous study [9]. The multispectral
bands are monochrome sensors with a spectral range including blue (450 nm ± 16 nm),
green (560 nm ± 16 nm), red (650 ± 16 nm), red edge (730 nm ± 16 nm) and near-infrared
(840 nm ± 26 nm) wavelengths. Proximal images were taken 1.5 m above the macroal-
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gae samples, and composite photomosaics were produced using the Pix4D software
v4.5.6. Camera-specific geometric and radiometric corrections were applied using the
EXIF metadata regarding sun angle and incoming solar radiance. After processing, the
photomosaics were imported to SAGA GIS for image analysis and the extraction of
multispectral signatures.

2.2. Experimental Scenarios

In order to obtain a wider variability of crop condition cases, a set of synthetic spectra
was produced by combining the spectra of healthy thalli with the depigmented specimen
spectrum through linear spectral mixing. In this way, the initial spectral library was aug-
mented, allowing for a more comprehensive examination of thallus whitening conditions.
A set of four additional mixed spectra (i.e., 10% White, 25% White, 50% White and 75%
White) was produced for E. denticulatum and K. alvareezi using Equation (1).

Rmix = a × Rhealthy + b × Rwhite (1)

where R is reflectance, and a and b are percentage factors (a + b = 1).
A spectral library was set up to cover different thallus whitening of E. denticulatum and

K. alvareezi (Table 1). The Random Forest (RF) algorithm was utilised to classify crop condi-
tions (outside water) using this spectral library. This classification was performed at both
hyperspectral (46 spectral bands) and multispectral (5 spectral bands) resolutions, along
with a set of 14 spectral indices commonly employed in vegetation mapping (Table 2; [32]).
RF was preferred for its high accuracy, insensitivity to overfitting and availability in several
standard software [33]. It has been successfully applied in numerous studies for marine
vegetation mapping and seafloor characterisation [34–38]. The concept of the RF algorithm
is based on an ensemble procedure of multiple random subsets (classification trees) of the
explanatory variables (bands or spectral indices in this study) for generating a classification
model describing the variability of the dependent variable (classes of crop condition). Train-
ing data are essential in the RF process and should encompass the full range of variability
for each class (Table 1). A particularly useful aspect of RF is that it estimates the importance
of each spectral band, providing useful insights regarding the suitability of specific wave-
lengths or indices in classifying crop conditions. This study used the RF implementation
from VIGRA in SAGA GIS, growing 200 trees and sampling with replacement during model
training. Variable importance was estimated by permuting one variable at each training
cycle and measuring the (out-of-bag) error change in the classification results. The larger
the error, the greater the importance of this particular variable. The formula (Equation (2))

for the relative importance metric is given by [39]. Let B(t) be the out-of-bag sample for a
tree t. Then, the variable importance of variable Xj in tree t is:

VI(t)
(
Xj

)
= ∑ i ∈B(t)I

(
y(t)i

)
/
∣∣∣B(t)

∣∣∣−∑ i ∈B(t)I
(

y(t)i,πj

)
/
∣∣∣B(t)

∣∣∣ (2)

where y(t)i is the predicted class for observation i before, and y(t)i,πj
is the predicted class for

observation i after permuting its value of variable Xj.
The variable importance metric was estimated for the hyperspectral and indices

variables. The importance scores from the hyperspectral data classification assisted in
selecting vegetation indices (Table 2). The vegetation indices were preselected based on the
availability of the multispectral bands of the drone sensor.

In addition to the spectral libraries, the RF classification was applied to multispectral
images captured using the hand-held DJI Phantom 4 multispectral drone. The multispectral
bands were also combined to compute vegetation indices (Table 2), and the indices with
the highest importance scores were used for an RF classification. Classification results from
tabular and photomosaic data were evaluated by constructing the respective confusion
matrices for each experimental case (Table 1).
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Table 1. Spectral library covering different thallus conditions of E. denticulatum and K. alvareezi
at two spectral resolutions: H: healthy, S: silted, mixed: linear mixing between healthy and white
(=depigmented), W: white. Number of reflectance spectra used for training/validating the machine
learning algorithm. * Multispectral photomosaics obtained with the DJI Phantom 4 multispectral
sensor.

Thallus Conditions Spectral Resolution Training Samples Validation Samples

Eucheuma/Kappaphycus green/brown Hyperspectral 75 51
Eucheuma (H, mixed, W) Hyperspectral 141 101

Kappaphycus (H, mixed, W) Hyperspectral 143 99
Eucheuma (S, W) Hyperspectral 36 36

Eucheuma (H, mixed, W) Multispectral 141 101
Indices Eucheuma (H, mixed, W) Multispectral 141 101

Kappaphycus (H, mixed, W) Multispectral 143 99
Indices Kappaphycus (H, mixed, W) Multispectral 143 99

Eucheuma/Kappaphycus green/brown) Multispectral 70 58
Eucheuma (S, W) Multispectral 36 36

Indices Eucheuma (S, W) Multispectral 36 36
Eucheuma (H, S, W) * Multispectral 303 100

Indices Eucheuma (H, S, W) * Multispectral 303 98

Table 2. Vegetation indices tested in this study.

Index Name Formula Reference

Intensity (R + G + B)/30.5 [40]
Hue arctan[(G − B) × (2 × R − G − B/30.5)] [40]

Blue–Red ratio B/R [41]
Green–Red ratio G/R
Blue–Green ratio B/G

Norm Red R/(NIR + R + G)
Norm Green G/(NIR + R + G)

Normalised Difference Vegetation Index (NDVI) (NIR − R)/(NIR + R) [42]
Normalised Ratio Vegetation Index (NRVI) [(R/NIR) − 1]/[(R/NIR) + 1] [32]

Normalized Difference Green–Red Index (NGRDI) (G − R)/(G + R) [32]
Green Leaf Index (GLI) (2 × − R − B)/(2 × G + R + B) [43]

Green–Red NDVI (GRNDVI) [NIR − (G + R)]/[NIR + (G + R)] [44]
Enhanced Vegetation Index (EVI) [2.5 × (NIR − R)]/[(NIR + 6 × R − 7.5 × B) + 1] [45]

Red–Blue NDVI (RBNDVI) [REDEDGE − (R − B)]/[REDEDGE + (R + B)]

3. Results

The spectral signatures of the three Eucheumatoids species with no signs of white
discolouration of the thallus (hereafter referred to as healthy) showed absorption in the
visible region, a marked reflectance feature in the red edge and a constant reflectance in
the NIR region (Figure 2A). The green morphotype of K. alvareezi was characterised by
a higher reflectance at 550 nm responsible for the green colour of the macroalgae. The
brown morphotype had high reflectance shifted to longer wavelengths between 600 and
650 nm. E. denticulatum showed a similar higher reflectance between 600 and 650 nm,
giving the characteristic dark brown colour of the thallus. The wavelengths of importance
to discriminate the green morphotype of Kappaphycus from E. denticulatum and the brown
morphotype of Kappaphycus was 530–560 nm (Figure 2B). The blue wavelengths were more
important for differentiating E. denticulatum from the Kappaphycus brown morphotype.



Remote Sens. 2024, 16, 3502 6 of 19Remote Sens. 2024, 16, x FOR PEER REVIEW 6 of 19 
 

 

 
Figure 2. Spectral signatures of E. denticulatum and K. alvareezi green and brown morphotypes: (A) 
Average spectra of healthy thallus with no signs of depigmentation. (B) Diagram of wavelengths’ 
relative importance for discriminating Eucheuma and Kappaphycus morphotypes. 

3.1. Spectral Library Classification 
Classifications were applied to hyperspectral and multispectral data to discriminate 

healthy, silted and depigmented E. denticulatum and K. alvareezi samples (Figures 3 and 4). 
In addition, a classification was examined to differentiate silted from depigmented Eu-
cheuma samples (Figure 5). The same scenarios were examined using spectral indices (Fig-
ures 6–9). 

 
Figure 3. Hyperspectral signatures of E. denticulatum showing a gradient of white discolouration of 
the thallus: (A) Average spectra of healthy, mixed and entirely white Eucheuma thallus. (B) Diagram 
of wavelengths’ relative importance for characterising thallus whitening. 

Figure 2. Spectral signatures of E. denticulatum and K. alvareezi green and brown morphotypes:
(A) Average spectra of healthy thallus with no signs of depigmentation. (B) Diagram of wavelengths’
relative importance for discriminating Eucheuma and Kappaphycus morphotypes.

3.1. Spectral Library Classification

Classifications were applied to hyperspectral and multispectral data to discriminate
healthy, silted and depigmented E. denticulatum and K. alvareezi samples (Figures 3 and 4). In
addition, a classification was examined to differentiate silted from depigmented Eucheuma
samples (Figure 5). The same scenarios were examined using spectral indices (Figures 6–9).
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3.2. Hyperspectral Data

A gradient of E. denticulatum spectra was obtained, ranging from healthy thalli with
no signs of whitening to those totally depigmented (Figure 3). A white thallus was
characterised by a monotonous flat spectral shape in the VIS-NIR range and a higher
albedo (Figure 3A). Wavelengths in the blue (400–440 nm), green (540–560 nm) and red
(650–670 nm) parts of the visible spectrum showed the greatest importance in differenti-
ating healthy, mixed and white Eucheuma thalli (Figure 3B). In particular, green and red
wavelengths were associated with discriminating healthy Eucheuma, while blue and red
wavelengths were more important for classifying intermediate stages of depigmentation.

According to the confusion matrix shown in Table A1 (Appendix A), the overall accu-
racy for classifying the crop condition of Eucheuma samples with in situ hyperspectral data
was high (83.2%). However, the 10% White and 100% White classes showed the lowest
Producer Accuracy (PA) scores. This occurred because the 10% White class was misclas-
sified as healthy, and the 100% White class was not always discerned from intermediate
whitening stages.
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Regarding the discrimination of Kappaphycus thallus discolouration, wavelengths
in the blue region (400–490 nm) had the greatest importance scores (Figure 4A). From
440 to 480 nm, these wavelengths were useful to identify healthy thalli. Shorter blue
(400 to 420 nm) and red (660–680 nm) wavelengths can be used for separating intermediate
whitening stages. The overall accuracy of Kappaphycus thallus whitening classification was
very high (95.9%), with a small fraction of misclassifications only occurring between the
healthy and the 10% White classes, and the100%White class (Table A2, Appendix A).

The spectral signature of a discoloured white thallus showed a higher albedo than a
thallus covered with a fine layer of silt particles (Figure 5A). The silted thallus had a flat
spectrum, but the spectral shape of the red edge between the VIS and the NIR regions was
still visible. This was consistent with the identification of the wavelengths of importance to
discriminate depigmented from silted E. denticulatum thallus: 700–740 nm in the red edge
region and 640–690 nm at red wavelengths (Figure 5B). The overall classification accuracy
between the two classes was 86.1% (Table A4, Appendix A).

3.3. Multispectral Data

When classifying the thallus condition of E. denticulatum at a multispectral resolution
(Figure 6A), the greatest misclassifications occurred for the 100% White and the 10% White
classes, while the overall accuracy was 85.1% (Table A5, Appendix A). When the spectral
indices were applied, the overall classification accuracy was greatly improved (99%), and
misclassifications were drastically minimized (Table A6, Appendix A). The most important
spectral indices for classifying the thallus discolouration of E. denticulatum were the GLI,
the NormGreen, the RBNDVI and the GRNDVI (Figure 6B).

In classifying the crop condition of Kappaphycus at a multispectral resolution (Figure 7A),
the overall accuracy was 96% with minor misclassification (Table A7, Appendix A). The
overall accuracy when using the vegetation indices was 98.9%, and each class had an opti-
mal accuracy (Table A8, Appendix A). The indices of greatest importance were the Norm-
Red, the NRDVI, the NDVI, the GRNDVI, the RBNDVI and the NormGreen (Figure 7B).

The differentiation of E. denticulatum from K. alvareezi morphotypes at a multispectral
resolution (Figure 8) showed an overall accuracy of 86.2% (Table A9, Appendix A). The
slightly lower performance in separating K. alvareezi morphotypes (Table A9, Appendix A)
is due to internal variability of the samples, meaning that some green morphotypes had
similar responses with the brown morphotypes, leading to overestimation of the green
morphotype (PA = 100%, UA = 83.3%).

The reflectance spectra of depigmented and silted Eucheuma at a degraded multi-
spectral resolution kept contrasting spectral shapes despite the loss of spectral resolution
(Figure 9A). The classification of the two classes showed an overall accuracy of 86.1%.
When applying the spectral indices, the overall accuracy increased to 94.4% (Table A11,
Appendix A). The most important indices for separating silted from depigmented Eucheuma
were the RBNDVI, the Hue, the Green-to-Red ratio and the NGRDI (Figure 9B).

3.4. Image-Based Classification

The scenario of differentiating healthy, silted and depigmented Eucheuma thallus was
further tested by applying classifications to a multispectral image collected with the drone,
hand-held at a 1.5 m distance from the ground (Figure 10). When the five multispectral
bands were used, the overall accuracy was 91% with silted thalli being misclassified as
healthy more often (Table A12, Appendix A). When the spectral indices (RBNDVI, Hue,
Green-to-Red ratio, NGRDI) identified in the previous experiment were used (Figure 9A),
the overall accuracy improved significantly (97.9%) and each class achieved maximum
accuracy (Table A13, Appendix A).
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Figure 10. (A) True-color RGB image of healthy, silted and depigmented Eucheuma samples obtained
with a DJI Phantom 4 multispectral drone hand-held 1.5 m above the ground. (B) Random Forest
classification output using the drone’s five multispectral bands. (C) Random classification output
using the four indices with the greatest importance described in Figure 9A. The image in the black
rectangle is shown in the zoom-in frame to the right to illustrate better the silted specimen.

4. Discussion

This study demonstrated that in situ proximal spectroscopy in the visible and near-
infrared regions could effectively differentiate crop conditions for two species of Eucheuma-
toid seaweeds, E. denticulatum and K. alvareezi, cultivated worldwide. Specific wavelengths
proved more effective than others in distinguishing between species and morphotypes
and characterizing thallus discolouration. The reduction in spectral resolution from the
42 bands of a spectroradiometer to the five bands of a multispectral sensor was not the
primary limitation. Additionally, using specific vegetation indices significantly improved
the machine learning classifications in some cases.

4.1. Species Discrimination

The colour of seaweed is determined by its pigment composition, which absorbs light
within the visible wavelength range (400 to 700 nm). The different taxonomic classes, Chloro-
phyceae (green seaweed), Phaeophyceae (brown seaweed) and Rhodophyceae (red seaweed),
can be discriminated by their spectral reflectance [31]. At a hyperspectral resolution, it is
possible to achieve discrimination at the taxonomic species level [28,30]. In the near-infrared
region (700 to 900 nm), light is reflected by the tissue structure, similar to what is observed
in angiosperms [31,46]. The genera Eucheuma sp. and Kappaphycus sp. belong to the class
Rhodophyceae. They all contain chlorophyll a and the characteristic pigments of this class:
phycoerythrin, phycocyanin and allophycocyanin. K. alvarezii exhibits numerous colour



Remote Sens. 2024, 16, 3502 11 of 19

morphotypes [47] including a green morphotype characterized by a lower concentration
of phycoerythrin [48]. Different species and morphotypes are often cultivated in the same
area, making it crucial to identify the spatial distribution of each one. Using hyperspectral
resolution, E. denticulatum and the two morphotypes of Kappaphycus were effectively dis-
tinguished. Notably, the blue (400 nm) and green (550 nm) wavelengths were particularly
important for differentiating the green from the brown Kappaphycus morphotypes. In con-
trast, the blue wavelength was more critical for separating E. denticulatum from the brown
Kappaphycus. The green morphotype’s spectral signature resembles green angiosperm
spectra [31], reflecting more light in the 500–600 nm green region. These wavelengths were
more important for separating E. denticulatum from the green Kappaphycus. Similarly, [26] re-
ported that green and brown macroalgae taxa (from temperate areas) exhibited the greatest
separability in the visible range, around the 600 nm wavelength. When multispectral data
were used for classification, the overall accuracy decreased, with the brown Kappaphycus
showing the lowest accuracy (PA = 75%, UA = 82.2%). This is likely due to the following
reasons: (a) the small number of representative training samples (n = 20) for the brown
strain, (b) the loss of characteristic shape details at the multispectral resolution, and (c) the
spectral similarity with part of the green strains in the NIR area. Therefore, further and
more detailed experiments are required for evaluating the discrimination of green from
brown Kappaphycus strains using a multispectral sensor.

4.2. Detecting and Quantifying Thallus Depigmentation

Ice-ice disease (IID) is a major cause of depigmentation in Eucheumatoids [47]. This
disease primarily occurs due to changes in environmental factors, such as water tempera-
ture and salinity, which induce stress and promote the development of pathogens [13–15].
The most prominent symptom of IID is the loss of pigments, which can lead to the gradual
whitening of the tissues. This typically occurs during prolonged stress (lasting several
days) and can affect the entire cultivation area. Therefore, it is a critical indicator of crop
condition in seaweed aquaculture [12,15]. With increasing thallus whitening, the reflectance
in the VIS range increases progressively, leading to an almost monotonous flat response
across the VIS-NIR range (Figures 2 and 3). When the thallus is totally depigmented, there
are no more absorption features in the VIS region. The spectral detection of whitening
was possible even when a small fraction of the thallus was white (i.e., 10%), but better
results were obtained for at least 50%. This was the case for both the hyperspectral and the
multispectral resolution. The classification accuracy did not decrease significantly when
multispectral data were used. This indicates that utilising five spectral bands across the
VIS-NIR range is adequate for characterizing thallus whitening. Based on the importance
scores derived from classifications using both hyper- and multispectral data, wavelengths
predominantly within the blue spectrum (400–480 nm), followed by those in the red range
(640–680 nm), were the most suitable for detecting whitening. The detection was the most
efficient with the green morphotype of Kappaphycus. For E. denticulatum, the classification
accuracy was improved when using vegetation indices (see Section 4.3).

4.3. Discriminating Thallus Covered by Silt Particles

Cultivation sites near estuaries are characterised by high concentrations of suspended
particulate matter that can negatively impact seaweed growth [12]. Fine inorganic particles
can accumulate on the seaweed thalli, forming a thin, whitish layer. Farmers regularly
shake the lines in these areas to remove the deposited silt particles [49]. As a result of silting,
the spectral characteristics of E. denticulatum and K. alvareezi are altered and tend to resemble
the spectrum of silt, which is characterized by a flat, monotonous reflectance across the VIS-
NIR ranges. Discerning thallus whitening caused by depigmentation from silt deposition is
important to avoid misidentification of the causal processes. However, these two processes
can be related, as silted crops may develop IID and become depigmented if not treated
properly [15]. The primary challenge in distinguishing depigmented from silted thalli lies
in the similarity of their spectral shapes, which lack distinct features. Importance scores
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indicated that red and red edge wavelengths were more effective for differentiating the two
cases at a hyperspectral resolution. Thalli covered by silt particles retain a slight red edge
spectral shape, which no longer exists with depigmented thalli. The same applies when
using multispectral resolution, as classification accuracy remained consistent, indicating
that a multispectral sensor can effectively discriminate between silted and depigmented
thalli. The use of vegetation indices significantly enhanced the classification accuracy. The
following indices were the most suitable: (a) the Hue, (b) the Green–Red ratio, (c) the
NGRDI and (d) the RBNDVI. Previous studies employed various indices for detecting and
quantifying seaweed in situ [41,50]. In particular, [24] used the NDVI and NGRDI indices to
distinguish between fresh and recently stranded Sargassum sp. Most of the indices identified
in this study are based on wavelengths in the VIS (only the RBNDVI uses the red edge).
This spectral range is better suited for mapping emerged or partially submerged/floating
seaweed [26,51] owing to the significant attenuation of NIR wavelengths by water.

4.4. Spectral Constraints

The spectral library used for classifications considers ideal cases of spectral shapes
without interference from environmental effects. Such effects include water layer effects,
background albedo and challenging illumination [51]. In particular, the results from this
study are valid for emerging macroalgae, i.e., when spectral sampling occurs in the air.
Eucheumatoids can be exposed at low tide but are often submerged in the sub-surface
when cultivated. The spectral shape can be significantly influenced by water depth and
constituents, particularly in the NIR range [51,52]. Therefore, specific radiometric correc-
tions are necessary for accurately detecting and quantifying crop conditions in submerged
situations [26,51,53]. The background albedo poses another challenge in accurately charac-
terising macroalgae. Nearby objects surrounding the specimens under examination will
likely affect the classification results if they exhibit a similar spectral response. This problem
commonly arises when seaweeds are cultivated alongside other algae or seagrasses on
the seabed. Illumination is another crucial factor in characterising seaweed with spectral
data. Poor illumination means that low reflectance samples (e.g., brown Kappaphycus or
silted macroalgae) may be incorrectly identified. Over-illumination is the opposite problem,
where high-intensity responses interfere with the spectral shapes. This typically occurs in
aerial imaging when the sun glint from the water surface contaminates the image [51,52].
Despite these constraints, the spectral approach proposed in this study should be tested
at the scale of cultivation plots using hyper- or multispectral drones at a very high spatial
resolution [9].

4.5. Drone Crop Condition Monitoring

This work shows the potential of spectral reflectance for the seaweed aquaculture
sector by providing a tool for crop condition assessment that could be automated to improve
yield and strengthen biosecurity [18]. Early and accurate detection of thallus whitening
signs due to depigmentation or silting would lead to timely decision making that minimizes
the cost and risk of further crop loss [15,18]. A potential upscaling of the presented approach
would be using drones to map farming areas. At low flight altitudes of approximately 20 to
30 m, drone imagery can capture fine-scale details of seaweeds attached to long lines [9].
Drone surveys offer centimetre-resolution imagery that can be conducted on-demand and
is unaffected by cloud cover. However, drone applications should focus on farming areas
with adequate water clarity and where the background bottom has a distinctively different
albedo from the cultivated seaweed to avoid misclassifications [26,53]. A multispectral,
drone-based sensor could potentially identify E. denticulatum and K. alvareezi morphotypes
along large-scale cultivation areas, providing complementary information to satellite remote
sensing in describing aquaculture practices [4]. Co-cultivation of the two species happens,
supposedly minimising the risk for IID [14]. E. denticulatum is a less valuable species than
K. alvareezi [8] but was reported to be less susceptible to ice-ice disease [15]. The most
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important perspective of drone remote sensing would be to detect early signs of thallus
depigmentation, providing an early warning for potential ice-ice outbreaks.

5. Conclusions

This study underscores the significance of specific wavelengths in spectrally identify-
ing seaweed species, morphotypes and crop conditions in Eucheumatoids’ aquaculture.
Additionally, combining these wavelengths, vegetation indices effectively enhanced crop
condition characterisation. These indices can be constructed using hyper- or multispec-
tral data, providing a viable alternative when spectral discrimination is challenging. It is
suggested that particular spectral indices combing visible wavelengths can be utilised to
develop seaweed health indices. These indices proved effective not only in distinguishing
between E. denticulatum, and green and brown morphotypes of K. alvareezi but also in
detecting thalli depigmentation while avoiding confusion with silted specimens. Proximal
spectral imaging enables effective monitoring of seaweed crops, providing timely informa-
tion about crop health. Thus, spectral data are considered an integral part of the precision
aquaculture of seaweeds, and further trials using drone platforms are recommended.
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Appendix A

Table A1. Confusion matrix for the classification results regarding the crop condition of Eucheuma
using HS data. Overall accuracy in bold. UA = User Accuracy; PA = Producer Accuracy.

PREDICTION

Healthy 10% White 25% White 50% White 75% White 100% White PA%

O
B

SE
R

V
A

T
IO

N Healthy 15 1 1 0 0 0 88.2
10% White 6 13 1 0 0 0 65
25% White 0 1 14 1 0 0 87.5
50% White 0 0 0 19 0 0 100
75% White 0 0 0 0 16 0 100
100% White 0 0 2 1 3 7 53.8

UA% 71.4 86.7 77.8 90.5 84.2 100 83.2

https://www.mdpi.com/article/10.3390/rs16183502/s1
https://www.mdpi.com/article/10.3390/rs16183502/s1
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Table A2. Confusion matrix for the classification results regarding the crop condition of Kappaphycus
using HS data. Overall accuracy in bold. UA = User Accuracy; PA = Producer Accuracy.

PREDICTION

O
B

SE
R

V
A

T
IO

N

Healthy 10% White 25% White 50% White 75% White 100% White PA%

Healthy 17 0 0 0 0 0 100
10% White 2 18 0 0 0 0 90
25% White 0 0 16 0 0 0 100
50% White 0 0 0 19 0 0 100
75% White 0 0 0 0 16 0 100
100% White 1 1 0 0 0 9 81.8

UA% 85 94.7 100 100 100 100 95.9

Table A3. Confusion matrix for the classification results regarding the differentiation between
Eucheuma from Kappaphycus strains (green and brown) using HS data. Overall accuracy in bold.
UA = User Accuracy; PA = Producer Accuracy.
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Table A5. Confusion matrix for the classification results regarding the crop condition of Eucheuma
using MS data. Overall accuracy in bold. UA = User Accuracy; PA = Producer Accuracy.

O
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V
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T
IO

N

PREDICTION

Healthy 10% White 25% White 50% White 75% White 100%
White PA%

Healthy 15 1 1 0 0 0 88.2
10% White 6 12 2 0 0 0 60
25% White 0 2 13 1 0 0 81.3
50% White 0 0 0 19 0 0 100
75% White 0 0 0 0 16 0 100
100% White 0 0 2 0 0 11 84.6

UA% 71.4 80 72.2 95 100 100 85.1
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Table A6. Confusion matrix for the classification results regarding the crop condition of Eucheuma
using spectral indices. Overall accuracy in bold. UA = User Accuracy; PA = Producer Accuracy.

PREDICTION

Healthy 10% White 25% White 50% White 75% White 100%
White PA%

O
B

SE
R

V
A

T
IO

N Healthy 16 1 0 0 0 0 94.1
10% White 0 20 0 0 0 0 100
25% White 0 0 16 0 0 0 100
50% White 0 0 0 19 0 0 100
75% White 0 0 0 0 16 0 100
100% White 0 0 0 0 0 13 100

UA% 100 95.2 100 100 100 100 99.0

Table A7. Confusion matrix for the classification results regarding the crop condition of Kappaphycus
using MS data. Overall accuracy in bold. UA = User Accuracy; PA = Producer Accuracy.

PREDICTION

O
B

SE
R

V
A

T
IO

N

Healthy 10% White 25% White 50% White 75% White 100%
White PA%

Healthy 17 0 0 0 0 0 100
10% White 2 18 0 0 0 0 90
25% White 0 0 16 0 0 0 100
50% White 0 0 0 19 0 0 100
75% White 0 0 0 0 16 0 100
100% White 1 1 0 0 0 9 81.8

UA% 85 94.7 100 100 100 100 96

Table A8. Confusion matrix for the classification results regarding the crop condition of Kappaphycus
using spectral indices. Overall accuracy in bold. UA = User Accuracy; PA = Producer Accuracy.

PREDICTION

Healthy 10% White 25% White 50% White 75% White 100%
White PA%

O
B
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V
A

T
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N Healthy 16 1 0 0 0 0 94.1
10% White 0 20 0 0 0 0 100
25% White 0 0 16 0 0 0 100
50% White 0 0 0 19 0 0 100
75% White 0 0 0 0 16 0 100
100% White 0 0 0 0 0 11 100

UA% 100 95.2 100 100 100 100 98.9

Table A9. Confusion matrix for the classification results regarding the differentiation of Eucheuma
from Kappaphycus strains (green and brown) using MS data. Overall accuracy in bold. UA = User
Accuracy; PA = Producer Accuracy.
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Table A10. Confusion matrix for the classification results regarding the differentiation of silted from
100% White Eucheuma using MS bands. Overall accuracy in bold. UA = User Accuracy; PA = Producer
Accuracy.
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Table A11. Confusion matrix for the classification results regarding the differentiation of silted
from 100% White Eucheuma using spectral indices. Overall accuracy in bold. UA = User Accuracy;
PA = Producer Accuracy.
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Table A12. Confusion matrix for the classification results regarding the crop condition of Eucheuma
using MS photomosaics. Overall accuracy in bold. UA = User Accuracy; PA = Producer Accuracy.
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