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Abstract: Accurate understanding of urban land use change information is of great significance for
urban planning, urban monitoring, and disaster assessment. The use of Very-High-Resolution (VHR)
remote sensing images for change detection on urban land features has gradually become mainstream.
However, most existing transfer learning-based change detection models compute multiple deep
image features, leading to feature redundancy. Therefore, we propose a Transfer Learning Change
Detection Model Based on Change Feature Selection (TL-FS). The proposed method involves using a
pretrained transfer learning model framework to compute deep features from multitemporal remote
sensing images. A change feature selection algorithm is then designed to filter relevant change
information. Subsequently, these change features are combined into a vector. The Change Vector
Analysis (CVA) is employed to calculate the magnitude of change in the vector. Finally, the Fuzzy
C-Means (FCM) classification is utilized to obtain binary change detection results. In this study, we
selected four VHR optical image datasets from Beijing-2 for the experiment. Compared with the
Change Vector Analysis and Spectral Gradient Difference, the TL-FS method had maximum increases
of 26.41% in the F1-score, 38.04% in precision, 29.88% in recall, and 26.15% in the overall accuracy.
The results of the ablation experiments also indicate that TL-FS could provide clearer texture and
shape detections for dual-temporal VHR image changes. It can effectively detect complex features in
urban scenes.

Keywords: urban land use; Very High Resolution (VHR); change detection; transfer learning; change
feature selection

1. Introduction

Remote sensing image change detection is the process of detecting changes in the
Earth’s surface using images of multiple time phases and comparative analysis to obtain
information about changes in features [1]. In recent years, with the continuous progress
in remote sensing satellites, people have continuously upgraded the resolution of remote
sensing images and widely used very-high-resolution sensing images in urban environ-
mental monitoring, meteorological monitoring, urban functional area planning, natural
disaster monitoring, and changes in land surface coverage [2–5].

Compared with simple features such as with farmland, the features in urban areas are
more complex, and Very-High-Resolution (VHR) remote sensing imagery can effectively
show these complex features, so how to utilize these detailed features for change detection is
extremely important [6]. For a single time-phase VHR image, various feature characteristics
in urban areas are clearly expressed, and urban area features can be extracted by increasing
the complexity and computation of the model [7]. However, there are some problems
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here; there are three drawbacks when computing a large number of image features if we
use multitemporal images for change detection. Firstly, learning multiple features can
lead to feature redundancy in the model [8]. Redundant features often do not contribute
significantly to the model and can consume excessive resources [9]. Secondly, when
conducting multitemporal remote sensing change detection, computing multiple urban
surface features can introduce a large amount of irrelevant change features, which can
negatively impact the detection effectiveness and, in some cases, even lead to adverse
effects. Thirdly, for multitemporal remote sensing change detection, many feature objects
are irrelevant to the changes. These irrelevant features can have side effects in certain
aspects [10]. When processing a large number of features in image computation, there is
an in-depth interpretation of image information. Although multitemporal images may
have a positive effect within a certain range of feature values, an excess of similar features
can affect the change detection results. The specific manifestations of these impacts are
as follows: Firstly, for complex urban scenes in VHR images, feature redundancy can
have negative effects [11]. For example, unclear and irregular textures of certain buildings
and overly coarse edge detection can occur. Secondly, an excessive number of irrelevant
change features can result in significant false positives and false negatives for impervious
surfaces and vegetation, respectively. This prevents adaptive extraction of urban change
information [12]. Therefore, it is necessary to design an algorithm for selecting change
features to reduce the computational load while enhancing model performance.

We can broadly categorize image change detection methods into the following two
main types: unsupervised and supervised [13]. Among these, unsupervised methods are
more popular as they do not require training samples for detecting changes in land features.
Traditional unsupervised methods include Change Vector Analysis (CVA) [14], Stochas-
tic Gradient Descent (SGD) [15], Principal Component Analysis (PCA) [16], Iteratively
Reweighted Multivariate Alteration Detection (IRMAD) [17], and Change Vector Analysis
in Posterior Probability Space (CVAPS) [18], among others. These methods perform well
on medium- to low-resolution remote sensing images. However, when applied to VHR
images in urban areas, their performance tends to be weak. This is because these methods
only utilize basic image features (such as spectral and texture features) to represent the
images and cannot extract advanced features to represent changes in urban areas [19].

Currently, with the continuous iterations of computer hardware and software updates,
using deep learning methods for change detection is an excellent choice. Deep learning has
shown remarkable performance in remote sensing object detection, semantic segmentation,
and other tasks [20]. Change detection commonly uses Convolutional Neural Networks
(CNNs). Popular CNN models include U-Net [21], DeepLabV3 [22], GoogLeNet [23],
LeNet-5 [24], AlexNet [25], ResNet [26], and various extensions. Researchers have used
these networks in change detection tasks and have demonstrated excellent detection per-
formance. However, utilizing CNNs for change detection also requires a large number of
training samples. In practice, because of the complexity of urban environments, including
factors such as dense buildings, traffic congestion, and crowded areas, it is challenging
to obtain samples from complex urban areas, especially pixel-level training samples [27].
This necessitates high-resolution image data and fine pixel-level annotations, which incur
significant human and time costs. Manual annotation for complex urban VHR images,
including intricate urban structures, dense building layouts, and variable terrain features,
is impractical. Therefore, Transfer Learning (TL) has gradually gained attention. It can
achieve good results without the need for any training samples [28]. Researchers have
proposed a series of methods for change detection tasks. The SENECA network can achieve
good training results with only a small number of samples, but the model is complex
and time-consuming [29]. The sample generation method based on transfer learning and
superpixel segmentation, used for unsupervised change detection, produces good samples.
However, it cannot adaptively select change features for dual-temporal changes [30]. Al-
though the TCD-Net model has a low number of parameters and is sensitive to various
land features, it lacks sensitivity to change information [31]. The transfer learning change
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detection model with 3D filters can extract multiple image features, but these features
cannot be generalized, leading to redundant irrelevant change features [32]. Building upon
this, researchers have proposed a method that combines advanced features with semantic
change detection. This approach can compute the distance between various change vec-
tors and generate better difference images. However, the method still fails to establish a
relationship between changes and the model [28].

In the features extracted by transfer learning, it is difficult to establish a relationship be-
tween changes and the model. Some irrelevant changes in features can lead to redundancy,
resulting in incomplete detection of changes in certain buildings and missed detections of
vegetation in complex urban areas. Based on the analysis above, most change detection
CNN models not only require a large amount of sample data for training but also demand
sample accuracy at the pixel level [33]. Using pretrained models for transfer learning
may indeed be a good choice. However, most pretrained models have a large number of
parameters when extracting deep features, leading to redundant irrelevant change features.
This inability to adaptively extract relevant change information can, in turn, impact the
results of change detection. So some of the extracted features are change related features
and some of the features are not change related. Therefore, we propose a change detection
method, named TL-FS (Transfer Learning with Feature Selection), to address the issue
of feature redundancy. As a classic CNN model structure, this paper utilizes the VGG16
model [34]. Firstly, we employ the pretrained VGG16 model to learn various features in the
image scenes. Secondly, we use a change feature selection algorithm based on filter feature
methods to filter change features [35,36]. Thirdly, all selected change features are combined
into a multidimensional vector. Fourthly, Change Vector Analysis (CVA) is utilized to
compute the magnitude of change in the multidimensional feature vector [14]. Finally, the
fuzzy C-means clustering algorithm is applied to obtain the change map [37]. It should
be noted that our proposed TL-FS method is currently only optimized for the detection
of second-class changes in two-phase VHR images, so it is not directly applicable to the
detection of multiclass changes. Nevertheless, recognizing and discussing the importance
of multiple types of change detection is essential to further expand and refine our approach
and meet the needs of a wider range of applications.

In the remainder of this article, Section 2 is the detailed introduction of the proposed
method. Experiments and discussion are presented in Sections 3 and 4, respectively.
Section 5 is the conclusion.

2. Methods

The proposed TL-FS method and the network architecture are illustrated in Figure 1.
Firstly, the convolutional layers of the first three scales from the VGG16 model are utilized
for feature extraction from the input VHR remote sensing images. Secondly, the designed
variance-based feature selection algorithm is embedded into the overall internal structure
for selecting features from all deep image features. Next, the selected change features of
multitemporal VHR images are combined and differenced, with the CVA used to compute
the magnitude of the difference vectors. Finally, the FCM algorithm is employed to obtain
the binary change detection image.

2.1. Deep Feature Learning

CNNs are multilayer deep architectures capable of capturing complex visual features
in remote sensing images. The objective of this study is to effectively utilize the multilayer
characteristics of CNNs to extract features relevant for change detection. To achieve this
goal, the preprocessed images are first input into a pretrained CNN model, and deep fea-
tures from multiple temporal images are extracted from certain layers of the CNN. A CNN
is composed of numerous layers, and each layer consists of many features that learn various
visual concepts from the input images [26]. Here arises the following challenge: how to
design a change detection framework leveraging the advantageous characteristics of CNNs.
Utilizing only a pretrained feature extraction network is insufficient for effectively and
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accurately performing change detection tasks. It is also necessary to select an appropriate
pretrained CNN and specific feature extraction layers. The main challenge in designing the
framework is integrating the CNN model with the change detection process.
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Figure 1. Flowchart of the TL-FS method.

For the proposed TL-FS framework, any architecture can be chosen as the feature
extractor for the model, and it can output feature information for each pixel in the remote
sensing images. Indeed, features can be obtained from each layer, but the performance
of these features depends on each layer. In the initial layers of a CNN, low-level visual
features are learned, such as colors commonly encountered and edge features of images. As
the network delves deeper, it learns higher-level visual concepts by combining the low-level
features extracted previously. These more complex visual concepts are highly beneficial for
analyzing intricate VHR images. However, as the model goes deeper, its generalization
ability to new input features decreases, and it also lacks spatial correlation [38]. Features
obtained from multiple layers of a CNN are more effective than those from a single layer
because a CNN can learn at multiple scales. Finally, features from multiple layers are
combined to form a set of feature vectors.

2.2. Feature Extraction

CNN feature extraction differs from traditional feature extraction methods. Some
traditional feature extraction techniques cannot comprehensively extract features from
VHR images, such as traditional spectral-based and texture-based methods. Although some
methods can reduce the dimensionality of features, they may also lose information about
ground objects, making it difficult to handle images in complex scenes. CNNs progress
from local features to global features and from low-level features to high-level features,
which can be highly abstract and conceptual, closer to the principles of human vision.
Therefore, CNNs have found wider applications in image processing [39].

In an ideal scenario, when conducting change detection with neural networks, a large
number of pixel-level annotated samples are required. These samples assist in training
the current network to accurately identify change detection areas in multitemporal remote
sensing images. However, the image properties of VHR remote sensing images differ from
natural images. They have different resolutions, imaging modes, and different sensor types.
This complexity in VHR images results in the difficulty of obtaining high-quality pixel-level
samples. If a simple labeling method is employed, the model may lack a comprehensive
understanding of the complexity of VHR images, which could affect both the feature
extraction process and the change detection process [40].

Therefore, the feature extraction method in this paper is based on the idea of transfer
learning, utilizing a dual-channel structure based on VGG16 to address the issue of insuffi-
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cient training samples. It extracts multi-scale and multi-depth feature maps from X1 and X2.
The selected pretrained network was trained on the AID aerial dataset, with 9500 training
samples and 500 validation samples. The image size is 600 × 600 with a resolution of
0.5 m [41]. The original VGG16 architecture has five max-pooling layers, indicating five
different scales of convolutional layers. To consider the size of the feature maps, we utilize
the convolutional layers from three scales of the VGG16 for feature extraction experiments.
Some selected parts of the VGG16 architecture information are shown in Table 1. To con-
sider the size of the image, seven convolutional layers are selected for feature extraction.
Each convolutional layer computes features at different depths. These seven convolutional
layers are named conv1, conv2, conv3, conv4, conv5, conv6, and conv7. The input to this
network requires support for the three channels of red (R), green (G), and blue (B). For the
input raw images, different datasets have different sizes, while the VGG16 model has a
fixed image input size of 224 × 224 pixels. Therefore, as input data, the images are cropped
into multiple 224 × 224-sized image blocks with a stride of 100 pixels, which are then fed
into the feature extraction module.

Table 1. Detailed information on the used feature extraction module. The number after/in the kernel
size represents the stride.

Layer Type Filter Kernel Size

input X1, X2 - -
convolution conv1, conv2 64 3 × 3/1

maximum pooling Pool1 - 2 × 2/2
convolution conv3, conv4 128 1 × 1/1

maximum pooling Pool2 - 2 × 2/2
convolution conv5, conv6, conv7 256 3 × 3/1

2.3. Variance Feature Selection Strategy

For VHR image change detection, during transfer learning, many irrelevant changes
affect the model’s performance, necessitating a method to urgently filter out these change
features [35,36]. By employing a variance-based selection method embedded into the
model to address the poor performance caused by feature redundancy, the proposed
feature selection strategy is depicted in Figure 2. Assume that the total number of feature
layers of the total model is L. If L has a subset l, l∈L. After the selection of the change
difference features, all selected features related to the changes will form a vector, which is
named X, where X represents the difference features of the bi-temporal image.
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Let Fl1 and Fl2 be the features corresponding to subset l. Subtracting them yields the
difference vector P, as follows:

P = Fl1 − Fl2 (1)

Suppose there exists Pn, which is a subset of P with Pn∈P. Pn contains all of the selected
features related to changes. At this point, in order to calculate Pn, the variance is used as an
index to filter the relevant change features, and the variance is used as a sensitivity index
of the change information. It is important to note that the features containing information
related to changes have higher variability compared to features unrelated to change. This
implies that feature values undergo strong variations between changing and unchanged
pixels. During the change feature selection process, the proposed method is unsupervised.
Therefore, it is necessary to divide the difference vectors P of all features in l into K parts.
For any part k where k in K, we calculate the variance S2(P) of P and arrange the variances
of all computed features in descending order. The selected features are chosen according to
a certain ratio. Therefore, all selected features Pn in layer l are as follows:

pn =
K
∪

k=1
plk (2)

In the formula, plk represents all features of the k-th part in layer l, where plk∈P. By
combining and arranging Pn, we obtain X, where the range of n is n∈(1, N), and N is the
number of selected change features. Therefore, the sought-after vector of selected change
features X is as follows:

X = (p1, p2, p3 . . . , pN) (3)

2.4. Binary Change Detection

For the change feature vector X, obtained using the selection strategy proposed in
Section 2.3, the CVA algorithm [14] is employed to distinguish between change and no-
change pixels in VHR images. The change intensity V for all pixels in the image is calculated
as follows:

V =

√√√√ N

∑
n=1

(pn)
2 (4)

After calculating the intensity image, any available clustering algorithm or threshold
segmentation method can be used for binary change detection to obtain the change detec-
tion map. The quality of segmentation depends on the accuracy of the produced change
intensity values. Therefore, the Fuzzy C-Means (FCM) clustering algorithm [37] is selected
to classify the image into the following two categories: change and no change.

T(g, h) =
{

c, V(g, h) ≥ M
u, V(g, h) < M

(5)

In Equation (5), T(g, h) denotes the pixel point of the image pixel in row g and column
h, c denotes the point identified as changed, u denotes the point identified as unchanged,
M denotes the central value of the feature intensity, and the final binary change map is
obtained by distinguishing between changed and unchanged pixels.

3. Results and Experiments
3.1. Datasets

To validate the effectiveness of the proposed method in addressing feature redun-
dancy and improving transfer learning for change detection, we conducted experiments
on four Beijing-2 VHR image datasets, named A, B, C, and D. The images consist of dual-
temporal data from 2018 and 2021 in the Binhu New Area of Hefei City, as depicted in
Figure 3a,b. Figure 3 illustrates the four VHR optical image datasets used for method vali-
dation. The land cover types in datasets A and B only include vegetation and impervious
surfaces, while datasets C and D contain bare soil, vegetation, and impervious surfaces.
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The sizes of the four image datasets are as follows: 1500 × 1500, 1600 × 1600, 2000 × 2000,
and 1000 × 1000 pixels, respectively. The resolution of the Beijing-2 images is 0.8 m for
panchromatic and 3.2 m for multispectral bands. The datasets used are fusion images of
panchromatic and multispectral data.
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images, postchange images, and the standard reference change maps generated through visual
interpretation, respectively.

3.2. Experimental Procedure

All of the experiments on the datasets were conducted on Intel Core i7-11800H CPU @
2.3 GHz (32 GB RAM) with GPU model NVIDIA GeForce Experience 3060. The experiments
were conducted using five change detection methods for comparison, which are CVA, IR-
MAD, Principal Component Analysis combined with K-means clustering (PCA-Kmeans),
Deep Slow Feature Analysis (DSFA) [42], and Scale and Relation Aware Siamese Network
(SARAS-Net) [43]. The first three of these are traditional change detection algorithms, and
the last two are deep learning-based change detection methods. Like the proposed method,
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DSFA also uses the CVA and FCM clustering algorithms to obtain the change map. In order
to compare it with the results of the model itself, in the subsequent discussion, we also
conducted ablation experiments on the model to evaluate the performance of the change
feature selection module. Precision, recall, F1-score, and Overall Accuracy (OA) are used to
assess accuracy.

Precision =
TP

TP + FP
(6)

Recall =
TP

TP + FN
(7)

F1 =
2× Precision× Recall

Precision + Recall
(8)

OA =
TP + TN

TP + TN + FP + FN
(9)

In Equations (6) through (9), TP represents true positive, indicating pixels that are
actually changed and predicted as changed; FP represents false positive, indicating pixels
that are actually unchanged but predicted as changed; FN represents false negative, indi-
cating pixels that are actually changed but predicted as unchanged; TN represents true
negative, indicating pixels that are actually unchanged and predicted as unchanged.

3.3. Experimental Results

In dataset A, comparing the standard reference change map in Figure 4g with Figure 4a–f,
it can be seen that the CVA, IRMAD, PCA-Kmeans, DSFA, and SARAS-Net algorithms
have larger areas of false detections and missed detections of vegetation and impervious
surface changes. However, the TL-FS proposed in this paper is closer to the standard in the
detection of the change region, and the relative error is smaller.
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PCA-Kmeans, DSFA, SARAS-Net, TL-FS, and standard reference change map, respectively.

In dataset B, comparing the standard reference change map in Figure 5g with Figure 5a–f,
it can be seen that CVA and IRMAD misdetected numerous invariant regions and are not suit-
able for change detection on vegetation and impervious surfaces. While PCA-Kmeans, DSFA,



Remote Sens. 2024, 16, 3507 9 of 18

and SARAS-Net detected slightly better relative to the first two algorithms, they still have
more missed regions compared to TL-FS, which remains the closest to the standard reference.
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In dataset C, comparing the standard reference change map in Figure 6g with the
change detection maps in Figure 6a–e, it can be found that CVA, IRMAD, and PCA-Kmeans
consistently exhibited incomplete detections of changes in the buildings and omissions of
changes in bare soil, which led to significant detection errors. On the other hand, DSFA,
SARAS-Net, and TL-FS showed more accurate detection results with a smaller range of
false detections and omissions.
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In dataset D, comparing the standard reference change map in Figure 7g with the
change detection maps in Figure 7a–e, it can be found that the detection performances of
CVA and IRMAD for changes in bare soil, vegetation, and impervious surfaces were poor.
Although the detection accuracies of PCA-Kmeans, DSFA, and SARAS-Net improved, there
were still more false detection areas, and there remains an obvious gap with TL-FS.
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Figures 4–7 display the change detection results for datasets A, B, C, and D using the
following six different algorithms: CVA, IRMAD, PCA-Kmeans, DSFA, SARAS-Net, and
TL-FS. Compared to the standard reference change map in Figure 3c, the CVA, IRMAD,
PCA-Kmeans, DSFA, and SARAS-Net detection results consistently exhibited incomplete
detection of building changes and omissions in vegetation changes. The proposed TL-
FS method demonstrated a higher change detection accuracy, with significantly smaller
areas of false detections and omissions. Overall, the proposed method outperforms the
other methods in various aspects. Firstly, in the results from the CVA and IRMAD, not
only do numerous errors appear, but these methods also failed to utilize deep features
in the VHR images. Consequently, the application of the CVA algorithm to the VHR
images resulted in severe salt-and-pepper noise. This phenomenon indicates that using
only spectral features is not feasible in complex urban VHR scenes. The change maps
produced by the PCA-Kmeans method show a reduction in salt-and-pepper noise due to
the consideration of contextual information. However, the performance of this algorithm is
not robust, leading to inconsistent results across different datasets and scenes. In the change
detection results obtained using the DSFA method, we can observe that although DSFA is an
improvement based on the SFA algorithm and utilizes two deep networks for computation,
its performance is still suboptimal. This is because the algorithm does not perform change
feature selection among multitemporal remote sensing images. SARAS-Net introduces a
variety of modules, such as scale-aware and relationship-aware modules, which increases
the complexity of the network, and its training model needs to be adjusted in a targeted
manner for the change patterns of different urban areas, leading to an increased risk of
model overfitting, and the network may not perform as well as expected for complex urban
areas with more complicated change patterns.
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It can be seen from Table 2 that the precision of TL-FS was the highest, indicating
that compared with CVA, IRMAD, PCA-Kmeans, DSFA, and SARAS-Net, our proposed
model has a stronger ability to identify the changing regions and can more accurately
identify which regions have substantial changes. The recall of TL-FS was higher than that
of the other five models on Datasets A, B, and C and slightly lower on Dataset D, but the
F1-score was higher than that of the other models, indicating that its overall comprehensive
performance was stronger. Figure 8 shows the F1 and OA values of all methods, from
which we can see that the F1 and OA values of TL-FS are higher than those of the other five
models, indicating that the model achieved a good balance between the accuracy rate and
recall rate, could correctly classify most pixels or regions in the image, as well as effectively
identify the changed parts. At the same time, the running time of TL-FS is shorter than that
of other models, indicating that our proposed model not only guarantees a high-precision
change detection capability but also has the advantage of fast response, which is suitable
for application scenarios requiring real-time performance and high accuracy.

Table 2. The accuracy values of different methods for datasets A–D.

Experimental
Sequence Number Method Precision (%) Recall (%) F1 (%) OA (%) Running

Time (s)

Dataset A

CVA 55.68 79.47 65.48 77.32 1.68
IRMAD 57.25 78.31 66.14 79.44 2.37

PCA-Kmeans 78.06 82.13 80.04 87.67 35.28
DSFA 86.41 59.77 70.66 80.49 463.43

SARAS-Net 90.56 88.64 89.59 92.49 124.44
TL-FS 93.72 89.65 91.64 94.01 74.37

Dataset B

CVA 76.17 68.11 71.91 81.35 1.36
IRMAD 67.93 63.57 65.68 67.51 1.97

PCA-Kmeans 70.35 75.72 81.02 86.74 45.32
DSFA 75.24 80.56 77.81 90.58 472.63

SARAS-Net 89.72 82.87 86.18 91.44 116.51
TL-FS 91.63 85.74 88.95 93.66 70.26

Dataset C

CVA 65.14 63.45 64.28 82.22 2.33
IRMAD 63.27 66.82 65.00 81.97 3.61

PCA-Kmeans 85.52 70.34 77.19 85.49 72.25
DSFA 80.48 74.83 77.54 78.35 619.34

SARAS-Net 91.59 88.94 90.25 91.44 160.26
TL-FS 92.30 89.14 90.69 93.40 82.45

Dataset D

CVA 69.53 59.21 63.24 84.94 2.12
IRMAD 67.16 61.75 64.34 75.21 2.58

PCA-Kmeans 77.84 67.42 72.26 85.73 58.32
DSFA 80.35 83.26 81.80 89.64 324.20

SARAS-Net 81.74 82.12 81.93 90.44 140.21
TL-FS 85.21 79.05 82.01 90.57 65.79

Here, we take F1-scores as examples. On the first dataset, the F1 value of the TL-FS
method we proposed is 91.64%, which is 26.16%, 25.05%, 11.06%, 20.98%, and 2.05% higher
than those of CVA, IRMAD, PCA-Kmeans, DSFA, and SARAS-Net, respectively. On the
second dataset, the F1 value of the proposed method is 88.95, which is 17.04%, 23.27%,
7.93%, 11.14%, and 2.77% higher than those of CVA, IRMAD, PCA-Kmeans, DSFA, and
SARAS-Net, respectively. On the third dataset, the F1 of the proposed method is 90.69%,
which is 26.41%, 25.69, 13.50%, 13.15%, and 0.44% higher than those of CVA, IRMAD,
PCA-Kmeans, DSFA, and SARAS-Net, respectively. On the fourth dataset, the F1 value of
the proposed method is 82.01, which is 18.77%, 17.67%, 9.75%, 0.21%, and 0.08% higher
than those of CVA, IRMAD, PCA-Kmeans, DSFA, and SARAS-Net, respectively.
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4. Discussion
4.1. Necessity of Change Feature Selection

In change detection experiments, most networks extract image features based on a
single image without considering the spatial correlations among multiple images. This
oversight leads to feature redundancy when using deep learning models for change de-
tection, resulting in inefficient use of computational resources, increased processing time,
and suboptimal detection results. Here, we intend to demonstrate the necessity of the
feature selection module (FS) through ablation experiments. The method without the
feature selection module is named TL-NFS, while the proposed method with the feature
selection module is named TL-FS. The resulting images for both methods are shown in
Figure 9, and the accuracy statistics are depicted in Figure 10. From the statistical graph, it
can be observed that the F1-score improved by 3.03%, 6.50%, 5.42%, and 1.32% across the
four datasets. Regardless of the dataset, the proposed TL-FS method consistently achieves
higher F1-scores, indicating better performance.
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Figure 9. Comparison of TL-FS and TL-NFS change detection results: (a,b), (c,d), (e,f), and (g,h),
respectively, represent the results of datasets A, B, C, and D with and without the FS module.
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4.2. The Role of the Feature Variance Algorithm

Transfer learning models can capture a wide range of deep features that represent
land cover information. However, the deep features computed from bi-temporal images
often include irrelevant changes, which can adversely affect change detection. As described
in Section 2.3, the absolute values of the differences in unchanged features tend to ap-
proach zero, while the differences in the changed features deviate significantly from zero,
displaying substantial variability. Variance can serve as a sensitivity indicator for change
information, with the variance in the change regions being markedly higher than that in
unchanged regions [35,36]. Therefore, relevant change features can be effectively filtered
based on their variance values, enhancing the sensitivity of the proposed change detection
model to urban area change information.

4.3. Analysis of Features Extraction Results from Different Layers

Here, taking the feature extraction results of the first dataset as an example, each layer
of the CNN learns many features, with the features learned in the initial layers being closer
to the original image. The features in the subsequent layers continue to build upon those
learned in the previous layers, progressing in a hierarchical fashion. The feature extractor
in the TL-FS framework proposed in this paper is part of the VGG-16 architecture. Here,
the results are displayed by selecting the layers conv2, conv4, and conv7. As shown in
Figure 11, it is unreasonable to represent the entire complex urban area using features from
a single layer. Each layer exhibits the following different characteristics: conv2, being closer
to the original image, tends to blur and produce false alarms around the edges of building
structures; conv4, being deeper, learns more abstract features, but some vegetation-related
information may not be adequately represented; and despite being the deepest layer used,
conv7 exhibits lower accuracy in detecting the boundaries of various urban features, likely
due to its implicit reduction in spatial precision. The TL-FS method, by selecting features
from each layer and composing a vector containing only changed features, can better
utilize the change information from each layer. Consequently, it can provide more precise
boundary information for each changed object and eliminate a considerable amount of
noise caused by irrelevant change features.

4.4. Comparison of the Results and Running Time of TL-FS Method
4.4.1. Discussion of Localized Test Results

The transfer learning network based on the FS module exhibited a good detection
performance when applied to VHR images in complex regions overall. For detailed illus-
trations, some excerpts from the datasets are presented in Figure 12.
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From the highlighted red circles in the figures, we can observe that the detailed
processing of TL-FS is better than TL-NFS. For certain buildings, the textures and shapes
are clearer with TL-FS. And in the first set of examples, TL-NFS made errors in detecting
vegetation, while TL-FS effectively captured the vegetation change information. Although
the proposed method is influenced by unsupervised algorithms and may not perform well
in discerning shadows, it exhibits better texture representation for buildings compared
to TL-NFS. This is because the proposed change feature selection algorithm eliminates
irrelevant change features from the multitemporal images, thus avoiding the influence of
redundant features and yielding more accurate change detection results.

4.4.2. Running Time

Table 3 presents the runtime with and without the FS module, along with comparisons
with the runtimes of the contrasted methods in Table 2, facilitating an assessment of whether
adding the FS module is worthwhile. The results indicate that on all datasets, TL-FS had
shorter runtimes compared to TL-NFS, and their change detection results show significant
differences. Considering the improvements in performance and accuracy, adding the FS
module is worthwhile.

Table 3. Runtimes of the methods with and without the FS modules.

Dataset Method Running Time (s)

A
TL-NFS 113.54
TL-FS 74.37

B
TL-NFS 101.92
TL-FS 70.26

C
TL-NFS 126.48
TL-FS 82.45

D
TL-NFS 94.83
TL-FS 65.79

5. Conclusions

This paper proposes a novel method for change detection in complex urban areas,
which can detect changes in dual-temporal remote sensing images without the need for
high-quality labeled samples. Additionally, a change feature selection algorithm is designed
to effectively connect “change information” with the model, addressing irregularities and
false detections of buildings caused by feature redundancy in complex urban areas. Inspired
by the variance selection strategy, computing the variance of change features and filtering
them provides a transfer learning-based change detection approach for urban scenes.

In the context of performing change detection tasks using deep learning, unlike object
recognition or classification, the abundance of features computed by each layer of the deep
learning model can lead to feature redundancy, affecting the effectiveness of the detection
process. In particular, an excessive presence of irrelevant change features can adversely
impact the detection performance. To address the issues of unclear terrain textures, such as
incomplete building structures caused by feature redundancy, and to enhance the efficiency
of transfer learning models in change detection for urban VHR imagery, this paper proposes
a transfer learning change detection model that integrates change feature selection.

By selecting deep change feature vectors related to the changes, this approach reduces
computational complexity while achieving excellent change detection results in urban
areas. The comparison experiments on four VHR datasets led to the following conclusions:
TL-FS achieves good change detection results in urban areas without the need for samples
and exhibits higher F1 values compared to some common methods. The designed change
feature selection algorithm filters out redundant features unrelated to changes, thereby
reducing computational complexity. Compared to transfer learning models without change
feature selection, TL-FS performs better in detecting certain buildings, resulting in clearer
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textures and more complete edge shapes. The experimental results demonstrate that TL-FS
is effective for change detection in complex urban areas.

The change detection model proposed in this paper is derived from unsupervised
algorithms, requiring no training samples. It achieves satisfactory detection results on
urban areas. However, the designed method can only detect one type of change, whereas
urban planning and development often require not only identifying changing areas but
also understanding the types of changes occurring. Therefore, as a future direction, a
more comprehensive framework for detecting multiple types of urban changes could be
developed by integrating the proposed TL-FS model with change magnitude thresholds.
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